Histopathological Effects of Nicotine on Rats Pulmonary Cell Treated with Zinc and Vitamin D
DOI:
https://doi.org/10.31185/wjps.294Abstract
The present study sought to determine the role of vitamin D and zinc in protecting against nicotine stress by altering the alveolar response and modulating antioxidant mechanisms. Thirty mature adults Wistar rats, used as a model for mammals, were maintained at 23 ± 2 C°, randomly divided into five equal groups, and then given therapy for 14 days. G1: Nicotine was administered at a dose of 0.0015g/kg b.w. I.P., G2: zinc was administered orally at 0.06 g/kg b.w., G3: Orally administration vitamin D at 250 µg/kg b.w., and G4: both zinc and vitamin D were administered orally at the same dose as nicotine, 0.0015g/kg b.w. I.P. Rats were anesthetized with ketamine at the end of the treatment period. All groups of rats had lung samples extracted rapidly; alveolar groups of samples were cleaned and placed in physiological used 10% of neutral buffered formalin for tissue fixation. Then lung suction were repaired for histopathological study. The results showed highly significant protective effects of zinc and vitamin D in the tissues of the lung in G4. Zinc and vitamin D group G4 decreased the effectiveness of nicotine when compared with the G1 nicotine group. Protective effect of zinc and vitamin D by decreased MNCS infiltration with thickening and slightly congested pulmonary blood vessels without emphysema and pulmonary edema
References
Zhang, D., Zhang, J.T., Pan, Y., Liu, X.F., Xu, J.W., Cui, W.J., Qiao, X.R. and Dong, L. Syndecan-1 Shedding by Matrix Metalloproteinase-9 Signaling Regulates Alveolar Epithelial Tight Junction in Lipopolysaccharide-Induced Early Acute Lung Injury. Journal of Inflammation Research, 2021;14, 5801. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8576260/ DOI: 10.2147/JIR.S331020
Dietl, P. and Frick, M. Channels and Transporters of the Pulmonary Lamellar Body in Health and Disease. Cells, 2021; 11(1),45. https://www.mdpi.com/1420652 DOI: 10.3390/cells11010045
Zhou, J., Fu, Y., Liu, K., Hou, L. and Zhang, W. miR 206 regulates alveolar type II epithelial cell Cx43 expression in sepsis induced acute lung injury. Experimental and therapeutic medicine, 2019; 18(1), 296-304. https://www.spandidos-publications.com/etm/18/1/296 DOI: 10.3892/etm.2019.7551
Machado, D.F., Campos, K.K.D., da Silva, N.P., de Oliveira Ramos, C., Cangussú, S.D., de Paula Costa, G., Talvani, A. and Bezerra, F.S. The administration of surfactant decreased oxidative stress in lungs of mice exposed to cigarette smoke. International Immunopharmacology, 2018; 54, 275-279. https://www.sciencedirect.com/science/article/pii/S1567576917304435 DOI: 10.1016/j.intimp.2017.11.023
Han, S., & Mallampalli, R. K. The role of surfactant in lung disease and host defense against pulmonary infections. Annals of the American Thoracic Society, 2015; 12(5), 765-774. DOI: 10.1513/AnnalsATS.201411-507FR
Giménez, V.M.M., Inserra, F., Tajer, C.D., Mariani, J., Ferder, L., Reiter, R.J. and Manucha, W. Lungs as target of COVID-19 infection: Protective common molecular mechanisms of vitamin D and melatonin as a new potential synergistic treatment. Life sciences, 2020; 254, 117808.https://www.sciencedirect.com/science/article/pii/S0024320520305579 DOI: 10.1016/j.lfs.2020.117808
Wiegman, C.H., Li, F., Ryffel, B., Togbe, D. and Chung, K.F. Oxidative stress in ozone-induced chronic lung inflammation and emphysema: a facet of chronic obstructive pulmonary disease. Frontiers in immunology, 2020; 11, 1957. https://www.frontiersin.org/articles/10.3389/fimmu.2020.01957/full DOI: 10.3389/fimmu.2020.01957
Kim, B.G., Lee, P.H., Lee, S.H., Park, C.S. and Jang, A.S. Impact of ozone on claudins and tight junctions in the lungs. Environmental toxicology, 2018; 33(7),798-806. https://onlinelibrary.wiley.com/doi/abs/10.1002/tox.22566 DOI: 10.1002/tox.22566
