Evaluating  of some heart and liver enzymes in patients with myocardial infarction in Wasit.

Authors

  • hashim hussain College of Education for Pure Sciences, University of Wasit

DOI:

https://doi.org/10.31185/wjps.253

Keywords:

Acute myocardial infarction, troponin, myoglobin, Creatine kinase

Abstract

The aim of the study was to evaluate some heart and liver enzymes in patients with myocardial infarction in Wasit . Myocardial infarction (MI) is a major cause of death and disability worldwideA heart attack, also known as myocardial infarction, occurs when blood flow to a section of the heart is cut off, resulting in the death of heart cells. This usually happens when a coronary artery becomes blocked due to the rupture of a vulnerable plaque made up of cholesterol, fatty acids, and white blood cells. The study took place in the cardiac resuscitation unit at Al-Zahra Teaching Hospital and Al-Karama Teaching Hospital in Wasit Governorate from November 2022 to January 2023. Its objective was to examine the significance of physiological, immunological indicators, and inflammatory biomarkers for accurately diagnosing, assessing risk, and predicting the future outcomes of patients with acute myocardial infarction. The study included 100 patients with acute myocardial infarction, including 71 men aged30-70 years, and 29 women aged 33-75 years. And 50 samples from the control, 28 samples from men and 22 samples from women, and they were divided into three age groups. The first group is 30-45 years old, the second group is 46-60 years old, and the third group is 61-75 years old. Taking into account the risk factors for acute myocardial infarction, which include Sex, age, high blood pressure, diabetes, smoking, and dyslexia. Lipid lipids through a questionnaire. The results of our study with regard to the diagnostic signs of myocardial infarction revealed a significant increase in troponin, myoglobin, and H-FABP, and a significant decrease in Creatine kinase. This study also indicated, regarding the results of liver enzymes, a significant increase in both AST and ALT at p≤ 0.5. Conclusions: In patients with AMI, The plasma level of significant increase in troponin, myoglobin, and H-FABP, and a significant decrease in Creatine kinase AST and ALT at p≤ 0.5.

References

World Health Organization. (2003). The world health report 2003: shaping the future. World Health Organization.‏

Thygesen, K., Alpert, J. S., White, H. D., TASK FORCE MEMBERS: Coordinator (USA), Fred S. Apple (USA), Marcello Galvani (Italy), Hugo A. Katus (Germany), L. Kristin Newby (USA), Jan Ravkilde (Denmark), ECG Group Chairpersons: Kristian Thygesen (Denmark), Joseph S. Alpert (USA)*, Harvey D. White (New Zealand)*, Biomarker Group: Allan S. Jaffe,: Bernard Chaitman, Co-ordinator (USA), Peter M. Clemmensen (Denmark), Mikael Dellborg (Sweden), Hanoch Hod (Israel), Pekka Porela (Finland), ... & DOCUMENT REVIEWERS. (2007). Universal definition of myocardial infarction. circulation, 116(22), 2634-2653.‏

Eriksson, M., Asplund, K., & Svedlund, M. (2010). Couples’ thoughts about and expectations of their future life after the patient’s hospital discharge following acute myocardial infarction. Journal of Clinical Nursing, 19(23‐24), 3485-3493.

www.elabscience.com.

Oshima K, Kunimoto F, Takahashi T, et al. Postoperative cardiac troponin I (cTnI) level and its prognostic value for patients undergoing mitral valve surgery. Int Heart J. 2010;51:166–9.

Maynard, S. J., Menown, I. B. A., & Adgey, A. A. J. (2000). Troponin T or troponin I as cardiac markers in ischaemic heart disease. Heart, 83(4), 371-373.‏

Hansson, GK. (2005). Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med.352(16):1685–1695.

Stuart, H.; Ian, D. Mark, WJ. and Richard. (2018). Text book of davidson’s Principles and Practice of Medicine,23ed.

Patel, S. R.; Sharma, H. and Vanani, B. (2016). Comparative analysis of sensivity and specificity of cardiac specific troponin I and CK-MB for diagnosis of ST segmented elevation myocardial infarction. Int J Cur Res Rev. 8(9):21-25.

