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ABSTRACT: In this paper, fractional diffusion equations of Caputo-Hadamard presented as interesting classes of fractional
differential equations have not studied before. For the first time, the solution to a diffusion equation of this type was calculated.
Therefore, it is considered a new addition to the diffusion equation with the presence of this form of fractional derivatives, with
its initial conditions. Additionally, this paper presents a suitable Laplace logarithmic formula for the given fractional equation,
derived from the generalized Laplace formula and its established conditions. This also relies on the formula for the fractional
derivative as a transformation. The first time this type of fractional derivative was established, it helped in finding an approximate
formula for the solution. The residual power series method used is effective in solving many fractional equations and was even
more effective when used with the Laplace logarithmic formula. The Log(t 4+ 1) —Laplace residual power series method
combines the two concepts, formulating and evaluating the method, shown that from any changing of the values of the parameters
involving in formulation of derivative as well as the values of fractional order which found in tables and figures for illustrative
examples which illustrates the presented method.
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1. INTRODUCTION

Fractional differential equations of fractional order were applied in many interesting applications was arise in many
problems, such as the processing of single systems and diffusion reactions, as well as systems of electrical network, see
[1]. The effectiveness of these fractional equations drew attention and attracted the authors through a study involving
these equations in the field of applications modeling. For long time ago, the differential equations of fractional derivatives
which extended of deferential equations of ordinary orders have been used in many branches of interesting scientific.
moreover, through these years there are different methods as approaches described as analytically or numerically to solve
many classes of differential equations involving fractional orders for many applications or models it had a great and
important impactand open a more problems to study their solvability. The authors in the past decades have been made a
great effort for develop many methods were some of them are new to complete the solution for modeling of fractional
differential formulations was needed analytic and numerical approach for solvability. All methods was efficient
analytically and numerically and solved many presented and proposal problems such as series method, homotopy analysis
and perturbation methods, iterative method, A domain decomposition method, differential transform method, non-integer
power series, Taylor’s method [3], [4], [5], [6], [7], [8], and some other methods such as physical model, risk analysis,
novel hybrid method, biological engineering image dispensation [9], [10], [11], [12], [13], and in [14] studied how to
solve some classes of types which is linear or nonlinear differential equations with fractional derivatives. The method of
residual part with power series is one of effective approach and accuracy methods for taking the differential equations
with fractional order to explain their solutions, [15]. To find the series solution of nonlinear formulations involving of
fractional deferential has need more challenging technical when working in this method. Moreover, the transformed
functions also used to obtain the recurrence of the relations for solutions from using a residual power series technique by
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computing the coefficients in iterative form. The residual power series explained as a technique which contained
differentiation of nth of partial sum power series (n-1) times to compute terms of solution including in nth order of their
combination. So, we can say the general of differential equations has ordinary derivatives is fractional derivatives as
various nonlinear fractional differential equations which solved in [16]. There are many transformations such as Sumudu,
Laplace, Flzaki, and others all are used to studied and introduced the solutions of differential equations involving
fractional represented a order, see [17], [18], [19], [20], [21]. The BBM-Burger equations with fractional order as a model
have been solved and studied and relaxation-oscillation in many articles, [22], [23], [24]. The studies have proven the
residual Laplace power series it is very successful method for fractional equations under studied.

The diffusion equation with fractional order is one of topics in partial calculus which sometimes refer to the heat,
mass, or particles the evolution of the temporal evolution for a variable. In [3] the classical diffusion equation opposed
by fractional order diffusion equation and happened that in the temporal domain. This model is particularly useful by this
property from make the studying of phenomena depended on complex temporal or interactions by long-range since it is
allowed and satisfy accurately reflect for the model of non-local and behaviors of the memory-dependent actually in
processes of diffusion, see [25], [26]. Moreover, still the solutions expressed analytical and numerical approaches are
used for fractional diffusion equations of linear and nonlinear combination.

In this paper, the article is organized as follows. Section 2 contains interesting definitions has big issue establish of
fractional calculus and presented definitions of generalized Laplace transformations such as g-Laplace transform and
log(t+1)-Laplace transform, including properties of this transform for certain fractional derivatives to satisfy the
technique of certain method for certain problems, the method including a constriction between a generalized Laplace
transforms of several fractional operators with respect to log(t+1). Section 3 included the L;og(¢+1)— Residual Power
Series Method, and their explained in detail by algorithm steps as well as how this approach is applied to the Caputo-
Hadamard fractional equation including diffusion term. In section has number 4 explain the technical of applicability for
proposal generalized Laplace transform with residual power series and their activity for appearing then explicitly solving
for some classes of Caputo-Hadamard fractional diffusion introduced as initial value problems. Also, sectionhas number
5 have been observed the results in some tables and figures. Finally, Section 6 makes concluding statements about this
manuscript.

2. PRELIMINARIES

In this section introduce the definitions are introduced, playing a good role in this article, and to understand the process
of the definitions and concepts, as well as some interesting results for the presented technique.

