Certain Subclass of Harmonic Multivalent Functions Defined by New Linear Operator
DOI:
https://doi.org/10.31185/wjps.422Keywords:
Harmonic function, multivalent function, extreme points, convex linear combinations.Abstract
The main goal of the present paper is to introduce a new class of harmonic multivalent functions defined by a new linear operator in the open unit disc . Thus, some geometric properties have examined, including coefficient inequality, extreme points, convolution conditions, convex linear combinations, and integral transforms for the class .
References
Z. Dehdast, Sh. Najafzadeh, and M. R. Foroutan, “On Integral Operator and Argument Estimation of a Novel Subclass of Harmonic Univalent Functions,” AMFA, vol. 5, no. 3, Jul. 2020, doi: 10.22034/amfa.2020.1885000.1340.
H. Bayram, “q-Analogue of a New Subclass of Harmonic Univalent Functions Associated with Subordination,” Symmetry, vol. 14, no. 4, p. 708, Mar. 2022, doi: 10.3390/sym14040708.
M. S. Mahmoud, A. R. S. Juma, and R. A. Al-Saphory, “On bi-univalent functions involving Srivastava-Attiya operator” Italian Journal of Pure and Applied Mathematics, no.49, pp. 104-112, 2023.
G. Murugusundaramoorthy, K. Vijaya, D. Breaz, and L.-I. Cotîrlǎ, “Subclasses of Noshiro-Type Starlike Harmonic Functions Involving q-Srivastava–Attiya Operator,” Mathematics, vol. 11, no. 23, p. 4711, Nov. 2023, doi: 10.3390/math11234711.
A. K. Radhi and S. I. Ahmed, “Subclass of Harmonic Multivalent Functions (Accept submit),” J. Phys.: Conf. Ser., vol. 1963, no. 1, p. 012093, Jul. 2021, doi: 10.1088/1742-6596/1963/1/012093.
M. S. A. Ameer, A. R. S. Juma, and R. A. Al-Saphory “Harmonic Meromorphic Starlike Functions of Complex Order Involving Mittag-Leffler Operator” Italian Journal of Pure and Applied Mathematics no.48, pp. 2013-220, 2022. https://ijpam.uniud.it/online_issue/202248/15%20.
J. Awasthi “A New Subclass of Multivalent Harmonic Functions Defined by Using Generalized Q-Bernardi Integral Operator.” Journal of Transportation Systems Engineering and Information Technology, vol. 12, no. 2, pp. 203–214, February, 2024, DOI:10.14299/jtseit.12.2.2024.26.
M. S. Abdul Ameer, A. R. S. Juma, and R. A. Al-Saphory, “On Differential Subordination of Higher-Order Derivatives of Multivalent Functions,” J. Phys.: Conf. Ser., vol. 1818, no. 1, p. 012188, Mar. 2021, doi: 10.1088/1742-6596/1818/1/012188.
W. G. Atshan and J. H. Sulman, “A New Class of Multivalent Harmonic Functions Associated a Linear Operator” Matematica, Tom XIX (2012), Issue No. 1, 101–109.
H. E. Darwish, A. M. Y. Lashin, and S. M. Sowileh, “On A Subclass of Harmonic Multivalent Functions Defined by a Certain Linear Operator,” Kyungpook mathematical journal, vol. 59, no. 4, pp. 651–663, Dec. 2019, doi: 10.5666/KMJ.2019.59.4.651.
G. I. Oros, S. Yalçın, and H. Bayram, “Some Properties of Certain Multivalent Harmonic Functions,” Mathematics, vol. 11, no. 11, p. 2416, May 2023, doi: 10.3390/math11112416.
A. K. Yasin Tahs and A. R. S. Juma, “Harmonic Multivalent Functions Associated with Generalized Hypergeometric Functions,” eijs, pp. 1700–1706, Apr. 2022, doi: 10.24996/ijs.2022.63.4.27.
P. Sharma, O. Mishra, O. P. Ahuja, and A. C. Etinkaya, “Harmonic Multivalent Functions Associated with a (P,Q)-Analogue of Ruscheweyh Operator,” TWMS J. App. and Eng. Math. V.13, N.3, 2023, pp. 1164-1176.
S. Hussain, S. Khan, M. A. Zaighum, and M. Darus, “Applications of a q-Salagean type Operator on Multivalent Functions,” J Inequal Appl, vol. 2018, no. 1, p. 301, Dec. 2018, doi: 10.1186/s13660-018-1888-3.
A. K. Yadav, “Harmonic Multivalent Meromorphic Functions defined by an Integral Operator” Journal of Applied Mathematics and Bioinformatics vol.2, no.3, 2012, pp. 99-114.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Raheam A. Al-Saphory, Abdul Rahman S. Juma, Ai H. Maran
This work is licensed under a Creative Commons Attribution 4.0 International License.