Low Doses of Tributyltin Chloride Induced Neurotoxicity in Male Rats
DOI:
https://doi.org/10.31185/wjps.496Keywords:
Tributyltin chloride; Neurotoxicity; Neurotransmitters; Molecular parameters; Histological changesAbstract
ABSTRACT:
The environmental contaminant tributyltin chloride (TBTC), which is still present in commercially-collected items, is majorly utilized and continuously dispersed. It is one of the chemicals which disrupts the endocrine system and is exceedingly harmful to a variety of organisms. In this work, male rats were given TBTC at doses between 10 and 2000 μg/kg B.W. to determine its neurotoxicity. Animals have been separated into 8 equal groups and given the next daily doses of TBTC through oral gavage for a period of 45 days: 10, 50, 100, 250, 500, 1000, and 2000 μg/kg B.W. The effects of TBTC administration Along with disrupting the neurotransmitters as well as brain enzymes responsible for drug metabolism, TBTC elevated the indicators of the amyloid genic pathway, inflammation, and apoptosis. Histopathological analysis revealed that TBT exposure altered the brain tissue architecture. The neurotoxicity caused by high TBTC doses was more significant compared to that caused by low doses, and the impact was dose-dependent.
References
Amodio-Cocchieri, Teresa Cirillo, Michele Amorena, Maria Cavaliere, Antonia Lucisano, Umberto Del Prete, R. (2000). Alkyltins in farmed fish and shellfish. International journal of food sciences and nutrition, 51(3), 147-151.
California Food and Agricultural, 2021. Sections 14005, 14006, and 14151, California Food and Agricultural Code (CCCSD FACT SHEET ON TRIBUTYLTIN, https://www.centralsan.org/sites/main/files/fileattachments/bmp_fact_sheet_on_tributylin.pdf?1511394649. Coated 6 pm, 27 July, 2021).
Cong, C., Kluwe, L., Li, S., Liu, X., Liu, Y., Liu, H.& Xu, L. (2019). Paeoniflorin inhibits tributyltin chloride-induced apoptosis in hypothalamic neurons via inhibition of MKK4-JNK signaling pathway. Journal of ethnopharmacology, 237, 1-8.
Drury, R. A., & Wallington, E. A. (1980). Carleton’s histological techniques Oxford University Press. New York, Toronto, USA, 241-242
Elsabbagh, H. S., Moussa, S. Z., & el-tawil, O. S. (2002). Neurotoxicologic sequelae of tributyltin intoxication in rats. Pharmacological research, 45(3), 201-206.
Essawy, A. E., El-Sherief, S. S., Sadek, I. A., & Soffar, A. A. (2011). Neuropathological effect of tributyltin on the cerebral ganglia of the land snail, Eobania vermiculata. International Journal of Zoological Research, 7(3), 252.
Feissner, R. F., Skalska, J., Gaum, W. E., & Sheu, S. S. (2009). Crosstalk signaling between mitochondrial Ca2+ and ROS. Frontiers in bioscience: a journal and virtual library, 14, 1197-1218.
Ferraz da Silva, I., Freitas-Lima, L. C., Graceli, J. B., & Rodrigues, L. C. D. M. (2018). Organotins in neuronal damage, brain function, and behavior: a short review. Frontiers in Endocrinology, 8, 366
Fortier, M., Frouin, H., Cloutier, A., Arseneault, M., Ramassamy, C., Badiwa-Bizowe, B.& Fournier, M. (2010). Toxicological effects of mouse diet contaminated with tributyltin on the immune and neurological systems of C57BL/6 mice. Toxicological & Environ Chemistry, 92(5), 927-945.
Friedlander, R. M. (2003). Apoptosis and caspases in neurodegenerative diseases. New England Journal of Medicine, 348(14), 1365-1375.
Ghazi, D., Rasheed, Z., & Yousif, E. (2018). Review of organotin compounds: chemistry and applications. development, 3, 4.
Goodson, J. L., & Thompson, R. R. (2010). Nonapeptide mechanisms of social cognition, behavior and species-specific social systems. Current opinion in neurobiology, 20(6), 784-794.
Halliwell, B., & Gutteridge, J.M.C. (2007). Free Radicals in Biology and Medicine (4th ed). Oxford: Oxford University Press.
Higdon, A., Diers, A. R., Oh, J. Y., Landar, A., & Darley-Usmar, V. M. (2012). Cell signalling by reactive lipid species: new concepts and molecular mechanisms. Biochemical Journal, 442(3), 453-464.
Ishihara, Y., Shiba, D., & Shimamoto, N. (2006). Enhancement of DMNQ-induced hepatocyte toxicity by cytochrome P450 inhibition. Toxicology and applied pharmacology, 214(2), 109-117.
Jenkins, S. M., Ehman, K., & Barone Jr, S. (2004). Structure–activity comparison of organotin species: dibutyltin is a developmental neurotoxicant in vitro and in vivo. Developmental Brain Research, 151(1-2), 1-12.
Kim, Y. M., Lee, J. J., Park, S. K., Lim, S. C., Hwang, B. Y., Lee, C. K., & Lee, M. K. (2007). Effects of tri butyl tin acetate on dopamine biosynthesis and l-dopa-lnduced cytotoxicity in pc12 cells. Archives of pharmacal research, 30(7), 858-865.
ُ] Lam, H. R., Ladefoged, O., Østergaard, G., Hass, U., Lund, S. P., & Simonsen, L. (2000). Four Weeks' Inhalation Exposure of Long Evans Rats to 4‐tert‐Butyltoluene: Effect on Evoked Potentials, Behaviour, and Brain Neurochemistry. Pharmacology & toxicology, 87(1), 11-17.
