A Systematic Review of Bioremediation of Soil Pollution Using Different Types of Bacteria 2015-2023
DOI:
https://doi.org/10.31185/wjps.530Keywords:
Soil contamination, bioremediation, Waste, RecyclingAbstract
Soil contamination from industrial and agricultural activities is a widespread problem threatening environmental and public health. Bioremediation employing bacteria shows promise as a sustainable cleanup approach. To systematically review published research from 2015-2023 on bioremediating soil pollution using diverse bacterial strains. A comprehensive search of Web of Science, PubMed and Scopus identified studies meeting inclusion criteria: focused on bacterial bioremediation of polluted soils under controlled conditions and reported quantitative outcomes. The 87 relevant studies were analyzed covering remediation of petroleum hydrocarbons, heavy metals, pesticides and emerging contaminants using bacteria. Key genera included Pseudomonas, Bacillus, Rhodococcus for hydrocarbons and metal-resistant bacteria. Most optimized conditions in microcosms, with some field pilots showing decontamination over months. This review confirms bacteria effectively biodegrade various soil pollutants under optimized conditions. Continued research is warranted to address technical challenges for field-scale implementation and expand the range of treatable contaminants. Overall, bacterial bioremediation represents a promising sustainable solution for soil remediation.
References
Verma, A. (2022). Bioremediation techniques for soil pollution: an introduction. Biodegradation Technology of organic and inorganic pollutants, 289.
Aragaw, T. A. (2021). Functions of various bacteria for specific pollutants degradation and their application in wastewater treatment: a review. International Journal of Environmental Science and Technology, 18, 2063-2076.
Driesen, D. M., Adler, R. W., & Engel, K. H. (2016). Environmental law: a conceptual and pragmatic approach. Aspen Publishing.
Johnson, B. L. (2020). Impact of hazardous waste on human health. CRC Press.
Riser-Roberts, E. (2020). Remediation of petroleum contaminated soils: biological, physical, and chemical processes. CRC press.
Osman, K. T., & Osman, K. T. (2018). Polluted soils. Management of Soil Problems, 333-408.
Kumar, V., Shahi, S. K., & Singh, S. (2018). Bioremediation: an eco-sustainable approach for restoration of contaminated sites. Microbial bioprospecting for sustainable development, 115-136.
Premnath, N., Mohanrasu, K., Rao, R. G. R., Dinesh, G. H., Prakash, G. S., Ananthi, V., ... & Arun, A. (2021). A crucial review on polycyclic aromatic Hydrocarbons-Environmental occurrence and strategies for microbial degradation. Chemosphere, 280, 130608.
Bisht, S., Pandey, P., Bhargava, B., Sharma, S., Kumar, V., & Sharma, K. D. (2015). Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Brazilian Journal of Microbiology, 46, 7-21.
Molina, L., Segura, A., Duque, E., & Ramos, J. L. (2020). The versatility of Pseudomonas putida in the rhizosphere environment. In Advances in applied microbiology (Vol. 110, pp. 149-180). Academic Press.
Zampolli, J., Zeaiter, Z., Di Canito, A., & Di Gennaro, P. (2019). Genome analysis and-omics approaches provide new insights into the biodegradation potential of Rhodococcus. Applied microbiology and biotechnology, 103, 1069-1080.
Xiang, Y., Xing, Z., Liu, J., Qin, W., & Huang, X. (2020). Recent advances in the biodegradation of polychlorinated biphenyls. World Journal of Microbiology and Biotechnology, 36, 1-10.
Elangovan, S., Pandian, S. B. S., SJ, G., & Joshi, S. J. (2019). Polychlorinated biphenyls (PCBs): Environmental fate, challenges and bioremediation. Microbial metabolism of xenobiotic compounds, 165-188.
Zhou, H., Zhang, S., Xie, J., Wei, H., Hu, Z., & Wang, H. (2020). Pyrene biodegradation and its potential pathway involving Roseobacter clade bacteria. International Biodeterioration & Biodegradation, 150, 104961.
Jiang, Y., Zhang, Z., & Zhang, X. (2018). Co-biodegradation of pyrene and other PAHs by the bacterium Acinetobacter johnsonii. Ecotoxicology and environmental safety, 163, 465-470.
Akpasi, S. O., Anekwe, I. M. S., Tetteh, E. K., Amune, U. O., Shoyiga, H. O., Mahlangu, T. P., & Kiambi, S. L. (2023). Mycoremediation as a potentially promising technology: current status and prospects—a review. Applied Sciences, 13(8), 4978.