Joarder, S.; Hoque, M.; Towhiduzzaman, M.; Salehuddin, AF.; Islam, N.; Akter, M.; et al. (2011). Cardiac Troponin-I And CK-MB for Risk Stratification in Acute Myocardial Infarction (First Attack): A Comparative Study. B Panteghini, M. (1998). Diagnostic application of CK-MB mass determination. Clinica chimica acta, 272(1), 23-31.‏

Anderson, JL.; Adams, CD.; Antman, EM.; et al. (2007) ACC/AHA guidelines for the management of patients with unstable angina/non-ST-Elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines for the Management of Patients With Unstable Angina/Non-ST-Elevation Myocardial Infarction) developed in collaboration with the American College of Emergency Physicians, the Society for Cardiovascular Angiography and Interventions, and the Society of Thoracic Surgeons endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation and the Society for Academic Emergency Medicine. J Am Coll Cardiol. 50(7):e1–e157.

Allan, S.; Jaffe; Ravkilde, J.; Robert, R.; Naslund, U.; Fred, S.; Apple, Galvani, M.; et al. (2000). It’s Time for a Change to a Troponin Standard. Circulation; 102:1216-20.

Panteghini, M. (1998). Diagnostic application of CK-MB mass determination. Clinica chimica acta, 272(1), 23-31.

Lee, H. S., Cross, S. J., Garthwaite, P., Dickie, A., Ross, I., Walton, S., & Jennings, K. (1994). Comparison of the value of novel rapid measurement of myoglobin, creatine kinase, and creatine kinase-MB with the electrocardiogram for the diagnosis of acute myocardial infarction. Heart, 71(4), 311-315.

Christian, H.W. (2002). Cardiac troponin elevations in patients without acute coronary syndrome, Circulation 106: 2871-2872.

Kruse, J. M., Enghard, P., Schröder, T., Hasper, D., Kühnle, Y., Jörres, A., & Storm, C. (2014). Weak diagnostic performance of troponin, creatine kinase and creatine kinase-MB to diagnose or exclude myocardial infar[1] ction after successful resuscitation. International journal of cardiology, 173(2), 216-221.

Crawfored, M.H.; John, P.; Dimarco and Walter J . Paulus .(2005). cardiology . 2nd ed , Mosby int . Limited . Spain Cunningham KS, Gotlieb AI. The role of shear stress in the pathogenesis of atherosclerosis. LabInvest.85:9-23.

Glatz, J. F., van der Vusse, G. J., Simoons, M. L., Kragten, J. A., van Dieijen-Visser, M. P., & Hermens, W. T. (1998). Fatty acid-binding protein and the early detection of acute myocardial infarction. Clinica chimica acta, 272(1), 87-92.

Ishii, J., Wang, J. H., Naruse, H., Taga, S., Kinoshita, M., Kurokawa, H., ... & Kawamura, K. (1997). Serum concentrations of myoglobin vs human heart-type cytoplasmic fatty acid-binding protein in early detection of acute myocardial infarction. Clinical Chemistry, 43(8), 1372-1378.

Nakata, T., Hashimoto, A., Hase, M., Tsuchihashi, K., & Shimamoto, K. (2003). Human heart-type fatty acid-binding protein as an early diagnostic and prognostic marker in acute coronary syndrome. Cardiology, 99(2), 96-104.‏

Ghani, F., Wu, A. H., Graff, L., Petry, C., Armstrong, G., Prigent, F., & Brown, M. (2000). Role of heart-type fatty acid-binding protein in early detection of acute myocardial infarction. Clinical Chemistry, 46(5), 718-719.

Sohmiya, K., Tanaka, T., Tsuji, R., Yoshimoto, K., Nakayama, Y., Hirota, Y., ... & Miyazaki, H. (1993). Plasma and urinary heart-type cytoplasmic fatty acid-binding protein in coronary occlusion and reperfusion induced myocardial injury model. Journal of molecular and cellular cardiology, 25(12), 1413-1426.‏

Tanasijevic, M. J., Cannon, C. P., Wybenga, D. R., Fischer, G. A., Grudzien, C., Gibson, C. M., ... & Braunwald, E. (1997). Myoglobin, creatine kinase MB, and cardiac troponin-I to assess reperfusion after thrombolysis for acute myocardial infarction: results from TIMI 10A. American heart journal, 134(4), 622-630.‏

Zabel, M., Hohnloser, S. H., Köster, W., Prinz, M., Kasper, W., & Just, H. (1993). Analysis of creatine kinase, CK-MB, myoglobin, and troponin T time-activity curves for early assessment of coronary artery reperfusion after intravenous thrombolysis. Circulation, 87(5), 1542-1550.‏

Stone, M. J., Willerson, J. T., Gomez-Sanchez, C. E., and Waterman, M. (1975). Radioimmunoassay of myoglobin in human serum. Results in patients with acute myocardial infarction. J7ournal of Clinical Investigation, 56, 1334-1339.