Li, P., & Li, Z. H. (2020). Environmental co-exposure to TBT and Cd caused neurotoxicity and thyroid endocrine disruption in zebrafish, a three-generation study in a simulated environment. Environmental Pollution, 259, 113868.
Li, Q., Verma, I.M., (2002). NF-κB regulation in the immune system. Nat. Rev. Immunol. 2, 725–734. https://doi.org/10.1038/nri910
Li, Z. H., Li, P., & Shi, Z. C. (2014). Molecular responses in digestive tract of juvenile common carp after chronic exposure to sublethal tributyltin. Ecotoxicology and environmental safety, 109, 10-14.
Liu, H. G., Wang, Y., Lian, L., & Xu, L. H. (2006). Tributyltin induces DNA damage as well as oxidative damage in rats. Environmental Toxicology: An International Journal, 21(2), 166-171.
Mitra, S., Gera, R., Siddiqui, W. A., & Khandelwal, S. (2013). Tributyltin induces oxidative damage, inflammation, and apoptosis via disturbance in blood–brain barrier and metal homeostasis in cerebral cortex of rat brain: an in vivo and in vitro study. Toxicology, 310, 39-52.
Mitra, S., Gera, R., Singh, V., & Khandelwal, S. (2014). Comparative toxicity of low dose tributyltin chloride on serum, liver, lung and kidney following subchronic exposure. Food and chemical toxicology, 64, 335-343.
Mizuhashi, S., Ikegaya, Y., & Matsuki, N. (2000). Cytotoxicity of tributyltin in rat hippocampal slice cultures. Neuroscience Research, 38(1), 35-42.
Norušis, M. J. (2006). SPSS 14.0 guide to data analysis. Upper Saddle River, NJ: Prentice Hall.
Ronconi, K. D. S., Stefanon, I., & Ribeiro Junior, R. F. (2018). Tributyltin and vascular dysfunction: the role of oxidative stress. Frontiers in endocrinology, 9, 354.
Sakahira, H., Enari, M., & Nagata, S. (1998). Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature, 391(6662), 96-99.
Sakr, S., A Rashad, W., & Abaza, M. T. (2021). The ameliorative effect of Moringa oleifera oil on tributyltin‐induced brain toxicity in albino rats. Environmental Toxicology, 36(10), 2025-2039.
Scapagnini, G., Maes, M., Fišar, Z., Medina, M., Nowak, G., & Berk, M. (2012). New drug targets in depression: inflammatory, cell-mediated immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. And new drug candidates—Nrf2 activators and GSK-3 inhibitors. Inflammopharmacology, 20(3), 127-150.
Shi, Y., Chen, C., Li, M., Liu, L., Dong, K., Chen, K., & Qiu, X. (2021). Oral Exposure to Tributyltin Induced Behavioral Abnormality and Oxidative Stress in the Eyes and Brains of Juvenile Japanese Medaka (Oryzias latipes). Antioxidants, 10(11), 1647.
Silbiger, N. J., Nelson, C. E., Remple, K., Sevilla, J. K., Quinlan, Z. A., Putnam, H. M.,... & Donahue, M. J. (2018). Nutrient pollution disrupts key ecosystem functions on coral reefs. Proceedings of the Royal Society B, 285(1880), 20172718.
Sykiotis, G. P., & Bohmann, D. (2008). Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila. Developmental cell, 14(1), 76-85.
Tsunoda, M., Aizawa, Y., Konno, N., Kimura, K., & Sugita-Konishi, Y. (2006). Subacute administration of tributyltin chloride modulates neurotransmitters and their metabolites in discrete brain regions of maternal mice and their F1 offspring. Toxicology and industrial health, 22(1), 15-25.
Vacchina, V., Epova, E. N., Bérail, S., Médina, B., Donard, O. F. X., & Séby, F. (2020). Tin and mercury and their speciation (organotin compounds and methylmercury) in worldwide red wine samples determined by ICP-MS and GC-ICP-MS. Food Additives & Contaminants: Part B, 13(2), 88-98.
Von Ballmoos, C., Brunner, J., & Dimroth, P. (2004). The ion channel of F-ATP synthase is the target of toxic organotin compounds. Proceedings of the National Academy of Sciences, 101(31), 11239-11244.
Yan, R. (2017). Physiological functions of the β-site amyloid precursor protein cleaving enzyme 1 and 2. Frontiers in molecular neuroscience, 10, 97.
Zajac, R. N., Vozarik, J. M., & Gibbons, B. R. (2013). Spatial and temporal patterns in macrofaunal diversity components relative to sea floor landscape structure. PLoS One, 8(6), e65823.
Zajac, R. N., Vozarik, J. M., & Gibbons, B. R. (2013). Spatial and temporal patterns in macrofaunal diversity components relative to sea floor landscape structure. PLoS One, 8(6), e65823.
Zhang, C. N., Zhang, J. L., Ren, H. T., Zhou, B. H., Wu, Q. J., & Sun, P. (2017). Effect of tributyltin on antioxidant ability and immune responses of zebrafish (Danio rerio). Ecotoxicology and environmental safety, 138, 1-8.
Zhang, J., Zhang, C., Sun, P., & Shao, X. (2016). Tributyltin affects shoaling and anxiety behavior in female rare minnow (Gobiocypris rarus). Aquatic Toxicology, 178, 80-87.
Zhong, L. & Li, P., Li, Z. H., (2019). Effects of low concentrations of triphenyltin on neurobehavior and the thyroid endocrine system in zebrafish. Ecotoxicology and environmental safety, 186, 109776.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Sura Alkadhimy
This work is licensed under a Creative Commons Attribution 4.0 International License.