A review of the superbug crisis

Authors

  • Rana H. Raheema Medical microbiology, College of Medicine, Wasit University, IRAQ

DOI:

https://doi.org/10.31185/wjps.669

Keywords:

Superbug crisis , Antibiotic resistance , Artificial intelligence

Abstract

A global public health concern with a substantial economic impact is antimicrobial resistance, which is the capacity of microorganisms to alter and adapt their behavior, rendering medications typically employed against them useless. The rise of drug-resistant infections, driven by the overuse and misuse of antibiotics in healthcare, agriculture, and other sectors, has led to the emergence of dangerous superbugs, such as MRSA and MDR-TB. These resistant bacteria evade traditional treatments through various mechanisms, including horizontal gene transfer, biofilm formation, and the production of resistance enzymes. Antimicrobial Resistance spreads primarily through human-to-human interaction and environmental sources, including contaminated water and food. Addressing this crisis requires a multifaceted approach, including antimicrobial stewardship, better hygiene practices, more effective infection control, and the development of new treatments. Artificial intelligence is emerging as a promising tool to identify resistance patterns and optimize treatment regimens, offering hope in the fight against AMR. Efforts to combat AMR must be collaborative, involving governments, healthcare providers, researchers, and communities to ensure sustainable solutions to this global health challenge.

References

References

WHO. Ten threats to global health in 2019”. spotlight/ten-threats-to-global- health-in-2019

Lim, J.-S. . Chai, W.-X. Ser, A. Van Haeren, Y.-H. Lim, T. Raja, J.-B. Foo, S. Hamzah, R. Sellappans, H.Y. Yow.(2024). Novel drug candidates against antibiotic-resistant microorganisms: A review, Iran J. Basic Med. Sci. 27 , 134–150 .https://doi.org/10.22038/IJBMS.2023.71672.15593.

Asghar, A. Khalid, Z. Baqar, N. Hussain, M.Z. Saleem, Sairash, K. Rizwan .(2024).An insight into emerging trends to control the threats of antimicrobial resistance (AMR): an address to public health risks, Arch. Microbiol 206 , 72, https:// doi.org/10.1007/s00203-023-03800-9

Founou, A.J. Blocker, M. Noubom, C. Tsayem, S.P. Choukem, M.Van Dongen, L.L. Founou. (2021). The COVID-19 pandemic: A threat to antimicrobial resistance containment, Futur Sci. OA 7 (2021) FSO736. doi: 10.2144/fsoa-2021-0012

Read, A.F.; Woods, R.J. Antibiotic resistance management. Evol. Med. Public Health 2014, 2014, 147.

Samreen; Ahmad, I.; Malak, H.A.; Abulreesh, H.H. Environmental antimicrobial resistance and its drivers: A potential threat to public health. J. Glob. Antimicrob. Resist. 2021, 27, 101–111.

Kaur, N.; Prasad, R.; Varma, A. Prevalence and antibiotic susceptibility pattern of methicillin resistant staphylococcus aureus intertiary care hospitals. Biotechnol. J. Int. 2014, 4, 228–235.

Parmanik, A.; Das, S.; Kar, B.; Bose, A.; Dwivedi, G.R.; Pandey, M.M. Current Treatment Strategies Against Multidrug-Resistant Bacteria: A Review. Curr. Microbiol. 2022, 79, 388.

Endale, M. Mathewos, D. Abdeta, Potential Causes of Spread of Antimicrobial Resistance and Preventive Measures in One Health Perspective-A Review, Infect. Drug Resist 16 (2023) 7515–7545, https://doi.org/10.2147/IDR.S428837.

Chiș, L.L. Rus, C. Morgovan, A.M. Arseniu, A. Frum, A.L. Vonica-țincu, F. G. Gligor, M.L. Mureșan, C.M. Dobrea, Microbial Resistance to Antibiotics and Effective Antibiotherapy, Biomedicines 10 (2022) 1121, https://doi.org/ 10.3390/biomedicines10051121.

Mohanty, S. Pachpute, R.P. Yadav, Mechanism of drug resistance in bacteria: efflux pump modulation for designing of new antibiotic enhancers, Folia Microbiol. ((((Praha)))) 66 (2021) 727–739.

Uru´en, G. Chopo ommassen, R.C. Mainar-Jaime, J. Arenas, Biofilms as promoters of bacterial antibiotic resistance and tolerance, Antibiotics 10 (1) (2021) 36, https://doi.org/10.3390/antibiotics10010003.

