In Vivo Evaluation of The Hepatotoxic Disorders of Tributyltin Low Doses in Male Rats

Authors

  • Asmaa M. Neamah Department of Environment, College of Science, Al-Qadisiyah University. IRAQ

DOI:

https://doi.org/10.31185/wjps.497

Keywords:

Tributyltin chloride; molecular studies; Hepatotoxicity; oxidative stress, drug metabolizing enzymes, Antioxidants.

Abstract

Tributyltin (TBT) has been used widely for over 60 years as a pesticidal, preservation, rodent repellent, water-repellant coating, corrosion inhibitor, flame-resistant polyester, and household product. Previous research has demonstrated the toxicity of high doses of TBT, but there is insufficient data on the effects of relevant levels of TBT on at low doses. The main goal of this thesis is to recognize the hepatotoxicity of Sublethal doses of TBT chloride (10-2000 µg/Kg body weight) in male rats for 45 days. TBT induced hepatic induction of oxidative stress as indicated by increasing levels of TBARS and 8-OHdG, induction of hepatic inflammation as indicated by the elevated NF-B levels; inhibition of hepatic expression of PGC-1α and impairment of mitochondrial biogenesis, induction of SREBP-1c and induce hepatic lipogenesis and fatty liver, and distortion of hepatic structure at histological level in a dose-dependent manner significantly at doses higher than 250 µg/kg. In conclusion: the TBT at low doses can induce hepatotoxicity at different levels.

References

Abreu, F. E., da Silva, J. N. L., Castro, Í. B., & Fillmann, G. (2020). Are antifouling residues a matter of concern in the largest South American port? Journal of Hazardous Materials, 398, 122937.‏

Antizar-Ladislao, B. (2008). Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. A review. Environment international, 34(2), 292-30 .

Appel, K. E. (2004). Organotin compounds: toxicokinetic aspects. Drug metabolism reviews, 36(3-4), 763-786.‏

Azenha, M., & Vasconcelos, M. T. (2002). Butyltin compounds in Portuguese wines. Journal of agricultural and food chemistry, 50(9), 2713-2716.‏

Bangkedphol, S., Keenan, H. E., Davidson, C., Sakultantimetha, A., & Songsasen, A. (2009). The partition behavior of tributyltin and prediction of environmental fate, persistence and toxicity in aquatic environments. Chemosphere, 77(10), 1326-1332.‏

Barzilai, A., & Yamamoto, K. I. (2004). DNA damage responses to oxidative stress. DNA repair, 3(8-9), 1109-1115.‏

Brookes, P. S., Yoon, Y., Robotham, J. L., Anders, M. W., & Sheu, S. S. (2004). Calcium, ATP, and ROS: a mitochondrial love-hate triangle. American journal of physiology. Cell physiology, 287(4), C817-C833.

Chang, X., Wang, X., Feng, J., Su, X., Liang, J., Li, H., & Zhang, J. (2020). Impact of chronic exposure to trichlorfon on intestinal barrier, oxidative stress, inflammatory response and intestinal microbiome in common carp (Cyprinus carpio L.). Environmental Pollution, 259, 113846.

Chien, L. C., Hung, T. C., Choang, K. Y., Yeh, C. Y., Meng, P. J., Shieh, M. J., & Han, B. C. (2002). Daily intake of TBT, Cu, Zn, Cd and As for fishermen in Taiwan. Science of the total environment, 285(1-3), 177-185.

Dedon, P. C., Plastaras, J. P., Rouzer, C. A., & Marnett, L. J. (1998). Indirect mutagenesis by oxidative DNA damage: formation of the pyrimidopurinone adduct of deoxyguanosine by base propenal. Proceedings of the National Academy of Sciences, 95(19), 11113-11116.‏

Drury, R. A., & Wallington, E. A. (1980). Carleton’s histological techniques (p.p. 241-242). New York: Oxford University Press.

Esterbauer, H., Eckl, P., & Ortner, A. (1990). Possible mutagens derived from lipids and lipid precursors. Mutation Research/Reviews in Genetic Toxicology, 238(3), 223-233.‏

Feist, S.W., Lang, T., Stentifordm G.D., & Köhler, A. (2004). Biological effects of contaminants: Use of liver pathology of the European flatfish dab (Limanda limanda L.) and flounder (Platichthys flesus L.) for monitoring. ICES Techniques in Marine Environmental Sciences, 38, 42.

