Sanger sequencing reveals Pseudomonas aeruginosa was the most common cross-contamination of gastrointestinal endoscopy
DOI:
https://doi.org/10.31185/wjps.608Keywords:
Pseudomonas aeroginusa, Pseudomonas nitroreducens, gastrointestinal endoscopy contamination, Sanger sequencing.Abstract
A common cause of nosocomial infections is Pseudomonas aeruginosa. Has become a significant pathogen over the last two decades, accounting for 10% to 20% of infections in many hospitals. It demonstrates an inherent resistance to numerous antibiotics. This study was aimed to utilized advanced molecular techniques to identified Pseudomonas spp. that caused cross-contamination of stomach biopsies specimens taken by gastrointestinal endoscopy and its resistance to some common used antibiotics.
A total of sixty-one biopsy tissue samples were taken from patients suffering of gastrointestinal disorder at Al-Karama and Al-Zahraa Teaching Hospitals. Bacterial species were identified by traditional techniques (Gram stain and biochemical tests) and molecular techniques (16S rRNA PCR-based techniques and Sanger sequencing) methods.
On average 54.1% showed bacterial growth, 56.0% of them was identified as Pseudomonas.spp (P.aeruginosa and P.nitroreducens). In this study, P.aeruginosa was identified as the most prevalent contaminant associated with gastrointestinal endoscopies. It known to cause opportunistic and severe co-infections in patients. As far as we are aware, this is the first report of its kind identified and studied P.nitroreducens as a contaminant in Iraqi patients. Antibiotic susceptibility test was done and isolates showed various resistance and sensitivity patterns (high antibiotic resistance to Azithromycin, Ceftriaxone, Erythromycin and Trimethoprim, and low antibiotic resistance to Amikacin, Gentamicin, Levofloxacin and Piperacillin-Tazobactam).
This study highlights attention to the critical issue of contamination in gastrointestinal endoscopes due to inadequate sterilization. Molecular methods especially Sanger sequencing proved more accurate than traditional identification. To the best of our knowledge, this study reveals new bacterial species in hospitals in Iraq. Additionally, the isolated bacterial species demonstrated various patterns of resistance and sensitivity based on antibiotic susceptibility testing.
References
Iglewski BH. Pseudomonas. In: Baron S, editor. Medical Microbiology. 4th edition. Galveston (TX): University of Texas Medical Branch at Galveston; 1996. Chapter 27. Available from: https://www.ncbi.nlm.nih.gov/books/NBK8326/.
Yang L, Jelsbak L, Marvig RL, Damkiær S, Workman CT, Rau MH, et al. Evolutionary dynamics of bacteria in a human host environment. Proc Natl Acad Sci U S A. 2011;108:7481–6. doi: 10.1073/pnas.1018249108.
Lusis, P. I., & Soltys, M. A. (1971). Pseudomonas aeruginosa.
Fazeli H, Akbari R, Moghim S, Narimani T, Arabestani MR, Ghoddousi AR. Pseudomonas aeruginosa infections in patients, hospital means, and personnel's specimens. J Res Med Sci. 2012 Apr;17(4):332-7. PMID: 23267393; PMCID: PMC3526125.
Bodey GP, Bolivar R, Fainstein V, Jadeja L. Infections caused by Pseudomonas aeruginosa. Rev Infect Dis. 1983 Mar-Apr;5(2):279-313. doi: 10.1093/clinids/5.2.279. PMID: 6405475.
Harold C. Neu, The role of Pseudomonas aeruginosa in infections , Journal of Antimicrobial Chemotherapy, Volume 11, Issue suppl_B, 1983, Pages 1–13, https://doi.org/10.1093/jac/11.suppl_B.1.
Itoh N, Akazawa N, Yamaguchi M, Murakami H, Ohkusu K. Cholangitis with bacteremia due to Pseudomonas nitroreducens in a patient with pancreatic neuroendocrine tumors: a case report. BMC Infect Dis. 2024 Feb 9;24(1):180. doi: 10.1186/s12879-024-09092-8. PMID: 38336644; PMCID: PMC10858522.
Yao J, Zhang G, Wu Q, Chen GQ, Zhang R. Production of polyhydroxyalkanoates by Pseudomonas nitroreducens. Antonie Van Leeuwenhoek. 1999;75:345–9. doi: 10.1023/A:1002082303615.
Ethan E. Mann, Daniel J. Wozniak, Pseudomonas biofilm matrix composition and niche biology, FEMS Microbiology Reviews, Volume 36, Issue 4, July 2012, Pages 893–916, https://doi.org/10.1111/j.1574-6976.2011.00322.x.
Zobell CE, Anderson DQ. Observations on the multiplication of bacteria in different volumes of stored seawater and the influence of oxygen tension and solid surfaces. Biol Bull Woods Hole. 1936;71:324–342.
Vickery K, Pajkos A, Cossart Y. Removal of biofilm from endoscopes: evaluation of detergent efficiency. Am J Infect Control. 2004;32:170–176. doi: 10.1016/j.ajic.2003.10.009.
