A Comprehensive Review on Automated Control of Anesthesia: Recent Methods, Challenges and Future Trends

Authors

  • AMMAR TOMA Iraqi Commission for Computers and Informatics/ Informatics institute for postgraduate studies
  • mouayad AbdulRidha sahib

DOI:

https://doi.org/10.31185/wjps.160

Keywords:

Closed-loop control, Drug delivery control, automated anesthesia delivery.

Abstract

      The safe and personalized administration of anesthetic drugs is a significant concern in clinical practice, and automated control of anesthesia can address this issue by reducing human error, such as under- or over-dosing. This has the added benefit of allowing anesthesiologists to focus on more critical tasks and emergency management. The advantages of automated anesthesia delivery are not limited to anesthesiologists alone, as patients also benefit from the personalized and safe administration of drugs. This article offers a concise overview of the latest developments in closed-loop anesthesia delivery control systems. These systems include a range of elements such as monitoring depth of anesthesia, patient modeling, control techniques, safety systems, and clinical trial validation. Although anesthesia control has undergone significant changes over the years, a fully integrated system remains elusive. To move towards personalized patient care, it is important to assess the current technological limitations, societal considerations, and implementation hurdles, in order to identify new challenges that need to be addressed by intelligent systems. The convergence of clinical and engineering approaches facilitated by automation provides a foundation for research in the field of clinical anesthesia control. This union is crucial to guaranteeing patient safety, cost-effectiveness, and efficient performance by clinicians.

References

D. Copot, “Challenges, gaps and milestones in general anesthesia regulation,” INES 2019 - IEEE 23rd Int. Conf. Intell. Eng. Syst. Proc., no. 12, pp. 107–112, 2019, doi: 10.1109/INES46365.2019.9109440.

R. Sharma, D. Singh, P. Gaur, and D. Joshi, “Intelligent automated drug administration and therapy: future of healthcare,” Drug Deliv. Transl. Res., vol. 11, no. 5, pp. 1878–1902, 2021, doi: 10.1007/s13346-020-00876-4.

J. E. Mandel, “Recent advances in control of sedation,” Tech. Gastrointest. Endosc., vol. 18, no. 1, pp. 2–6, 2016, doi: 10.1016/j.tgie.2016.03.003.

M. Ghita, M. Neckebroek, C. Muresan, and D. Copot, “Closed-loop control of anesthesia: Survey on actual trends, challenges and perspectives,” IEEE Access, vol. 8, pp. 206264–206279, 2020, doi: 10.1109/ACCESS.2020.3037725.

C. Zaouter, A. Joosten, J. Rinehart, M. M. R. F. Struys, and T. M. Hemmerling, “Autonomous systems in anesthesia: Where do we stand in 2020? A narrative review,” Anesth. Analg., vol. 130, no. 5, pp. 1120–1132, 2020, doi: 10.1213/ANE.0000000000004646.

C. Zaouter et al., “A novel system for automated propofol sedation: hybrid sedation system (HSS),” J. Clin. Monit. Comput., vol. 31, no. 2, pp. 309–317, 2017, doi: 10.1007/s10877-016-9858-0.

Y. Yang and M. M. Shanechi, “An adaptive and generalizable closed-loop system for control of medically induced coma and other states of anesthesia,” J. Neural Eng., vol. 13, no. 6, pp. 1–23, 2016, doi: 10.1088/1741-2560/13/6/066019.

M. Ghita, D. Copot, M. Ghita, D. Valerio, and C. M. Ionescu, “Online identification of pain model in postanesthesia care unit for drug infusion optimization,” 2021 25th Int. Conf. Syst. Theory, Control Comput. ICSTCC 2021 - Proc., pp. 188–193, 2021, doi: 10.1109/ICSTCC52150.2021.9607227.

L. Da-yang, “A Model-Based Architecture for Automatic Anesthesia Infusion”.

F. N. Nogueira, T. Mendonça, and P. Rocha, “Positive state observer for the automatic control of the depth of anesthesia—Clinical results,” Comput. Methods Programs Biomed., vol. 171, pp. 99–108, 2019, doi: 10.1016/j.cmpb.2016.08.019.