Grün, F., & Blumberg, B. (2006). Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling. Endocrinology, 147(6), s50-s55.‏

Higdon, A., Diers, A. R., Oh, J. Y., Landar, A., & Darley-Usmar, V. M. (2012). Cell signalling by reactive lipid species: new concepts and molecular mechanisms. Biochemical Journal, 442(3), 453-464.

Hill, M. F., Palace, V. P., Kaur, K., Kumar, D., Khaper, N., & Singal, P. K. (2005). Reduction in oxidative stress and modulation of heart failure subsequent to myocardial infarction in rats. Experimental & Clinical Cardiology, 10(3), 146.‏

Jie, J., Ling, L., Yi, Y., Tao, L., Liao, X., Gao, P. & Weng, D. (2021). Tributyltin triggers lipogenesis in macrophages via modifying PPARγ pathway. Environmental Pollution, 271, 116331.‏

Krajnc, E.I., Wester, P.W., Loeber, J.G., van Leeuwen, F.X., Vos, J.G., Vaessen, H.A., & van der Heijden, C.A. (1984). Toxicity of bis(tri-n-butyltin) oxide in the rat. I. Shortterm effects on general parameters and on the endocrine and lymphoid systems. Toxicology and applied pharmacology, 75(3), 363-386.

Liu, H. G., Wang, Y., Lian, L., & Xu, L. H. (2006). Tributyltin induces DNA damage as well as oxidative damage in rats. Environmental Toxicology, 21(2), 166-171.‏

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25(4), 402-408.

Marnett, L. J. (2000). Oxyradicals and DNA damage. Carcinogenesis, 21(3), 361-370.‏

Martínez, R., Codina, A. E., Barata, C., Tauler, R., Piña, B., & Navarro-Martín, L. (2020). Transcriptomic effectsof tributyltin (TBT) in zebrafish eleutheroembryos. A functional benchmark dose analysis. Journal of Hazardous Materials, 398, 122881.‏

Mitra, S., Srivastava, A., & Khandelwal, S. (2013). Tributyltin chloride induced testicular toxicity by JNK and p38 activation, redox imbalance and cell death in sertoli-germ cell co-culture. Toxicology, 314(1), 39-50.‏

Mushak, P., Krigman, M. R., & Mailman, R. B. (1982). Comparative organotin toxicity in the developing rat: somatic and morphological changes and relationship to accumulation of total tin. Neurobehavioral toxicology and teratology, 4(2), 209-215.‏

Nelson, D. R., Koymans, L., Kamataki, T., Stegeman, J. J., Feyereisen, R., Waxman, D. J.,... & Nebert, D. W. (1996). P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics, 6(1), 1-42.‏

Nordberg, J., & Arnér, E. S. (2001). Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free radical biology and medicine, 31(11), 1287-1312.‏

Norušis, M. J. (2006). SPSS 14.0 guide to data analysis. Upper Saddle River, NJ: Prentice Hall.

Ohhira, S., Enomoto, M., & Matsui, H. (2006). In vitro metabolism of tributyltin and triphenyltin by human cytochrome P-450 isoforms. Toxicology, 228(2-3), 171-177.‏

Quintas, P. Y., Alvarez, M. B., Arias, A. H., Garrido, M., & Marcovecchio, J. E. (2019). Spatiotemporal distribution of organotin compounds in the coastal water of the Bahía Blanca estuary (Argentina). Environmental Science and Pollution Research, 26(8), 7601-7613.‏

Ribeiro, C. O., Schatzmann, M., De Assis, H. S., Silva, P. H., Pelletier, E. M. I. L. I. E. N., & Akaishi, F. M. (2002). Evaluation of tributyltin subchronic effects in tropical freshwater fish (Astyanax bimaculatus, Linnaeus, 1758). Ecotoxicology and Environmental Safety, 51(3), 161-167.‏

Rice, C. D., & Weeks, B. A. (1990). The influence of in vivo exposure to tributyltin on reactive oxygen formation in oyster toadfish macrophages. Archives of environmental contamination and toxicology, 19(6), 854-857.‏

Santos-Silva, A. P., Andrade, M. N., Pereira-Rodrigues, P., Paiva-Melo, F. D., Soares, P., Graceli, J. B., & Miranda-Alves, L. (2018). Frontiers in endocrine disruption: Impacts of organotin on the hypothalamus-pituitary-thyroid axis. Molecular and cellular endocrinology, 460, 246-257.