Donlan RM. Biofilms and device-associated infections. Emerg Infect Dis. 2001;7:277–281. doi: 10.3201/eid0702.010226.
Alvarado CJ, Reichelderfer M. APIC guideline for infection prevention and control in flexible endoscopy. Association for Professionals in Infection Control. Am J Infect Control. 2000;28:138–155.
Bloss R, Kampf G. Test models to determine cleaning efficacy with different types of bioburden and its clinical correlation. J Hosp Infect. 2004;56 Suppl 2:S44–S48. doi: 10.1016/j.jhin.2003.12.029.
Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74(12):5463-5467.
Sanger F, et al. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977;74:5463–5467.
AAT Bioquest. (n.d.). Sanger sequencing. Retrieved November 29, 2024, from AAT Bioquest catalog.
Cappuccino, J. G., & Sherman, N. (2014). Microbiology: A Laboratory Manual (10th ed.).
Madigan, M. T., Martinko, J. M., & Bender, K. S. (2014). Brock Biology of Microorganisms (14th ed.). Pearson.
Jorgensen, J. H., & Pfaller, M. A. (2015). Manual of Clinical Microbiology (11th ed.). American Society for Microbiology.
Kaiser, K., & Wang, X. (2020)."Gel Electrophoresis of Nucleic Acids," in Methods in Molecular Biology, Vol. 2061, Springer.
Binnicker, M. J. (2020). "Molecular diagnostic methods for the identification of bacterial pathogens." Clinical Microbiology Reviews, 33(3), e00059-19.
CLSI. Performance standard for antimicrobial susceptibility testing. 30th ed. CLSI supplement M100 Wayne, PA:Clinical and Laboratory Standard Institute; 2020.
Wikipedia contributors. (2024, July 13). Disk diffusion test. In Wikipedia, The Free Encyclopedia. Retrieved13:27,November21,2024,from https://en.wikipedia.org/w/index.php?title=Disk_diffusion_test&oldid=1234356214.
Lanotte P, Watt S, Mereghetti L, Dartiguelongue N, Rastegar-Lari A, Goudeau A, et al. Genetic features of pseudomonas aeruginosa isolates from Cystic Fibrosis patients compared with those isolates from other origins. J Med Microbiol. 2004;53:73–81. doi: 10.1099/jmm.0.05324-0.
Lanotte P, Watt S, Mereghetti L, Dartiguelongue N, Rastegar-Lari A, Goudeau A, et al. Genetic features of pseudomonas aeruginosa isolates from Cystic Fibrosis patients compared with those isolates from other origins. J Med Microbiol. 2004;53:73–81. doi: 10.1099/jmm.0.05324-0.
Corona-Nakamura AL, Miranda-Novales MG, Leaños-Miranda B, Portillo-Gómez L, Hernández-Chávez A, Anthor-Rendón J, et al. Epidemiologic Study of Pseudomonas aeruginosa in Critical Patients and Reservoirs. Arch Med Res. 2001;32:238–42. doi: 10.1016/s0188-4409(01)00267-3.
Bodey GP, Bolivar R, Fainstein V, Jadeja L. Infections caused by Pseudomonas aeruginosa. Rev Infect Dis. 1983 Mar-Apr;5(2):279-313. doi: 10.1093/clinids/5.2.279. PMID: 6405475.
T1 - Urease-positive bacteria in the stomach induce a false-positive reaction in a urea breath test for diagnosis of Helicobacter pylori infection, VL - 57, DO - 10.1099/jmm.0.47768-0 JO - Journal of medical microbiology ER -.
Sizar O, Rahman S, Sundareshan V. Amikacin. [Updated 2023 Jul 17]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK430908/.
Rang HP, Ritter JM, Flower RJ, Henderson G. Rang & Dale's Pharmacology. 9th ed. Elsevier; 2019.
Lau WMercer D, Itani KM, Nicolau DP, Kuti JL, Mansfield D, Dana A.2006.Randomized, Open-Label, Comparative Study of Piperacillin-Tazobactam Administered by Continuous Infusion versus Intermittent Infusion for Treatment of Hospitalized Patients with Complicated Intra-Abdominal Infection. Antimicrob Agents Chemother50:.https://doi.org/10.1128/aac.00329-06.
Chaves BJ, Tadi P. Gentamicin. In: StatPearls. StatPearls Publishing, Treasure Island (FL); 2023. PMID: 32491482.
Farhan, S. M., Raafat, M., Abourehab, M. A. S., Abd El-Baky, R. M., Abdalla, S., EL-Gendy, A. O., & Azmy, A. F. (2021). Effect of Imipenem and Amikacin Combination against Multi-Drug Resistant Pseudomonas aeruginosa. Antibiotics, 10(11), 1429. https://doi.org/10.3390/antibiotics10111429.
Anderson, V.R., Perry, C.M. Levofloxacin. Drugs 68, 535–565 (2008). https://doi.org/10.2165/00003495-200868040-00011.