N. Sadati, M. Hosseinzadeh, and G. A. Dumont, “Multi-model robust control of depth of hypnosis,” Biomed. Signal Process. Control, vol. 40, pp. 443–453, 2018, doi: 10.1016/j.bspc.2017.10.003.

G. Karer, V. Novak-Jankovič, A. Stecher, and I. Potočnik, “Modelling of BIS-Index Dynamics for Total Intravenous Anesthesia Simulation in Matlab-Simulink⁎,” vol. 51, no. 2, pp. 355–360, 2018, doi: 10.1016/j.ifacol.2018.03.061.

P. Humbert, C. Dubost, J. Audiffren, and L. Oudre, “Apprenticeship Learning for a Predictive State Representation of Anesthesia,” IEEE Trans. Biomed. Eng., vol. 67, no. 7, pp. 2052–2063, 2020, doi: 10.1109/TBME.2019.2954348.

M. Yousefi, K. Van Heusden, I. M. Mitchell, J. M. Ansermino, and G. A. Dumont, “Falsified Model-Invariant Safety-Preserving Control with Application to Closed-Loop Anesthesia,” IEEE Trans. Control Syst. Technol., vol. 28, no. 2, pp. 617–625, 2020, doi: 10.1109/TCST.2018.2879290.

Y. Wahlquist, K. Van Heusden, G. A. Dumont, and K. Soltesz, “Individualized closed-loop anesthesia through patient model partitioning,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, vol. 2020-July, pp. 361–364, 2020, doi: 10.1109/EMBC44109.2020.9176452.

M. Cascella, “Mechanisms underlying brain monitoring during anesthesia: Limitations, possible improvements, and perspectives,” Korean J. Anesthesiol., vol. 69, no. 2, pp. 113–120, 2016, doi: 10.4097/kjae.2016.69.2.113.

J. M. Bailey and W. M. Haddad, “Drug Dosing Control in Clinical Pharmacology,” IEEE Control Syst., vol. 25, no. 2, pp. 35–51, 2005, doi: 10.1109/MCS.2005.1411383.

L. B. Sheiner, D. R. Stanski, S. Vozeh, R. D. Miller, and J. Ham, “Simultaneous modeling of pharmacokinetics and pharmacodynamics: Application to d-tubocurarine,” Clin. Pharmacol. Ther., vol. 25, no. 3, pp. 358–371, 1979, doi: 10.1002/cpt1979253358.

Schnider Thomas W., “00000542-199805000-00006.Pdf,” Anesthesiology, vol. 88, no. 1. pp. 1170–82, 1998.

L. Merigo, F. Padula, N. Latronico, M. Paltenghi, and A. Visioli, “Optimized PID control of propofol and remifentanil coadministration for general anesthesia,” Commun. Nonlinear Sci. Numer. Simul., vol. 72, pp. 194–212, 2019, doi: 10.1016/j.cnsns.2018.12.015.

G. Karer, “Technical Aspects of Closing the Loop in Depth-of- Anesthesia Control,” vol. 16, no. 9, pp. 118–123, 2022.

J. B. Glen, “The development of ‘Diprifusor’: A TCI system for propofol,” Anaesthesia, Suppl., vol. 53, no. 1, pp. 13–21, 1998, doi: 10.1111/j.1365-2044.1998.53s115.x.

J. A. Mendez et al., “Improving the anesthetic process by a fuzzy rule based medical decision system,” Artif. Intell. Med., vol. 84, pp. 159–170, 2018, doi: 10.1016/j.artmed.2017.12.005.

N. Eskandari, K. van Heusden, and G. A. Dumont, “Extended habituating model predictive control of propofol and remifentanil anesthesia,” Biomed. Signal Process. Control, vol. 55, p. 101656, 2020, doi: 10.1016/j.bspc.2019.101656.

C. M. Ionescu, R. De Keyser, B. C. Torrico, T. De Smet, M. M. R. F. Struys, and J. E. Normey-Rico, “Robust predictive control strategy applied for propofol dosing using BIS as a controlled variable during anesthesia,” IEEE Trans. Biomed. Eng., vol. 55, no. 9, pp. 2161–2170, 2008, doi: 10.1109/TBME.2008.923142.