Quintella, C. M., Mata, A. M., & Lima, L. C. (2019). Overview of bioremediation with technology assessment and emphasis on fungal bioremediation of oil contaminated soils. Journal of environmental management, 241, 156-166.
Vasudevan, V., Gayathri, K. V., & Krishnan, M. E. G. (2018). Bioremediation of a pentacyclic PAH, Dibenz (a, h) Anthracene-A long road to trip with bacteria, fungi, autotrophic eukaryotes and surprises. Chemosphere, 202, 387-399.
Mosa, K. A., Saadoun, I., Kumar, K., Helmy, M., & Dhankher, O. P. (2016). Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Frontiers in plant science, 7, 303.
Chellaiah, E. R. (2018). Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: a minireview. Applied water science, 8(6), 154.
Joshi, S., Gangola, S., Bhandari, G., Bhandari, N. S., Nainwal, D., Rani, A., ... & Slama, P. (2023). Rhizospheric bacteria: the key to sustainable heavy metal detoxification strategies. Frontiers in Microbiology, 14, 1229828.
Joshi, S., Gangola, S., Bhandari, G., Bhandari, N. S., Nainwal, D., Rani, A., ... & Slama, P. (2023). Rhizospheric bacteria: the key to sustainable heavy metal detoxification strategies. Frontiers in Microbiology, 14, 1229828.
Richa, J. (2017). Heavy metal bio-accumulating microbial isolates for remediation of metal contaminants from industrial effluents. Journal of Microbiology Research, ISSN, 0975-5276.
Barot, M., Modi, A., & Kumar, A. (2021). Application of plant–microbe systems in bioremediation of metalloid-contaminated soils. In Microbe Mediated Remediation of Environmental Contaminants (pp. 227-240). Woodhead Publishing.
Ghosh, S., Bhattacharya, J., Nitnavare, R., & Webster, T. J. (2022). Heavy metal removal by Bacillus for sustainable agriculture. In Bacilli in Agrobiotechnology: Plant stress tolerance, bioremediation, and bioprospecting (pp. 1-30). Cham: Springer International Publishing.
Ayangbenro, A. S., & Babalola, O. O. (2020). Genomic analysis of Bacillus cereus NWUAB01 and its heavy metal removal from polluted soil. Scientific reports, 10(1), 19660.
Patil, S., Ansari, A., Sarje, A., & Bankar, A. (2023). Heavy Metals Pollution and Role of Soil PGPR: A Mitigation Approach. In Climate Change and Microbiome Dynamics: Carbon Cycle Feedbacks (pp. 349-371). Cham: Springer International Publishing.
Wang, Y., Narayanan, M., Shi, X., Chen, X., Li, Z., Natarajan, D., & Ma, Y. (2022). Plant growth-promoting bacteria in metal-contaminated soil: Current perspectives on remediation mechanisms. Frontiers in Microbiology, 13, 966226.
Al-Sajad M. S., and H. A. A. Alsalim. 2024. “evaluation of biosurfactant producing and antimicrobial resistance pseudomonas for heavy metals tolerance ”. Iraqi journal of agricultural sciences 55 (Special): 52-62.
Lee, Y. Y., & Cho, K. S. (2023). Isolation and characterization of Plant Growth-promoting Bacteria for the phytoremediation of Diesel-and heavy metal-contaminated soil. Microbiology and Biotechnology Letters, 51(4), 484-499.
Chen, Y.H., Li, L.F., Chen, T.T., Huo, Y.Y., Zhao, L.C. and Zhuang, G.Q., 2018. Enhanced mercury removing ability of genetically engineered Pseudomonas putida. Environmental Science and Pollution Research, 25(20), pp.19944-19954.
Lim, M.H., Leem, J.Y., Kim, K., Choi, Y.H., Roh, S.W. and Yang, D.C., 2020. Degradation of 2,4-dichlorophenol under aerobic and anoxic conditions by engineered E. coli. International biodeterioration & biodegradation, 150, p.104851.
Alkorta, I., Hernández-Allica, J., Becerril, J.M., Amezaga, I., Albizu, I. and Garbisu, C., 2017.Recent findings on the bioremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as cadmium, lead, and arsenic. Reviews in Environmental Science and Bio/Technology, 16(1), pp.71-90.
Shen, W., Tang, X.L., Zhang, Z.Z., Ge, H., Yuan, G.D., Chen, X.S. and Shen, Y.G., 2019. Effects of biochar application on microbial community composition and function involved in PAH degradation in an aged contaminated soil. Science of The Total Environment, 648, pp.514-523.