D. Daley, L. Mulgrave, R. Munro, S. Neville, H. Smith, W. Dimech, An evaluation of the in vitro activity of piperacillin/tazobactam, Pathology, Volume 28, Issue 2,1996, Pages 167-172, ISSN 0031-3025, https://doi.org/10.1080/00313029600169813.
Charles F. T. Snelling, Allan R. Ronald, Claudette Y. Cates, William C. Forsythe, Resistance of Gram-Negative Bacilli to Gentamicin, The Journal of Infectious Diseases, Volume 124, Issue Supplement_1,December1971,PagesS264S270, https://doi.org/10.1093/infdis/124.Supplement_1.S264.
Nageeb WM, Hetta HF (2022) The predictive potential of different molecular markers linked to amikacin susceptibility phenotypes in Pseudomonas aeruginosa. PLoS ONE 17(4): e0267396. https://doi.org/10.1371/journal.pone.0267396.
J.A. Lepe, L. Martínez-Martínez, Resistance mechanisms in Gram-negative bacteria, Medicina Intensiva (English Edition), Volume 46, Issue 7,2022,Pages 392-402,ISSN 2173-5727, https://doi.org/10.1016/j.medine.2022.05.004.
Gin, A., Dilay, L., Karlowsky, J. A., Walkty, A., Rubinstein, E., & Zhanel, G. G. (2007). Piperacillin–tazobactam: a β-lactam/β-lactamase inhibitor combination. Expert Review of Anti-Infective Therapy, 5(3), 365–383. https://doi.org/10.1586/14787210.5.3.365.
Ahmed Moaz, Kevin Shannon, Ian Phillips, Mechanisms of gentamicin resistance in Gram-negative bacilli in Riyadh, Kingdom of Saudi Arabia, Journal of Antimicrobial Chemotherapy, Volume 24, Issue 5, November 1989, Pages 689–698, https://doi.org/10.1093/jac/24.5.689.
Heidary M, Ebrahimi Samangani A, Kargari A, Kiani Nejad A, Yashmi I, Motahar M, Taki E, Khoshnood S. Mechanism of action, resistance, synergism, and clinical implications of azithromycin. J Clin Lab Anal. 2022 Jun;36(6):e24427. doi: 10.1002/jcla.24427. Epub 2022 Apr 21. PMID: 35447019; PMCID: PMC9169196.
Samantha R. Phillips Pharm.D., BCIDP, ... Sara Groome Pharm.D, in Side Effects of Drugs Annual, 2021
Aniqa Ashraf, Guijian Liu, Balal Yousaf, Muhammad Arif, Rafay Ahmed, Samina Irshad, Ayesha Imtiyaz Cheema, Audil Rashid, Humaira Gulzaman, Recent trends in advanced oxidation process-based degradation of erythromycin: Pollution status, eco-toxicity and degradation mechanism in aquatic ecosystems,Science of The Total Environment,Volume 772,2021,145389,ISSN 0048-9697,https://doi.org/10.1016/j.scitotenv.2021.145389.
Gleckman R, Blagg N, Joubert DW. Trimethoprim: mechanisms of action, antimicrobial activity, bacterial resistance, pharmacokinetics, adverse reactions, and therapeutic indications. Pharmacotherapy. 1981 Jul-Aug;1(1):14-20. doi: 10.1002/j.1875-9114.1981.tb03548.x. PMID: 6985448.
Dao, N., Joshi-Datar, A., Lepine, F., Bauerle, E., Olakanmi, O., Beer, K., et al. (2011). Active Starvation Responses Mediate Antibiotic Tolerance in Biofilms and Nutrient-Limited Bacteria. Science 334 (6058), 982–986. doi: 10.1126/science.1211037.
Liao Chongbing , Huang Xin , Wang Qingxia , Yao Dan , Lu Wuyuan, Virulence Factors of Pseudomonas Aeruginosa and Antivirulence Strategies to Combat Its Drug Resistance, JOURNAL=Frontiers in Cellular and Infection Microbiology, VOLUME=12,2022, URL=https://www.frontiersin.org/journals/cellular-and-infection, microbiology/articles/10.3389/fcimb.2022.926758, DOI=10.3389/fcimb.2022.926758.
Rollet, C., Gal, L., Guzzo, J. (2009). Biofilm-Detached Cells, a Transition From a Sessile to a Planktonic Phenotype: A Comparative Study of Adhesion and Physiological Characteristics in Pseudomonas Aeruginosa. FEMS Microbiol. Lett. 290 (2), 135–142. doi: 10.1111/j.1574-6968.2008.01415.x.
Mann, E. E., Wozniak, D. J. (2012). Pseudomonas Biofilm Matrix Composition and Niche Biology. FEMS Microbiol. Rev. 36 (4), 893–916. doi: 10.1111/j.1574-6976.2011.00322.x.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Zainab hameed

This work is licensed under a Creative Commons Attribution 4.0 International License.