T. De Smet, M. M. R. F. Struys, M. M. Neckebroek, K. Van Den Hauwe, S. Bonte, and E. P. Mortier, “The accuracy and clinical feasibility of a new bayesian-based closed-loop control system for propofol administration using the bispectral index as a controlled variable,” Anesth. Analg., vol. 107, no. 4, pp. 1200–1210, 2008, doi: 10.1213/ane.0b013e31817bd1a6.

J. J. Chang, S. Syafiie, R. Kamil, and T. A. Lim, “Automation of anaesthesia: a review on multivariable control,” J. Clin. Monit. Comput., vol. 29, no. 2, pp. 231–239, 2015, doi: 10.1007/s10877-014-9590-6.

G. A. Dumont, Closed-loop control of anesthesia - A review, vol. 45, no. 18. IFAC, 2012. doi: 10.3182/20120829-3-HU-2029.00102.

R. T. Chilcoat, “A review of the control of depth of anaesthesia,” Trans. Inst. Meas. Control, vol. 2, no. 1, pp. 38–45, 1980, doi: 10.1177/014233128000200105.

D. Copot, C. Muresan, R. De Keyser, and C. Ionescu, “Patient specific model based induction of hypnosis using fractional order control,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 15097–15102, 2017, doi: 10.1016/j.ifacol.2017.08.2238.

C. W. Connor, “Optimizing target control of the vessel rich group with volatile anesthetics,” J. Clin. Monit. Comput., vol. 33, no. 3, pp. 445–454, 2019, doi: 10.1007/s10877-018-0169-5.

M. Mahfouf, A. J. Asbury, and D. A. Linkens, “Unconstrained and constrained generalised predictive control of depth of anaesthesia during surgery,” Control Eng. Pract., vol. 11, no. 12, pp. 1501–1515, 2003, doi: 10.1016/S0967-0661(03)00075-3.

A. Krieger and E. N. Pistikopoulos, “Model predictive control of anesthesia under uncertainty,” Comput. Chem. Eng., vol. 71, pp. 699–707, 2014, doi: 10.1016/j.compchemeng.2014.07.025.

A. Krieger, “Modelling, Optimisation and Explicit Model Predictive Control of Anaesthesia Drug Delivery Systems,” no. December, 2013.

F. Padula, C. Ionescu, N. Latronico, M. Paltenghi, A. Visioli, and G. Vivacqua, “Optimized PID control of depth of hypnosis in anesthesia,” Comput. Methods Programs Biomed., vol. 144, pp. 21–35, 2017, doi: 10.1016/j.cmpb.2017.03.013.

G. C. Goodwin, A. M. Medioli, K. Murray, R. Sykes, and C. Stephen, “Applications of MPC in the Area of Health Care,” pp. 529–550, 2019, doi: 10.1007/978-3-319-77489-3_22.

I. Nascu and E. N. Pistikopoulos, “Multiparametric Model Predictive Control and State Estimation of the Hypnotic Component in Anesthesia,” 2016 IEEE Int. Conf. Syst. Man, Cybern. SMC 2016 - Conf. Proc., pp. 2828–2833, 2017, doi: 10.1109/SMC.2016.7844668.

I. Nascu and E. N. Pistikopoulos, “Multiparametric model predictive control strategies of the hypnotic component in intravenous anesthesia,” 2016 IEEE Int. Conf. Syst. Man, Cybern. SMC 2016 - Conf. Proc., pp. 2828–2833, 2017, doi: 10.1109/SMC.2016.7844668.

A. Pawlowski, L. Merigo, J. L. Guzman, A. Visioli, and S. Dormido, “Event-based GPC for depth of hypnosis in anesthesia for efficient use of propofol,” 2017 3rd Int. Conf. Event-Based Control. Commun. Signal Process. EBCCSP 2017 - Proc., 2017, doi: 10.1109/EBCCSP.2017.8022826.