Varjani, S. J. (2017). Microbial degradation of petroleum hydrocarbons. Bioresource Technology, 223, 277-286.
Dixit, R., Wasiullah, Malaviya, D., Pandiyan, K., Singh, U. B., Sahu, A., ... & Paul, D. (2015). Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability, 7(2), 2189-2212.
Yang, J., Zhang, J., & Wang, S. (2021). Combination of bacteria and electrokinetic remediation for heavy metal removal from soil. Journal of Environmental Management, 280, 111554.
Kuppusamy, S., Palanisami, T., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2016). Ex-situ remediation technologies for environmental pollutants: A critical perspective. Reviews in Environmental Contamination and Toxicology, 236, 117-192.
Naima, Werfelli., Ahlem, Mansouri., Ahmed, Landoulsi., Chiraz, Abbes. (2023). Bioremediation potential of consortium Pseudomonas Stutzeri LBR and Cupriavidus Metallidurans LBJ in soil polluted by lead.
Elizabeth, Temitope, Alori., Alhasan, Idris, Gabasawa., Chinyere, Edna, Elenwo., Oluwadolapo, Ololade, Agbeyegbe. (2022). Bioremediation techniques as affected by limiting factors in soil environment. Frontiers in soil science, doi: 10.3389/fsoil.2022.937186.
Ahmed, M., Taher., Ibrahim, M., Saeed. (2021). Bioremediation of contaminated soil with crude oil using two different bacteria. Nucleation and Atmospheric Aerosols, doi: 10.1063/5.0094117.
Manoj, Kumar, Chitara., Sadhna, Chauhan., Rajesh, Pratap, Singh. (2020). Bioremediation of Polluted Soil by Using Plant Growth–Promoting Rhizobacteria. doi: 10.1007/978-981-15-7447-4_8.
Bhupendra, Koul., Pooja, Taak. (2017). Soil Remediation through Microbes. doi: 10.1007/978-981-13-2420-8_6.
Cunningham, C., Kuyukina, M., Ivshina, I., Konev, A., Peshkur, T., & Knapp, C. (2020). Potential risks of antibiotic resistant bacteria and genes in bioremediation of petroleum hydrocarbon contaminated soils. Environmental science. Processes & impacts. https://doi.org/10.1039/c9em00606k.
Ma, H., Wei, M., Wang, Z., Hou, S., Li, X., & Xu, H., 2020. Bioremediation of cadmium polluted soil using a novel cadmium immobilizing plant growth promotion strain Bacillus sp. TZ5 loaded on biochar. Journal of hazardous materials, 388, pp. 122065 . https://doi.org/10.1016/j.jhazmat.2020.122065.
Stefani, F., Bell, T., Marchand, C., Providencia, I., Yassimi, A., St-Arnaud, M., & Hijri, M., 2015. Culture-Dependent and -Independent Methods Capture Different Microbial Community Fractions in Hydrocarbon-Contaminated Soils. PLoS ONE, 10. https://doi.org/10.1371/journal.pone.0128272.
García-Delgado, C., Yunta, F., & Eymar, E., 2015. Bioremediation of multi-polluted soil by spent mushroom (Agaricus bisporus) substrate: Polycyclic aromatic hydrocarbons degradation and Pb availability. Journal of hazardous materials, 300, pp. 281-288. https://doi.org/10.1016/j.jhazmat.2015.07.008.
Nozari, M., Samaei, M., Dehghani, M., & Ebrahimi, A., 2018. Bioremediation of Alkane Hydrocarbons Using Bacterial Consortium from Soil. Health Scope. https://doi.org/10.5812/JHEALTHSCOPE.12524.
Lladó, S., Lladó, S., Covino, S., Solanas, A., Petruccioli, M., D’Annibale, A., & Viñas, M., 2015. Pyrosequencing reveals the effect of mobilizing agents and lignocellulosic substrate amendment on microbial community composition in a real industrial PAH-polluted soil. Journal of hazardous materials, 283, pp. 35-43 . https://doi.org/10.1016/j.jhazmat.2014.08.065.
Li, Q., Li, J., Jiang, L., Sun, Y., Luo, C., & Zhang, G., 2021. Diversity and structure of phenanthrene degrading bacterial communities associated with fungal bioremediation in petroleum contaminated soil. Journal of hazardous materials, 403, pp. 123895. https://doi.org/10.1016/j.jhazmat.2020.123895.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Zahraa A. Abdul Muhsin, Samara mutar , Nour ulhuda G. Mohammed

This work is licensed under a Creative Commons Attribution 4.0 International License.