AI in Medical Imaging & Diagnostics: review
DOI:
https://doi.org/10.31185/wjps.752Keywords:
Artificial Intelligence (AI), Medical Diagnostics, Deep Learning, Computer-Aided Diagnosis (CAD), Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), Explainable AI (XAI), Generative Adversarial Networks (GANs), Robotic-Assisted Biopsy, Precision Oncology, Automated Blood Analyzers, Digital Pathology.Abstract
ABSTRACT: The application of artificial intelligence (AI) has transformed medical diagnostics for the better with the adoption and evolution of radiology, histopathology, clinical laboratory testing, robotic surgery, and expert systems. The implementation of deep learning algorithms using AI, such as Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), and Generative Adversarial Networks (GANs), have outperformed humans in the analysis of medical images, tumor categorization, and biomarker detection. AI powered biopsy systems, which are a type of robotic assisted diagnostics, have improved the accuracy and reduced the invasiveness of the procedure, which in return, enables for better detection of diseases at earlier stages. The use of pipetting robots and automated blood analyzers for AI powered automation of clinical lab diagnostics improves the speed and volume of diagnostic assays while reducing the rate of human error. Additionally, AI powered expert systems, like OncoKB for the analysis of genetic mutations and deep mind’s AlphaFold for predicting protein structures, are advancing precision oncology and personalized medicine by offering non-biased treatment suggestions. The issues that impede the further integration of AI in diagnostics include data diversity, model generalization, obtaining legal certification, and the absence of XAI which would heighten clinician acceptance. To overcome these barriers, there needs to be standard validation frameworks, federated learning for privacy-centric AI training, and multimodal AI that incorporates medical images, genomic data, and EHRs. Emerging directions in self-supervised learning (SSL), active AI robotics, and human-machine interaction will likely improve the precision of diagnoses, automate clinical processes, and expand healthcare access around the world. This review outlines the role of AI in transforming medical diagnostics while analyzing existing obstacles, emerging possibilities, and recommendations for AI in clinical decision support systems.
References
G. Litjens et al., “A survey on deep learning in medical image analysis,” Med. Image Anal., vol. 42, pp. 60–88, 2017.
W. Bulten et al., “Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study,” Lancet Oncol., vol. 21, no. 2, pp. 233–241, Feb. 2020, doi: 10.1016/S1470-2045(19)30739-9.
P. Rani, N. Priyadarshini, E. R. Rajkumar, and K. Rajamani, “Retinal vessel segmentation under pathological conditions using supervised machine learning,” in 2016 International Conference on Systems in Medicine and Biology (ICSMB), 2016, pp. 62–66. doi: 10.1109/ICSMB.2016.7915088.
S. Kazeminia et al., “GANs for medical image analysis,” Artif. Intell. Med., p. 101938, 2020.
N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan, “A Survey on Bias and Fairness in Machine Learning,” CoRR, vol. abs/1908.0, 2019, [Online]. Available: http://arxiv.org/abs/1908.09635
D. Ardila et al., “End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography,” Nat. Med., vol. 25, no. 6, pp. 954–961, 2019, doi: 10.1038/s41591-019-0447-x.
P. Rajpurkar et al., “CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning,” CoRR, vol. abs/1711.0, 2017, [Online]. Available: http://arxiv.org/abs/1711.05225
N. M. Murray, M. Unberath, G. D. Hager, and F. K. Hui, “Artificial intelligence to diagnose ischemic stroke and identify large vessel occlusions: a systematic review,” J. Neurointerv. Surg., vol. 12, no. 2, pp. 156 LP – 164, Feb. 2020, doi: 10.1136/neurintsurg-2019-015135.
J. Wen et al., “Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation,” Med. Image Anal., vol. 63, p. 101694, 2020, doi: https://doi.org/10.1016/j.media.2020.101694.
S. M. McKinney et al., “International evaluation of an AI system for breast cancer screening,” Nature, vol. 577, no. 7788, pp. 89–94, 2020, doi: 10.1038/s41586-019-1799-6.
A. Dosovitskiy et al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. 2020. doi: 10.48550/arXiv.2010.11929.
S. Almahfouz Nasser, S. Shamsi, V. Bundele, B. Garg, and A. Sethi, Perceptual cGAN for MRI Super-resolution, vol. 2022. 2022. doi: 10.1109/EMBC48229.2022.9871832.
S. Patel and H. Amin, “Explainable AI in Healthcare: Methods, Concepts, and Challenges BT - Proceedings of International Conference on Recent Innovations in Computing,” 2024, pp. 305–318.