D. Ingole, J. Drgona, and M. Kvasnica, “Offset-free hybrid model predictive control of bispectral index in anesthesia,” Proc. 2017 21st Int. Conf. Process Control. PC 2017, pp. 422–427, 2017, doi: 10.1109/PC.2017.7976251.

W. M. Haddad, T. Hayakawa, and J. M. Bailey, “Nonlinear Adaptive Control for Intensive Care Unit Sedation and Operating Room Hypnosis,” Proc. Am. Control Conf., vol. 2, pp. 1808–1813, 2003, doi: 10.1109/acc.2003.1239858.

A. R. Absalom, N. Sutcliffe, and G. N. Kenny, “Closed-loop Control of Anesthesia Using Bispectral Index,” Anesthesiology, vol. 96, no. 1, pp. 67–73, 2002, doi: 10.1097/00000542-200201000-00017.

G. Navarro-Guerrero and Y. Tang, “Fractional order model reference adaptive control for anesthesia,” Int. J. Adapt. Control Signal Process., vol. 31, no. 9, pp. 1350–1360, 2017, doi: 10.1002/acs.2769.

E. Kharisov, C. L. Beck, and M. Bloom, Control of patient response to anesthesia using ℒ1 adaptive methods, vol. 45, no. 18. IFAC, 2012. doi: 10.3182/20120829-3-HU-2029.00094.

E. Kharisov, L. Beck, and M. Bloom, “Regulation of anesthesia delivery via L1-adaptive control,” SIAM Conf. Control Its Appl. 2013, pp. 191–198, 2013, doi: 10.1137/1.9781611973273.26.

M. F. Abbod, M. Mahfouf, and D. a Linkens, “MULTI-OBJECTIVE GENETIC OPTIMISATION FOR SELF-ORGANISING FUZZY LOGIC CONTROL AN INTRODUCTION TO GENETIC Selective breeding FUZZY LOGIC CONTROLLER ( FLC ),” no. 455, pp. 1–4, 1998.

P. A. P. Fazendeiro and J. V. De Oliveira, “A survey of fuzzy control strategies for neuromuscular blockade using continuous infusion of atracurium,” IEEE Int. Conf. Fuzzy Syst., vol. 1, pp. 547–552, 2002, doi: 10.1109/fuzz.2002.1005049.

Y. X. Liu, J. S. Shieh, S. Z. Fan, F. Doctor, and K. K. Jen, “Genetic type-2 self-organising fuzzy logic controller applied to anaesthesia,” TAAI 2015 - 2015 Conf. Technol. Appl. Artif. Intell., pp. 83–88, 2016, doi: 10.1109/TAAI.2015.7407083.

J. S. Shieh, M. H. Kao, and C. C. Liu, “Genetic fuzzy modelling and control of bispectral index (BIS) for general intravenous anaesthesia,” Med. Eng. Phys., vol. 28, no. 2, pp. 134–148, 2006, doi: 10.1016/j.medengphy.2005.04.023.

A. Marrero, J. A. Méndez, J. A. Reboso, I. Martín, and J. L. Calvo, “Adaptive fuzzy modeling of the hypnotic process in anesthesia,” J. Clin. Monit. Comput., vol. 31, no. 2, pp. 319–330, 2017, doi: 10.1007/s10877-016-9868-y.

Y. C. Chou, M. F. Abbod, J. S. Shieh, and C. Y. Hsu, “Multivariable fuzzy logic/self-organizing for anesthesia control,” J. Med. Biol. Eng., vol. 30, no. 5, pp. 297–306, 2010, doi: 10.5405/jmbe.30.5.05.

M. El-Bardini and A. M. El-Nagar, “Direct adaptive interval type-2 fuzzy logic controller for the multivariable anaesthesia system,” Ain Shams Eng. J., vol. 2, no. 3–4, pp. 149–160, 2011, doi: 10.1016/j.asej.2011.08.001.

Y. N. Yu, F. Doctor, S. Z. Fan, and J. S. Shieh, “An Adaptive Monitoring Scheme for Automatic Control of Anaesthesia in dynamic surgical environments based on Bispectral Index and Blood Pressure,” J. Med. Syst., vol. 42, no. 5, 2018, doi: 10.1007/s10916-018-0933-6.