St-Pierre, J., Drori, S., Uldry, M., Silvaggi, J. M., Rhee, J., Jäger, S. & Spiegelman, B. M. (2006). Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell, 127(2), 397-408.

Tang, L., Zhang, Y. H., Wang, X., Zhang, C. C., Qin, G., & Lin, Q. (2021). Effects of chronic exposure to environmental levels of tributyltin on the lined seahorse (Hippocampus erectus) liver: Analysis of bioaccumulation, antioxidant defense, and immune gene expression. Science of The Total Environment, 801, 149646.

Tappel, A. L., & Zalkin, H. (1959). Inhibition of lipide peroxidation in mitochondria by vitamin E. Archives of Biochemistry and Biophysics, 80(2), 333–336

Ward, J. F., Limoli, C. L., Calabro-Jones, P., & Evans, J. W. (1987). Radiation vs chemical damage to DNA. In P. A. Cerutti, O. F. Nygaard & M. G. Simic (Eds.), Anticarcinogenesis and radiation protection (pp. 321-327). Boston, MA: Springer.

Wu, K., Li, Y., Liu, J., Mo, J., Li, X., & Ge, R. S. (2020). Long-term triphenyltin exposure disrupts adrenal function in adult male rats. Chemosphere, 243, 125149.‏

Xiao, X., Zhu, S., Zou, X., He, G., Jiang, J., & Sheng, G. D. (2020). Relation of tributyltin and triphenyltin equilibrium sorption and kinetic accumulation in carp and Ceratophyllum demersum. Ecotoxicology and Environmental Safety, 192, 110289.

Zhang, C. N., Zhang, J. L., Ren, H. T., Zhou, B. H., Wu, Q. J., & Sun, P. (2017). Effect of tributyltin on antioxidant ability and immune responses of zebrafish (Danio rerio). Ecotoxicology and environmental safety, 138, 1-8.‏

Zhang, C., Jiang, D., Wang, J., & Qi, Q. (2021). The effects of TPT and dietary quercetin on growth, hepatic oxidative damage and apoptosis in zebrafish. Ecotoxicology and Environmental Safety, 224, 112697.‏

Zhang, J., Sun, P., Kong, T., Yang, F., & Guan, W. (2016). Tributyltin promoted hepatic steatosis in zebrafish (Danio rerio) and the molecular pathogenesis involved. Aquatic toxicology, 170, 208-215.‏

Zhou, M., Feng, M., Fu, L. L., Ji, L. D., Zhao, J. S., & Xu, J. (2016). Toxicogenomic analysis identifies the apoptotic pathway as the main cause of hepatotoxicity induced by tributyltin. Food and Chemical Toxicology, 97, 316-326.‏

Zhu, R., Wang, Y., Zhang, L., & Guo, Q. (2012). Oxidative stress and liver disease. Hepatology Research, 42(8), 741-749

Zuo, Z., Chen, S., Wu, T., Zhang, J., Su, Y., Chen, Y., & Wang, C. (2011). Tributyltin causes obesity and hepatic steatosis in male mice. Environmental toxicology, 26(1), 79-85.

Wu, B., Ootani, A., Iwakiri, R., Sakata, Y., Fujise, T., Amemori, S., & Fujimoto, K. (2006). T cell deficiency leads to liver carcinogenesis in Azoxymethane-treated rats. Experimental Biology and Medicine, 231(1), 91-98

Downloads

Published

2024-09-30

Issue

Section

Biology

How to Cite

M. Neamah, A. . (2024). In Vivo Evaluation of The Hepatotoxic Disorders of Tributyltin Low Doses in Male Rats. Wasit Journal for Pure Sciences , 3(3), 230-240. https://doi.org/10.31185/wjps.497