Golestani, R., Razavian, M., Ye, Y., Zhang, J., Jung, J.J., Toczek, J., Gona, K., Kim, H.Y., Elias, J.A., Lee, C.G. and Homer, R.J. Matrix Metalloproteinase–Targeted Imaging of Lung Inflammation and Remodeling. Journal of Nuclear Medicine, 2017; 58(1),138-143. https://jnm.snmjournals.org/content/58/1/138.short DOI: https://doi.org/10.2967/jnumed.116.176198
Ahmad, S., Zafar, I., Mariappan, N., Husain, M., Wei, C.C., Vetal, N., Eltoum, I.A. and Ahmad, A. Acute pulmonary effects of aerosolized nicotine. American Journal of Physiology-Lung Cellular and MolecularPhysiology, 2019; 316(1),L94-L104. https://journals.physiology.org/doi/abs/10.1152/ajplung.00564.2017 DOI: 10.1152/ajplung.00564.2017
Ateyya, H., Nader, M.A., Attia, G.M. and El-Sherbeeny, N.A. Influence of alpha-lipoic acid on nicotine-induced lung and liver damage in experimental rats. Canadian Journal of Physiology and Pharmacology, 2017; 95(5),492-500. https://cdnsciencepub.com/doi/abs/10.1139/cjpp-2016-0366 DOI: 10.1139/cjpp-2016-0366
Masso-Silva, J.A., Moshensky, A., Shin, J., Olay, J., Nilaad, S., Advani, I., Bojanowski, C.M., Crotty, S., Li, W.T., Ongkeko, W.M. and Singla, S. Chronic E-cigarette aerosol inhalation alters the immune state of the lungs and increases ACE2 expression, raising concern for altered response and susceptibility to SARS-CoV-2. Frontiers in Physiology, 2021; 563 p.563.https://www.frontiersin.org/articles/10.3389/fphys.2021.649604/full?utm_source=dlvr.it&utm_medium=twitter DOI: 10.3389/fphys.2021.649604
Xiaoli, M. and Yanfei, J. Role of Nicotine in RAS and Fibrosis Linked to Severe COVID-19 Manifestations. Qeios.2022. https://www.qeios.com/read/SYD4KF https://doi.org/10.32388/SYD4KF
Bozym, R.A., Chimienti, F., Giblin, L.J., Gross, G.W., Korichneva, I., Li, Y., Libert, S., Maret, W., Parviz, M., Frederickson, C.J. and Thompson, R.B. Free zinc ions outside a narrow concentration range are toxic to a variety of cells in vitro. Experimental biology and medicine, 2010; 235(6), 741-750. https://journals.sagepub.com/doi/abs/10.1258/ebm.2010.009258 DOI: 10.1258/ebm.2010.009258
Bossy-Wetzel, E., Talantova, M.V., Lee, W.D., Schölzke, M.N., Harrop, A., Mathews, E., Götz, T., Han, J., Ellisman, M.H., Perkins, G.A. and Lipton, S.A. Crosstalk between nitric oxide and zinc pathways to neuronal cell death involving mitochondrial dysfunction and p38-activated K+ channels. Neuron, 2004; 41(3),351-365. https://www.sciencedirect.com/science/article/pii/S0896627304000157 DOI: 10.1258/ebm.2010.009258
Veilleux-Lemieux, D., Castel, A., Carrier, D., Beaudry, F. and Vachon, P. Pharmacokinetics of ketamine and xylazine in young and old Sprague–Dawley rats. Journal of the American Association for Laboratory Animal Science, 2013; 52(5), 567-570. https://www.ingentaconnect.com/content/aalas/jaalas/2013/00000052/00000005/art0000
Dianat, M., Radan, M., Badavi, M., Mard, S.A., Bayati, V. and Ahmadizadeh, M. Crocin attenuates cigarette smoke-induced lung injury and cardiac dysfunction by anti-oxidative effects: the role of Nrf2 antioxidant system in preventing oxidative stress. Respiratory research, 2018; 19(1), 1-20. https://link.springer.com/article/10.1186/s12931-018-0766-3 DOI: 10.1186/s12931-018-0766-3
Hamza, R.Z. and El-Shenawy, N.S. Anti-inflammatory and antioxidant role of resveratrol on nicotine-induced lung changes in male rats. Toxicology Reports, 2017; 4, 399-407. https://www.sciencedirect.com/science/article/pii/S221475001730046X DOI: 10.1016/j.toxrep.2017.07.003
Tatsuta, M., Kan-o, K., Ishii, Y., Yamamoto, N., Ogawa, T., Fukuyama, S., Ogawa, A., Fujita, A., Nakanishi, Y. and Matsumoto, K. Effects of cigarette smoke on barrier function and tight junction proteins in the bronchial epithelium: protective role of cathelicidin LL-37. Respiratory research, 2019; 20(1), 1-14. https://link.springer.com/article/10.1186/s12931-019-1226-4 doi: 10.1186/s12931-019-1226-4.