R. S. Parker and F. J. Doyle, “Control-relevant modeling in drug delivery,” Adv. Drug Deliv. Rev., vol. 48, no. 2–3, pp. 211–228, 2001, doi: 10.1016/S0169-409X(01)00114-4.

I. Nașcu, R. Oberdieck, and E. N. Pistikopoulos, “Explicit hybrid model predictive control strategies for intravenous anaesthesia,” Comput. Chem. Eng., vol. 106, pp. 814–825, 2017, doi: 10.1016/j.compchemeng.2017.01.033.

M. M. Struys, T. De Smet, S. Greenwald, A. Absalom, S. Binge, and E. P. Mortier, “Performance Evaluation of Two Published Closed-loop Control Systems Using Bispectral Index Monitoring,” Control, no. 100, pp. 640–647, 2004.

G. G. Supp, F. L. Higgen, J. F. Hipp, A. K. Engel, and M. Siegel, “Mid-Latency Auditory Evoked Potentials Differentially Predict Sedation and Drug Level Under Opioid and Hypnotic Agents,” Front. Pharmacol., vol. 9, no. December, pp. 1–10, 2018, doi: 10.3389/fphar.2018.01427.

P. J. Schuller, S. Newell, P. A. Strickland, and J. J. Barry, “Response of bispectral index to neuromuscular block in awake volunteers,” Br. J. Anaesth., vol. 115, pp. i95–i103, 2015, doi: 10.1093/bja/aev072.

H. N. C. Domien Vanhonacker, Michael Verdonck, “Impact of Closed‑Loop Technology, Machine Learning, and Artificial.pdf.” 2022.

M. J. Khodaei, M. H. Balaghi I., A. Mehrvarz, and N. Jalili, “An Adaptive Multi-critic Neuro-fuzzy Control Framework for Intravenous Anesthesia Administration,” IFAC-PapersOnLine, vol. 51, no. 34, pp. 202–207, 2019, doi: 10.1016/j.ifacol.2019.01.066.

M. Yousefi, K. van Heusden, N. West, I. M. Mitchell, J. M. Ansermino, and G. A. Dumont, “A formalized safety system for closed-loop anesthesia with pharmacokinetic and pharmacodynamic constraints,” Control Eng. Pract., vol. 84, no. January 2018, pp. 23–31, 2019, doi: 10.1016/j.conengprac.2018.11.009.

J. A. Méndez, A. Marrero, J. A. Reboso, and A. León, “Adaptive fuzzy predictive controller for anesthesia delivery,” Control Eng. Pract., vol. 46, pp. 1–9, 2016, doi: 10.1016/j.conengprac.2015.09.009.

Y. Wang, Q. Jin, and R. Zhang, “Improved fuzzy PID controller design using predictive functional control structure,” ISA Trans., vol. 71, pp. 354–363, 2017, doi: 10.1016/j.isatra.2017.09.005.

M. Schiavo, F. Padula, N. Latronico, M. Paltenghi, and A. Visioli, “A modified PID-based control scheme for depth-of-hypnosis control: Design and experimental results,” Comput. Methods Programs Biomed., vol. 219, p. 106763, 2022, doi: 10.1016/j.cmpb.2022.106763.

and A. M. H. Sánchez, F., “Application of Model Predictive Control and Moving Horizon Estimation for the Development of Closed-Loop Inhaled Anesthetics,” Glob. Med. Eng. Phys. Exch. Am. Heal. Care Exch. (GMEPE/PAHCE). IEEE, pp. 12–26, 2022.

C. Sun and D. Holcman, “Combining transient statistical markers from the EEG signal to predict brain sensitivity to general anesthesia,” Biomed. Signal Process. Control, vol. 77, no. April, p. 103713, 2022, doi: 10.1016/j.bspc.2022.103713.

G. Schamberg, M. Badgeley, B. Meschede-Krasa, O. Kwon, and E. N. Brown, “Continuous action deep reinforcement learning for propofol dosing during general anesthesia,” Artif. Intell. Med., vol. 123, no. December 2021, p. 102227, 2022, doi: 10.1016/j.artmed.2021.102227.

