A Novel hybridization of CG-techniques for Solving Unconstrained Optimization Problems
DOI:
https://doi.org/10.31185/wjps.657Abstract
Conjugate gradient methods are an extremely helpful way for handling large scale non-linear optimization issues. In this paper, based on the three famous Dai-yuan (DY), Liu–Storey (LS)and Conjugate-Descent (CD) conjugate gradient methods, a new hybrid CG method is proposed. Under strong wolf line search, we prove the sufficient descent and global convergence features. The new formula is more efficient than other traditional conjugate gradient approaches, according to numerical results.
References
Andrei, N. “Another hybrid conjugate gradient algorithm for unconstrained optimization”. Numerical Algorithms. 47(2), pp. 143-156, 2008.
Andrei, N. “Accelerated hybrid conjugate gradient algorithm with modified secant condition for unconstrained optimization”. Numerical Algorithms. 54, pp. 23-46, 2010a.
Andrei, N. “New accelerated conjugate gradient algorithms as a modification of Dai-Yuan’s computational scheme for unconstrained optimization”. Journal of Computational and Applied Mathematics. 234, pp. 3397-3410, 2010b.
Fletcher, R., and Reeves, C. “Function minimization by conjugate gradients”. The Computer Journal.
(2), pp. 149-154, 1964.
Hestenes, M. R., and Stiefel, E. L. “Methods of conjugate gradients for solving linear systems”. Journal
of Research of the National Bureau of Standards. 49(6), pp. 409-436, 1952.
E. Polak and G. Ribi`ere, “Note sur la convergence de methods de directions conjugates”. Revue Francaise d’Informatique et de Recherche Operational 16, 35–43, 1969.
Dai, Y. H., and Yuan, Y. “An Efficient Hybrid Conjugate Gradient Method for Unconstrained Optimization”. Annals of Operation Research. 103, pp. 33-47, 2001.
Y. Liu and C. Storey, “Efficient generalized conjugate gradient algorithms”. Part 1: Theory J. Optim. Theory Appl. 69, 129–137, 1991.
R. Fletcher, “Practical methods of optimization”, 2nd edition. A Wiley-Intercedence Publication, John Wiley and Sons, Inc NY, USA, 1987.
Dai, Z., and Wen, F. “Comments on another hybrid conjugate gradient algorithms for unconstrained optimization” by Andrei. Numerical Algorithms. 47, pp. 143-156, 2014.
Dennis, J. E. and Schnabel R. B. “Numerical Methods for Unconstrained Optimization and Nonlinear Equation”. Philadelphia: Society for Industrial and Applied Mathematics, 1983.
Dai, Y., Sun, D., Yin, H., and Yuan, Y. “Convergence Properties of Nonlinear Conjugate Gradient Methods”. Society for Industrial and Applied Mathematics. 10(2), pp. 345-358, 2000.
Jian, J., and Han, L., and Jiang, X. “A hybrid conjugate gradient method with descent property for unconstrained optimization”. Applied Mathematical Modelling. 39(3-4), pp. 1281-1290, 2014.
Liu, J. K., and Li, S. J. “New hybrid conjugate gradient method for unconstrained optimization”. Applied Mathematics and Computation. 245, pp. 36-43, 2014.
Mo, J., Gu, N., and Wei, Z. “Hybrid conjugate gradient methods for unconstrained optimization. Optimization Methods and Software”. 22(2), pp. 297-307, 2007.
Dolan, E.D. Moré, J.J. “Benchmarking optimization software with performance profiles”. Math. Program. 91, 201–213, 2002.
M.J.D. Powell, “Restart procedures of the conjugate gradient method”. Math. Program. 2, 241–254, 1977.
G. Zoutendijk, “Nonlinear programming, computational methods, in Integer and Nonlinear Programming”, J. Abadie, ed., North-Holland, Amsterdam, 37-86, 1970.
S.S. Djordjevic, “New Hybrid Conjugate Gradient Method as a Convex Combination of LS and CD methods”. Filo mat 31, 1813–1825, 2017.
D. Touati-Ahmed, C. Storey, “Efficient hybrid conjugate gradient techniques”, J. Optim. Theory Appl., 64, 379-397, 1990.
Gould, N.I.M., Orban, D., Toint P L. CUTEr and SifDec “A constrained and unconstrained testing environment”, revisited. ACM Trans. Math. Softw. (TOMS) 29(4), 373–394, 2003.
More, J.J., Garbow, B.S., Hillstrom, K.E. “Testing unconstrained optimization software”. ACM Trans. ´ Math. Softw. (TOMS) 7(1), 17–41, 1981.
Andrei, N. “An unconstrained optimization test functions collection”. Adv. Model. Optim. 10(1), 147– 161, 2008.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Hawraz Jabbar

This work is licensed under a Creative Commons Attribution 4.0 International License.