Glatz, J. F., van der Vusse, G. J., Simoons, M. L., Kragten, J. A., van Dieijen-Visser, M. P., & Hermens, W. T. (1998). Fatty acid-binding protein and the early detection of acute myocardial infarction. Clinica chimica acta, 272(1), 87-92.

Alhadi, H. A., & Fox, K. A. (2010). Heart-type fatty acid-binding protein in the early diagnosis of acute myocardial infarction: the potential for influencing patient management. Sultan Qaboos University Medical Journal, 10(1), 41.

Bertinchant, J. P., & Polge, A. (2005). Diagnostic and prognostic value of heart-type fatty acid-binding protein (H-FABP), an early biochemical marker of myocardial injury. Archives des Maladies du Coeur et des Vaisseaux, 98(12), 1225-1231.‏

Alhadi, H. A., & Fox, K. A. A. (2004). Do we need additional markers of myocyte necrosis: the potential value of heart fatty-acid-binding protein. Qjm, 97(4), 187-198.

Alansari, S. E., & Croal, B. L. (2004). Diagnostic value of heart fatty acid binding protein and myoglobin in patients admitted with chest pain. Annals of clinical biochemistry, 41(5), 391-396.

Xiao, H. G., Huang, Z. H., Liu, H. X., & Lin, Y. P. (2005). Quantitative analysis of serum troponin I and myoglobin in patients with acute myocardial infarction. Di 1 jun yi da xue xue bao= Academic Journal of the First Medical College of PLA, 25(5), 550-551.‏

Gao, M., Cheng, Y., Zheng, Y., Zhang, W., Wang, L., & Qin, L. (2017). Association of serum transaminases with short-and long-term outcomes in patients with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention. BMC cardiovascular disorders, 17(1), 1-8.

Alvarez, A. M., & Mukherjee, D. (2011). Liver abnormalities in cardiac diseases and heart failure. International Journal of Angiology, 135-142.

Siddiqui, M. S., Sterling, R. K., Luketic, V. A., Puri, P., Stravitz, R. T., Bouneva, I., ... & Sanyal, A. J. (2013). Association between high-normal levels of alanine aminotransferase and risk factors for atherogenesis. Gastroenterology, 145(6), 1271-1279.‏

Tobey, T. A., Greenfield, M., Kraemer, F., & Reaven, G. M. (1981). Relationship between insulin resistance, insulin secretion, very low density lipoprotein kinetics, and plasma triglyceride levels in normotriglyceridemic man. Metabolism, 30(2), 165-171.‏

Simonen, P., Kotronen, A., Hallikainen, M., Sevastianova, K., Makkonen, J., Hakkarainen, A., ... & Yki-Järvinen, H. (2011). Cholesterol synthesis is increased and absorption decreased in non-alcoholic fatty liver disease independent of obesity. Journal of hepatology, 54(1), 153-159.

‏[37] Moon, J., Kang, W., Oh, P. C., Seo, S. Y., Lee, K., Han, S. H., ... & Shin, E. (2014). Serum transaminase determined in the emergency room predicts outcomes in patients with acute ST-segment elevation myocardial infarction who undergo primary percutaneous coronary intervention. International journal of cardiology, 177(2), 442-447.

Lofthus, D. M., Stevens, S. R., Armstrong, P. W., Granger, C. B., & Mahaffey, K. W. (2012). Pattern of liver enzyme elevations in acute ST-elevation myocardial infarction. Coronary artery disease, 23(1), 22-30.

Baars, T., Sowa, J. P., Neumann, U., Hendricks, S., Jinawy, M., Kälsch, J., ... & Canbay, A. (2018). Liver parameters as part of a non-invasive model for prediction of all-cause mortality after myocardial infarction. Archives of Medical Science, 16(1), 71-80.

Downloads

Published

2023-12-30

Issue

Section

Biology

How to Cite

hussain, hashim. (2023). Evaluating  of some heart and liver enzymes in patients with myocardial infarction in Wasit. Wasit Journal for Pure Sciences , 2(4), 166-176. https://doi.org/10.31185/wjps.253