T. A. Oshin, “Exploratory mathematical frameworks and design of control systems for the automation of propofol anesthesia,” Int. J. Dyn. Control, vol. 10, no. 6, pp. 1858–1875, 2022, doi: 10.1007/s40435-022-00953-1.

W. J. Yun, M. Shin, D. Mohaisen, K. Lee, and J. Kim, “Hierarchical Deep Reinforcement Learning-Based Propofol Infusion Assistant Framework in Anesthesia,” IEEE Trans. Neural Networks Learn. Syst., pp. 1–12, 2022, doi: 10.1109/tnnls.2022.3190379.

A. Pawłowski, M. Schiavo, N. Latronico, M. Paltenghi, and A. Visioli, “Linear MPC for anesthesia process with external predictor,” Comput. Chem. Eng., vol. 161, 2022, doi: 10.1016/j.compchemeng.2022.107747.

B. Ribba, D. S. Bräm, P. G. Baverel, and R. W. Peck, “Model enhanced reinforcement learning to enable precision dosing: A theoretical case study with dosing of propofol,” CPT Pharmacometrics Syst. Pharmacol., vol. 11, no. 11, pp. 1497–1510, 2022, doi: 10.1002/psp4.12858.

A. Pawłowski, M. Schiavo, N. Latronico, M. Paltenghi, and A. Visioli, “Model predictive control using MISO approach for drug co-administration in anesthesia,” J. Process Control, vol. 117, pp. 98–111, 2022, doi: 10.1016/j.jprocont.2022.07.007.

R. T. Jarrett, J. L. Blair, and M. S. Shotwell, “Optimal BIS reference functions for closed-loop induction of anesthesia with propofol,” Comput. Biol. Med., vol. 144, no. February, p. 105289, 2022, doi: 10.1016/j.compbiomed.2022.105289.

G. Calvi, E. Manzoni, and M. Rampazzo, “Reinforcement Q-learning for Closed-loop Hypnosis Depth Control in Anesthesia,” 2022 30th Mediterr. Conf. Control Autom. MED 2022, pp. 164–169, 2022, doi: 10.1109/MED54222.2022.9837170.

N. Jamali, A. Sadegheih, M. M. Lotfi, and H. Razavi, “Adaptive neuro-fuzzy inference system estimation propofol dose in induction phase during anesthesia: A case study,” Int. J. Eng. Trans. C Asp., vol. 34, no. 9, pp. 184–191, 2021, doi: 10.5829/ije.2021.34.09c.12.

R. Bharath Kumar, P. Suresh, and V. S. Hemakumar, “Automated anesthesia level controller using fuzzy logic for injectable type,” J. Appl. Sci. Eng., vol. 24, no. 5, pp. 749–755, 2021, doi: 10.6180/jase.202110_24(5).0009.

A. Maxim and D. Copot, “Closed-loop control of anesthesia and hemodynamic system: A model predictive control approach,” IFAC-PapersOnLine, vol. 54, no. 15, pp. 37–42, 2021, doi: 10.1016/j.ifacol.2021.10.228.

M. Schiavo, F. Padula, N. Latronico, M. Paltenghi, and A. Visioli, “Individualized PID tuning for maintenance of general anesthesia with propofol and remifentanil coadministration,” J. Process Control, vol. 109, pp. 74–82, 2022, doi: 10.1016/j.jprocont.2021.12.004.

M. Schiavo, L. Consolini, M. Laurini, N. Latronico, M. Paltenghi, and A. Visioli, “Optimized feedforward control of propofol for induction of hypnosis in general anesthesia,” Biomed. Signal Process. Control, vol. 66, no. September 2020, p. 102476, 2021, doi: 10.1016/j.bspc.2021.102476.

M. Schiavo, L. Consolini, M. Laurini, N. Latronico, M. Paltenghi, and A. Visioli, “Optimized reference signal for induction of general anesthesia with propofol,” IFAC-PapersOnLine, vol. 54, no. 15, pp. 7–12, 2021, doi: 10.1016/j.ifacol.2021.10.223.