G. Campanella et al., “Clinical-grade computational pathology using weakly supervised deep learning on whole slide images,” Nat. Med., vol. 25, p. 1, Aug. 2019, doi: 10.1038/s41591-019-0508-1.
O. Ciga, T. Xu, and A. L. Martel, “Self supervised contrastive learning for digital histopathology,” Mach. Learn. with Appl., vol. 7, p. 100198, 2022, doi: https://doi.org/10.1016/j.mlwa.2021.100198.
B. Ehteshami Bejnordi et al., “Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer,” JAMA, vol. 318, pp. 2199–2210, Dec. 2017, doi: 10.1001/jama.2017.14585.
M. Afifi, M. A. Brubaker, and M. S. Brown, “HistoGAN: Controlling Colors of GAN-Generated and Real Images via Color Histograms,” CoRR, vol. abs/2011.11731, 2020, [Online]. Available: https://arxiv.org/abs/2011.11731
L. Zare, M. Rahmani, N. Khaleghi, S. Sheykhivand, and S. Danishvar, “Automatic Detection of Acute Leukemia (ALL and AML) Utilizing Customized Deep Graph Convolutional Neural Networks,” Bioengineering, vol. 11, no. 7. 2024. doi: 10.3390/bioengineering11070644.
P. Lakhani and B. Sundaram, “Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks,” Radiology, vol. 284, no. 2, pp. 574–582, Apr. 2017, doi: 10.1148/radiol.2017162326.
T. Yiugit, N. cSengoz, O. Ozmen, J. Hemanth, and A. H. Icsik, “Diagnosis of Paratuberculosis in Histopathological Images Based on Explainable Artificial Intelligence and Deep Learning,” ArXiv, vol. abs/2208.01674, 2022, [Online]. Available: https://api.semanticscholar.org/CorpusID:251174406
J. S. Reis-Filho and J. N. Kather, “Overcoming the challenges to implementation of artificial intelligence in pathology,” JNCI J. Natl. Cancer Inst., vol. 115, no. 6, pp. 608–612, Jun. 2023, doi: 10.1093/jnci/djad048.
E. J. Topol, “High-performance medicine: the convergence of human and artificial intelligence,” Nat. Med., vol. 25, no. 1, pp. 44–56, 2019, doi: 10.1038/s41591-018-0300-7.
M. Jawahar, L. J. Anbarasi, S. Narayanan, and A. H. Gandomi, “An attention-based deep learning for acute lymphoblastic leukemia classification,” Sci. Rep., vol. 14, no. 1, p. 17447, 2024, doi: 10.1038/s41598-024-67826-9.
N. C. Spies, A. Rangel, P. English, M. Morrison, B. O’Fallon, and D. P. Ng, “Machine Learning Methods in Clinical Flow Cytometry,” Cancers, vol. 17, no. 3. 2025. doi: 10.3390/cancers17030483.
Q. Mao, X. Zhang, Z. Xu, Y. Xiao, Y. Song, and F. Xu, “Identification of Escherichia coli strains using MALDI-TOF MS combined with long short-term memory neural networks,” Aging (Albany. NY)., vol. 16, Jun. 2024, doi: 10.18632/aging.205995.
M. A. Islam, M. Z. H. Majumder, and M. A. Hussein, “Chronic kidney disease prediction based on machine learning algorithms,” J. Pathol. Inform., vol. 14, p. 100189, 2023, doi: https://doi.org/10.1016/j.jpi.2023.100189.
R. Poplin et al., “A universal SNP and small-indel variant caller using deep neural networks,” Nat. Biotechnol., vol. 36, no. 10, pp. 983–987, 2018, doi: 10.1038/nbt.4235.
E. Baldwin et al., “On fusion methods for knowledge discovery from multi-omics datasets,” Comput. Struct. Biotechnol. J., vol. 18, pp. 509–517, 2020, doi: https://doi.org/10.1016/j.csbj.2020.02.011.
G. A. Kaissis, M. R. Makowski, D. Rückert, and R. F. Braren, “Secure, privacy-preserving and federated machine learning in medical imaging,” Nat. Mach. Intell., vol. 2, no. 6, pp. 305–311, 2020, doi: 10.1038/s42256-020-0186-1.
N. Tomašev et al., “Use of deep learning to develop continuous-risk models for adverse event prediction from electronic health records,” Nat. Protoc., vol. 16, no. 6, pp. 2765–2787, 2021, doi: 10.1038/s41596-021-00513-5.
G.-Z. Yang et al., “Medical robotics—Regulatory, ethical, and legal considerations for increasing levels of autonomy,” Sci. Robot., vol. 2, no. 4, p. eaam8638, Mar. 2017, doi: 10.1126/scirobotics.aam8638.