Kanithi, M., Junapudi, S., Shah, S.I., Matta Reddy, A., Ullah, G. and Chidipi, B. Alterations of Mitochondrial Network by Cigarette Smoking and E-Cigarette Vaping. Cells, 2022; 11(10), 1688. https://www.mdpi.com/2073 4409/11/10/1688 DOI: 10.3390/cells11101688
Khaled, S., Makled, M.N. and Nader, M.A. Tiron protects against nicotine-induced lung and liver injury through antioxidant and anti-inflammatory actions in rats in vivo. Life Sciences, 2020;260,118426.https://www.sciencedirect.com/science/article/pii/S0024320520311796 DOI: 10.1016/j.lfs.2020.118426
Azad, F., Nejati, V., Shalizar‐Jalali, A., Najafi, G. and Rahmani, F. Antioxidant and anti‐apoptotic effects of royal jelly against nicotine‐induced testicular injury in mice. Environmental toxicology, 2019;34(6),pp.708-718. https://onlinelibrary.wiley.com/doi/abs/10.1002/tox.22737
Taati, B., Arazi, H. and Suzuki, K. Oxidative stress and inflammation induced by waterpipe tobacco smoking despite possible protective effects of exercise training: A review of the literature. Antioxidants, 2020; 9(9), 777. DOI: 10.3390/antiox9090777
Valado, A., Fortes, S., Morais, M., Barreira, R., Figueiredo, J.P. and Caseiro, A. Impact of Hydrotherapy on Antioxidant Enzyme Activity in an Elderly Population. Geriatrics, 2022; 7(3), 64. https://www.mdpi.com/2308-3417/7/3/64 DOI: 10.3390/geriatrics7030064
Gauthier, A.G., Lin, M., Wu, J., Kennedy, T.P., Daley, L.A., Ashby Jr, C.R. and Mantell, L.L. From nicotine to the cholinergic anti-inflammatory reflex–Can nicotine alleviate the dysregulated inflammation in COVID-19?. Journal of Immunotoxicology, 2021; 18(1), 23 https://www.tandfonline.com/doi/abs/10.1080/1547691X.2021.1875085 DOI: 10.1080/1547691X.2021.1875085
Zaki, S.M. Evaluation of antioxidant and anti-lipid peroxidation potentials of Nigella sativa and onion extract on nicotine-induced lung damage. Folia morphologica, 2019; 78(3), 554-563. https://journals.viamedica.pl/folia_morphologica/article/view/61767 DOI: 10.5603/FM.a2018.0117
Shih, P.K., Chen, Y.C., Huang, Y.C., Chang, Y.T., Chen, J.X. and Cheng, C.M. Pretreatment of vitamin D3 ameliorates lung and muscle injury induced by reperfusion of bilateral femoral vessels in a rat model. Journal of Surgical Research, 2011; 171(1), 323-328. https://www.sciencedirect.com/science/article/pii/S002248041000168X DOI: 10.1016/j.jss.2010.03.008
Li, X., Jamal, M., Guo, P., Jin, Z., Zheng, F., Song, X., Zhan, J. and Wu, H. Irisin alleviates pulmonary epithelial barrier dysfunction in sepsis-induced acute lung injury via activation of AMPK/SIRT1 pathways. Biomedicine & Pharmacotherapy, 2019; 118, 109363. https://www.sciencedirect.com/science/article/pii/S0753332219328197 DOI: 10.1016/j.biopha.2019.109363
Taha, A. N., & Ismail, H. K. The impact of nano zinc oxide particles on the histology of the male reproductive system of adult male rabbits. Iraqi Journal of Veterinary Sciences, 2023; 37(1), 105-113. DOI: 10.33899/ijvs.2022.133632.2270
AlThanoon, S. A., & Taha, A. M. Histopathological changes on the pregnant rat's lung induced by sodium nitrite and monosodium glutamate. Iraqi Journal of Veterinary Sciences, 2022; 36(2), 419-424. DOI: 10.33899/ijvs.2021.130464.1824
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Jabbar hamady, Baraa Najim Al-Okaily

This work is licensed under a Creative Commons Attribution 4.0 International License.