M. Schiavo, L. Consolini, M. Laurini, N. Latronico, M. Paltenghi, and A. Visioli, “Optimized robust combined feedforward/feedback control of propofol for induction of hypnosis in general anesthesia,” Conf. Proc. - IEEE Int. Conf. Syst. Man Cybern., pp. 1266–1271, 2021, doi: 10.1109/SMC52423.2021.9658702.

R. M. Kagami, R. M. Franco, G. Reynoso-Meza, and R. Z. Freire, “PID control of hypnotic induction in anaesthesia employing multiobjective optimization design procedures,” IFAC-PapersOnLine, vol. 54, no. 15, pp. 31–36, 2021, doi: 10.1016/j.ifacol.2021.10.227.

S. Ntouskas and H. Sarimveis, “A robust model predictive control framework for the regulation of anesthesia process with Propofol,” Optim. Control Appl. Methods, vol. 42, no. 4, pp. 965–986, 2021, doi: 10.1002/oca.2710.

J. M. Gonzalez-Cava, J. A. Reboso, J. L. Calvo-Rolle, and J. A. Mendez-Perez, “Adaptive drug interaction model to predict depth of anesthesia in the operating room,” Biomed. Signal Process. Control, vol. 59, 2020, doi: 10.1016/j.bspc.2020.101931.

G. Schamberg, M. Badgeley, and E. N. Brown, Controlling Level of Unconsciousness by Titrating Propofol with Deep Reinforcement Learning, vol. 12299 LNAI. Springer International Publishing, 2020. doi: 10.1007/978-3-030-59137-3_3.

S. Veerakumar, V. Anandbabu, and B. Varun, “Design and implementation of PK-PD model based PID controller for closed loop anesthesia regulation,” IOP Conf. Ser. Mater. Sci. Eng., vol. 932, no. 1, 2020, doi: 10.1088/1757-899X/932/1/012095.

N. Jamali, A. Sadegheih, M. M. Lotfi, L. C. Wood, and M. J. Ebadi, “Estimating the Depth of Anesthesia During the Induction by a Novel Adaptive Neuro-Fuzzy Inference System: A Case Study,” Neural Process. Lett., vol. 53, no. 1, pp. 131–175, 2021, doi: 10.1007/s11063-020-10369-7.

C. Castellanos Peñaranda et al., “Technical and clinical evaluation of a closed loop TIVA system with SEDLineTM spectral density monitoring: Multicentric prospective cohort study,” Perioper. Med., vol. 9, no. 1, pp. 1–11, 2020, doi: 10.1186/s13741-019-0130-2.

A. Savoca and D. Manca, “A physiologically-based approach to model-predictive control of anesthesia and analgesia,” Biomed. Signal Process. Control, vol. 53, p. 101553, 2019, doi: 10.1016/j.bspc.2019.04.030.

B. Patel, H. Patel, P. Vachhrajani, D. Shah, and A. Sarvaia, “Adaptive smith predictor controller for total intravenous anesthesia automation,” Biomed. Eng. Lett., vol. 9, no. 1, pp. 127–144, 2019, doi: 10.1007/s13534-018-0090-3.

Z. X. Wei, F. Doctor, Y. X. Liu, S. Z. Fan, and J. S. Shieh, “An Optimized Type-2 Self-Organizing Fuzzy Logic Controller Applied in Anesthesia for Propofol Dosing to Regulate BIS,” IEEE Trans. Fuzzy Syst., vol. 28, no. 6, pp. 1062–1072, 2020, doi: 10.1109/TFUZZ.2020.2969384.

Z. Liang, L. Fu, X. Li, Z. Feng, J. W. Sleigh, and H. K. Lam, “Ant colony optimization pid control of hypnosis with propofol using renyi permutation entropy as controlled variable,” IEEE Access, vol. 7, pp. 97689–97703, 2019, doi: 10.1109/ACCESS.2019.2927321.