V. Petov et al., “Robot-Assisted Magnetic Resonance Imaging-Targeted versus Systematic Prostate Biopsy; Systematic Review and Meta-Analysis,” Cancers, vol. 15, no. 4. 2023. doi: 10.3390/cancers15041181.
X. Shu et al., Artificial Intelligence Enabled Reagent-free Imaging Hematology Analyzer. 2021. doi: 10.22541/au.163578446.63711797/v1.
M. Balter, J. Leipheimer, A. Chen, A. Shrirao, T. Maguire, and M. L. Yarmush, “Automated end-to-end blood testing at the point-of-care: Integration of robotic phlebotomy with downstream sample processing,” TECHNOLOGY, vol. 6, pp. 1–8, Jun. 2018, doi: 10.1142/S2339547818500048.
T. Habuza et al., “AI applications in robotics, diagnostic image analysis and precision medicine: Current limitations, future trends, guidelines on CAD systems for medicine,” Informatics Med. Unlocked, vol. 24, p. 100596, 2021, doi: https://doi.org/10.1016/j.imu.2021.100596.
M. Bhandari, T. Zeffiro, and M. Reddiboina, “Artificial intelligence and robotic surgery: Current perspective and future directions,” Curr. Opin. Urol., vol. 30, p. 1, Nov. 2019, doi: 10.1097/MOU.0000000000000692.
E. H. Shortliffe and M. J. Sepúlveda, “Clinical Decision Support in the Era of Artificial Intelligence,” JAMA, vol. 320, no. 21, pp. 2199–2200, Dec. 2018, doi: 10.1001/jama.2018.17163.
W. R. Swartout, “Rule-based expert systems: The mycin experiments of the stanford heuristic programming project: B.G. Buchanan and E.H. Shortliffe, (Addison-Wesley, Reading, MA, 1984); 702 pages, $40.50,” Artif. Intell., vol. 26, no. 3, pp. 364–366, 1985, doi: https://doi.org/10.1016/0004-3702(85)90067-0.
A. Esteva et al., “A guide to deep learning in healthcare,” Nat. Med., vol. 25, no. 1, pp. 24–29, 2019, doi: 10.1038/s41591-018-0316-z.
P. Courtiol et al., “Deep learning-based classification of mesothelioma improves prediction of patient outcome,” Nat. Med., vol. 25, no. 10, pp. 1519–1525, 2019, doi: 10.1038/s41591-019-0583-3.
P. Rajpurkar, A. Y. Hannun, M. Haghpanahi, C. Bourn, and A. Y. Ng, “Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks,” CoRR, vol. abs/1707.01836, 2017, [Online]. Available: http://arxiv.org/abs/1707.01836
N. Tomašev et al., “A clinically applicable approach to continuous prediction of future acute kidney injury,” Nature, vol. 572, no. 7767, pp. 116–119, 2019, doi: 10.1038/s41586-019-1390-1.
X. Liu et al., “A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis,” Lancet Digit. Heal., vol. 1, no. 6, pp. e271–e297, Oct. 2019, doi: 10.1016/S2589-7500(19)30123-2.
M. Ghassemi, L. Oakden-Rayner, and A. L. Beam, “The false hope of current approaches to explainable artificial intelligence in health care,” Lancet Digit. Heal., vol. 3, no. 11, pp. e745–e750, Nov. 2021, doi: 10.1016/S2589-7500(21)00208-9.
Z. Obermeyer, B. Powers, C. Vogeli, and S. Mullainathan, “Dissecting racial bias in an algorithm used to manage the health of populations,” Science (80-. )., vol. 366, no. 6464, pp. 447–453, Oct. 2019, doi: 10.1126/science.aax2342.
W. Samek, G. Montavon, S. Lapuschkin, C. Anders, and K.-R. Müller, Toward Interpretable Machine Learning: Transparent Deep Neural Networks and Beyond. 2020. doi: 10.48550/arXiv.2003.07631.
S. Benjamens, P. Dhunnoo, and B. Meskó, “The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database,” npj Digit. Med., vol. 3, no. 1, p. 118, 2020, doi: 10.1038/s41746-020-00324-0.
J. He, S. L. Baxter, J. Xu, J. Xu, X. Zhou, and K. Zhang, “The practical implementation of artificial intelligence technologies in medicine,” Nat. Med., vol. 25, no. 1, pp. 30–36, 2019, doi: 10.1038/s41591-018-0307-0.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Saif Hameed Abbood Al-Waeli1, Haza Nuzly bin Abdul Hameed

This work is licensed under a Creative Commons Attribution 4.0 International License.