Evaluation of Decision Tree and Support Vector Machine Classifiers in Comparison for Flood Prediction
DOI:
https://doi.org/10.31185/wjps.749Keywords:
: Flood Prediction, Machine Learning, Support Vector Machine, Decision Tree, Disaster PreparednessAbstract
Protection from floods is one of the most significant activities aimed at risk reduction. Flood prediction and disaster preparedness have relevance for reducing the association between floods and people and infrastructure. The goal of this study was to find out how well the Support Vector Machine (SVM) and Decision Tree classifiers work at predicting flooding based on different environmental and infrastructure factors. Data collection had been done through gathering 140 samples with a total of 21 variables where analysis had been done in order to identify significant contributory factors: topography, urbanization, and climate change. The results show that an SVM model was capable of achieving an accuracy of 91%, while the Decision Tree classifier did much better at an accuracy of 95%. The decision tree model was also more precise in flood prediction (1.00) and recall for non-flood cases (1.00), while for both models, the recall for flood cases was the same (0.88). This indicates that both the models had some false negatives for floods. The current study focuses more on machine learning applications and disaster readiness in flood risk assessment for better and more effective mitigation.
References
ROSYIDA, Ainun, et al. Analisis Perbandingan Dampak Kejadian Bencana Hidrometeorologi dan Geologi di Indonesia Dilihat Dari Jumlah Korban (Studi: Data Kejadian Bencana Indonesia 2018): Studi: Data Kejadian Bencana Indonesia 2018. Jurnal Dialog Penanggulangan Bencana, 2019, 10.1: 12-21.
KARNO, R.; MUBARRAK, J. Analsis Spasial (Ekologi) Pemanfaatan Daerah Aliran Sungai di Sungai Batang Lubuh Kecamatan Rambah Kabupaten Rokan Hulu. Jurnal Ilmiah Edu Research, 2018, 1.7: 59-62.
AL FAUZI, Rahmat. Analisis tingkat kerawanan banjir Kota Bogor menggunakan metode overlay dan scoring berbasis sistem informasi geografis. Geo Media: Majalah Ilmiah dan Informasi Kegeografian, 2022, 20.2: 96-107.
AKBAR, Jiwa; YUDONO, Muchtar Ali Setyo. Water Level Classification for Detect Flood Disaster Status Using KNN and SVM. Jurnal Sisfokom (Sistem Informasi dan Komputer), 2024, 13.3: 298-302.
ANGGRAINI, Asfilia Nova. Prediksi status banjir sungai Ciliwung untuk deteksi dini bencana banjir menggunakan Artificial Neural Network Backpropagation. 2022. PhD Thesis. Universitas Islam Negeri Maulana Malik Ibrahim.
PRIBADI, Krishna S.; YULIAWATI, Ayu Krishna. Pendidikan Siaga Bencana Gempa Bumi Sebagai Upaya Meningkatkan Keselamatan Siswa (Studi Kasus Pada SDN Cirateun dan SDN Padasuka 2 Kabupaten Bandung). KRISHNA_S_PRIBADI_-_ITB. Pdf, 2008.
LAROSE, Daniel T. An introduction to data mining. Traduction et adaptation de Thierry Vallaud, 2005, 23.
BRAMER, Max. Principles of data mining. Springer, 2007.
MARDI, Yuli. Analisa Data Rekam Medis untuk Menentukan Penyakit Terbanyak Berdasarkan International Classification Of Disease (ICD) Menggunakan Decision Tree C4. 5 (Studi Kasus: RSU. CBMC Padang). UPI YPTK Padang, 2014, 93.
ZAMRI, David, et al. Perbandingan Metode Data Mining untuk Prediksi Banjir Dengan Algoritma Naïve Bayes dan KNN: Comparison of Data Mining Methods for Predition of Floods with Naïve Bayes and KNN Algorithm. In: SENTIMAS: Seminar Nasional Penelitian dan Pengabdian Masyarakat. 2022. p. 40-48.
NURKHALIZA, Ayu Aina; WIJAYANTO, Arie Wahyu. Perbandingan Algoritma Klasifikasi Support Vector Machine dan Random Forest pada Prediksi Status Indeks Mitigasi dan Kesiapsiagaan Bencana (IMKB) Satuan Kerja BPS di Indonesia Tahun 2020. Jurnal Informatika Universitas Pamulang, 2022, 7.1: 54-59.
LIRIWATI, Fahrina Yustiasari. Transformasi Kurikulum; Kecerdasan Buatan untuk Membangun Pendidikan yang Relevan di Masa Depan. IHSAN: Jurnal Pendidikan Islam, 2023, 1.2: 62-71.
BOCK, Marius, et al. Improving deep learning for HAR with shallow LSTMs. In: Proceedings of the 2021 ACM International Symposium on Wearable Computers. 2021. p. 7-12.
DARMAYANTI, Irma, et al. Prediksi potensi siswa putus sekolah akibat pandemi covid-19 menggunakan algoritme k-nearest neighbor. JST (Jurnal Sains dan Teknologi), 2021, 10.2: 230-238.
RANI, Veenu, et al. Self-supervised learning: A succinct review. Archives of Computational Methods in Engineering, 2023, 30.4: 2761-2775.
TAHA, Mohammed A.; ALSAIDI, Saif Ali Abd Alradha; HUSSEIN, Reem Ali. Machine Learning Techniques for Predicting Heart Diseases. In: 2022 International Symposium on iNnovative Informatics of Biskra (ISNIB). IEEE, 2022. p. 1-6.
TIBALDI, Simone, et al. Unsupervised and supervised learning of interacting topological phases from single-particle correlation functions. SciPost Physics, 2023, 14.1: 005.
ZAKUR, Yahya, et al. Artificial intelligence techniques applications in the wastewater: A comprehensive review. In: E3S Web of Conferences. EDP Sciences, 2025. p. 03006.
ALAM, Shamshe, et al. One-class support vector classifiers: A survey. Knowledge-Based Systems, 2020, 196: 105754.
AASIM, Muhammad, et al. A comparative and practical approach using quantum machine learning (QML) and support vector classifier (SVC) for Light emitting diodes mediated in vitro micropropagation of black mulberry (Morus nigra L.). Industrial Crops and Products, 2024, 213: 118397.
PRIYANKA; KUMAR, Dharmender. Decision tree classifier: a detailed survey. International Journal of Information and Decision Sciences, 2020, 12.3: 246-269.
PAYNE; MEISEL. An algorithm for constructing optimal binary decision trees. IEEE Transactions on Computers, 1977, 100.9: 905-916.
GRĄBCZEWSKI, Krzysztof. Meta-learning in decision tree induction. Cham, Switzerland: Springer International Publishing, 2014.
VINAYAK, Rashmi Korlakai; GILAD-BACHRACH, Ran. Dart: Dropouts meet multiple additive regression trees. In: Artificial Intelligence and Statistics. PMLR, 2015. p. 489-497.
ROSS, Quinlan J., et al. C4. 5: programs for machine learning. San Mateo, CA, 1993.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Suha Abdullah

This work is licensed under a Creative Commons Attribution 4.0 International License.