Weisberg, J.H. Chang, Mobile Genetic Element Flexibility as an Underlying Principle to Bacterial Evolution, Annu. Rev. Microbiol 77 (2023) 603–624, https://doi.org/10.1146/annurev-micro-032521-022006.

van Duin, D.L. Paterson, Multidrug-Resistant Bacteria in the Community: An Update, Infect. Dis. Clin. North Am 34 (2020) 709–722, https://doi.org/10.1016/ j.idc.2020.08.002.

Peacock, G.K. Paterson, Mechanisms of methicillin resistance in

Staphylococcus aureus, Annu. Rev. Biochem. 84 (2015) 577–601, https://doi. org/10.1146/annurev-biochem-060614-034516.

Baroud, I. Dandache, G.F. Araj, R. Wakim, S. Kanj, Z. Kanafani, M. Khairallah, A. Sabra, M. Shehab, G. Dbaibo, G.M. Matar, Underlying mechanisms of carbapenem resistance in extended-spectrum β-lactamase-producing Klebsiella pneumoniae and Escherichia coli isolates at a tertiary care centre in Lebanon: role of OXA-48 and NDM-1 carbapenemases. Int J Antimicrob Agents.2013 Jan;41(1):75-9. doi: 10.1016/j.ijantimicag.2012.08.010.

Kyriakidis, E. Vasileiou, Z.D. Pana, A. Tragiannidis, Acinetobacter baumannii antibiotic resistance mechanisms, Pathogens 10 (2021) 373, https://doi.org/ 10.3390/pathogens10030373.

Godijk, N.G.; Bootsma, M.C.J.; Bonten, M.J.M. Transmission routes of antibiotic resistant bacteria: A systematic review. BMCInfect. Dis. 2022, 22, 482.

Krzemi ´nski, P.; Markiewicz, Z.; Popowska, M. Entry Routes of Antibiotics and Antimicrobial Resistance in the Environment. In Antibiotics and Antimicrobial Resistance Genes: Environmental Occurrence and Treatment Technologies; Hashmi, M.Z., Ed.; Springer International Publishing: Cham, Germany, 2020; pp. 1–26.

Costa, P.M.; Loureiro, L.; Matos, A.J. Transfer of multidrug-resistant bacteria between intermingled ecological niches: The interface between humans, animals and the environment. Int. J. Environ. Res. Public Health 2013, 10, 278–294.

Landers, T.F.; Cohen, B.; Wittum, T.E.; Larson, E.L. A review of antibiotic use in food animals: Perspective, policy, and potential.Public Health Rep. 2012, 127, 4–22.

Ahmed, S.K.Artificial intelligence in nursing: Current trends, possibilities and pitfalls, J. Med. Surgery, Public Heal 3 (2024) 100072

Ahmed, S. Hussein, D. Chandran, M.R. Islam, K. Dhama, The role of digital health in revolutionizing healthcare delivery and improving health outcomes in conflict zones, 20552076231218160, Digit. Heal 9 (2023), https://doi.org/ 10.1177/2055207623121815

Lau,H.J. Lim, S.C. Foo, H.S. Tan, The role of artificial intelligence in the battle against antimicrobial-resistant bacteria, Curr. Genet 67 (2021) 421–429.

Gulumbe, U.A. Haruna, J. Almazan, I.H. Ibrahim, A.A. Faggo, A.Y. Bazata, Combating the menace of antimicrobial resistance in Africa: A review on stewardship, surveillance and diagnostic strategies, Biol. Proced. Online 24 (2022) 1–13.

Marra, P. Nori, B.J. Langford, T. Kobayashi, G. Bearman, Brave new world: Leveraging artificial intelligence for advancing healthcare epidemiology, infection prevention, and antimicrobial stewardship, Infect. Control Hosp. Epidemiol 44 (2023) 1909–1912.

Abushaheen, M.A.; Muzaheed; Fatani, A.J.; Alosaimi, M.; Mansy, W.; George, M.; Acharya, S.; Rathod, S.; Divakar, D.D.; Jhugroo,C.; et al. Antimicrobial resistance, mechanisms and its clinical significance. Dis. A-Mon. DM 2020, 66, 100971.

28-Majumder, M.A.A.; Rahman, S.; Cohall, D.; Bharatha, A.; Singh, K.; Haque, M.; Gittens-St Hilaire, M. Antimicrobial Stewardship: Fighting Antimicrobial Resistance and Protecting Global Public Health. Infect. Drug Resist. 2020, 13, 4713–4738.

Downloads

Published

2025-06-30

Issue

Section

Biology

How to Cite

H. Raheema, R. (2025). A review of the superbug crisis. Wasit Journal for Pure Sciences , 4(2), 76-84. https://doi.org/10.31185/wjps.669