R. Padmanabhan, N. Meskin, and W. M. Haddad, “Optimal adaptive control of drug dosing using integral reinforcement learning,” Math. Biosci., vol. 309, pp. 131–142, 2019, doi: 10.1016/j.mbs.2019.01.012.

et al. van Heusden, Klaske, “Optimizing robust PID control of propofol anesthesia for children, design and clinical evaluation,” IEEE Trans. Biomed. Eng., vol. 176, no. 10, pp. 139–148, 2019, doi: 10.1109/TBME.2019.2898194.Optimizing.

L. H. Abood, E. H. Karam, and A. H. Issa, “Design of adaptive neuro sliding mode controller for anesthesia drug delivery based on biogeography based optimization,” Int. J. Adv. Comput. Res., vol. 9, no. 42, pp. 146–155, 2019, doi: 10.19101/ijacr.2018.839037.

L. Merigo et al., “A model-based control scheme for depth of hypnosis in anesthesia,” Biomed. Signal Process. Control, vol. 42, pp. 216–229, 2018, doi: 10.1016/j.bspc.2018.01.023.

G. Navarro-Guerrero and Y. Tang, “Fractional-order closed-loop model reference adaptive control for anesthesia,” Algorithms, vol. 11, no. 7, pp. 1–35, 2018, doi: 10.3390/a11070106.

B. Samira and Z. Hanane, “Fuzzy logic control system in medical field,” Proc. Int. Conf. Ind. Eng. Oper. Manag., vol. 2018, no. JUL, pp. 392–399, 2018.

D. Copot, M. Neckebroek, and C. M. Ionescu, “Hypnosis regulation in presence of saturation, surgical stimulation and additional bolus infusion ⁎,” IFAC-PapersOnLine, vol. 51, no. 4, pp. 84–89, 2018, doi: 10.1016/j.ifacol.2018.06.038.

A. Savoca, J. Barazzetta, G. Pesenti, and D. Manca, Model predictive control for automated anesthesia, vol. 43. Elsevier Masson SAS, 2018. doi: 10.1016/B978-0-444-64235-6.50284-9.

F. Taheriyan, M. S. Ghafourian, and A. Noori, “Applying GA Optimization Algorithm for Interval Type-2 Fuzzy Logic Controller Parameters of Multivariable Anesthesia System,” 26th Iran. Conf. Electr. Eng. ICEE 2018, pp. 1613–1618, 2018, doi: 10.1109/ICEE.2018.8472592.

J. An, P. L. Purdon, K. Solt, N. M. Sims, E. N. Brown, and M. B. Westover, “Design, implementation, and evaluation of a physiological closed-loop control device for medically-induced coma,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, pp. 4313–4316, 2017, doi: 10.1109/EMBC.2017.8037810.

N. West et al., “Design and evaluation of a closed-loop anesthesia system with robust control and safety system,” Anesth. Analg., vol. 127, no. 4, pp. 883–894, 2018, doi: 10.1213/ANE.0000000000002663.

L. Merigo, M. Beschi, F. Padula, N. Latronico, M. Paltenghi, and A. Visioli, “Event-Based control of depth of hypnosis in anesthesia,” Comput. Methods Programs Biomed., vol. 147, pp. 63–83, 2017, doi: 10.1016/j.cmpb.2017.06.007.

C. Zaouter, T. M. Hemmerling, S. Mion, L. Leroux, A. Remy, and A. Ouattara, “Feasibility of Automated Propofol Sedation for Transcatheter Aortic Valve Implantation: A Pilot Study,” Anesth. Analg., vol. 125, no. 5, pp. 1505–1512, 2017, doi: 10.1213/ANE.0000000000001737.

I. Nașcu and E. N. Pistikopoulos, “Modeling, estimation and control of the anaesthesia process,” Comput. Chem. Eng., vol. 107, pp. 318–332, 2017, doi: 10.1016/j.compchemeng.2017.02.016.

Downloads

Published

2023-06-29

Issue

Section

Computer

How to Cite

TOMA, A., & mouayad AbdulRidha sahib. (2023). A Comprehensive Review on Automated Control of Anesthesia: Recent Methods, Challenges and Future Trends. Wasit Journal for Pure Sciences, 2(2), 291-315. https://doi.org/10.31185/wjps.160