Definition [26]. The Let a be positive number and « a be a real number with k = [a@] + 1. The left and right CH-FDE
of order & > 0 defined by

W = g o) [ (o) T e

CHpya.i __ 1 (_ a\eo _kalx(s)x(a)
bDy x(t)_[‘(k—(x)( tdt) J; (logs) ds,s <b

k
HDEFx(t) = (£5) x(t) and

k
CZDf’”x(t) = (—t %) x(t) where a = k.
Definition, [27]. Let a, b are two real numbers, 0 < a < b. The left and right C-HFIE of order & > 0 for function
fila,b] = R is deﬁned by

a-1 oy
CHD; “Hx(t) = $ t(logg) Mdr, s>a, (1

a1 a
D, x(t) = % b (logf) xs)-x(a) Sx(a) dt,s < b. )

Definition, [28]. Let f,g : [a,00) — R are two real valued functions when g(t) is continuous and §(t) >
0 on [a, ), a > 0. If the generalized Laplace transformation exist, then

L g{f(t)}(s) = faoo e—s(g(t)—g(a)) f(t)g‘(t)dt. 3)
Remark, [28]. If g(t) = log(t + 1) then (3) become log(t + 1) — Laplace transformation that is,
Llog(t+1){f(t)}(s) = fooo e—s(log(t+1)) f(t) % (4)

Lemma The log(t + 1) — Laplace Transformation of Caputo-Hadamard fractional derivative C%Df Px()}(s) with 0 <
B <1landp > 0, and x(t) € C[0,0). Then

Llog(t+1){C%Dtﬁ'px(t)}(s) = SBLlog(Hl){x(t)}(S) - Sﬁ_lx(o) (5)
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Proof: By Liggesnif (0}(s) = [7-L 9 at

(t+1)S
o f(t)
Llog(t+1){f(t)}(5) = fa (t+1)s
L {F®)}s) = [y #@ @+ ([ (log =) N N
log(t+1) r(1 g) 7o 09 T (t+1)5+1
Letu = log( )thent+1 =(t+1e*anddt = (t + 1)e*
Therefore
fo u ai{(rﬂ)eu]sﬂ (t + De*du = ey fo uBe=stdy = fo uBevdu =sFr(1 - p)
Hence,
, 0 X(7)
Llogm{“anﬁ Px(}(s) = s #dr
© #1) (1)
From, | (r+1)Z = —x(0)z fo z +1)Z+1
Thus,
Llog(t+1){x(t)}(s) = SﬁLlog(t+1){x(t)}(s) - x(O)
Hence,

Liog(esn{BDEPx(D}(S) = 57 Ligg(ean (x(0)}() — sP71x(0)
Lemma. The log(t + 1) — Laplace Transformation of Caputo-Hadamard fractional derivative {C%Df Px(t)}(s) with
1< pB <2andp>0,and x(t) € C?[0,)

Then
Liog e+ {ADEPx(D)}(5) = P Liggern X (O}(s) — sP71x(0) — sP724(0) (6)
o f(1)
Proof: From L44(¢+1){f (£)}(s) = fa s dt. We get that
o f(t) 1 t t+1
Liog(esn{f (O)}(s) = fa (t+1)S [F(Z—B)f (log :) T+ D** (@ de| t+1
t+1\1-A

LU OIS = = [1 w @ + 00 [ (log 22) ™ L ae ] dr
Now letu = log( )thent+ 1=(t+ 1e*and dt = (t + 1)e*
Thus,
fom uBe%du = sF1r(1 - p)
Hence,

, 0 “(0)
Liogesn{ D Px(©}(s) = s [ i de
Then

Llog(t+1){C%Dtﬁlpx(t)}(s) = SBLlog(Hl){x(t)}(S) - Sﬁ_lx(o) - Sﬁ_zx\(o)
Lemma, [28], [29]:

0 _e_ I'(a+1)
D fy t=7Hn e+ )%t = (7
©  _slog(t+1) 2t — 1
2) Iyt = ®)

3. THE Lyygs1)— RESIDUAL POWER SERIES METHOD

The interesting approach of this section is to approximate a solution of Caputo-Hadamard diffusion equation with
fractional order by Ly og(t+1) — Residual Power Series Method discussed by steps of technical algorithm which given
their steps in details. Consider now the following Caputo- Hadamard diffusion equation has fractional derivatives.

CEDFU(x, ¥, 1) = Uy (%, ¥, 1) + uyy (x, ¥, ) With 0 < @ < 1 u(x, y,0) = coshx.coshy (10)
Steps Algorithm:

Step 1 Applying log (t + 1) —Laplace transform on (9) as,

Llog (t+1) (KCDta'pu(xi Y, t) = Llog (t+1)(uxx(xi Y t) + uyy(x! Y, t)) (l 1)

By lemma 2.5 we have that,

Liog (t+1) [KCD;Z'pu(x; 0] = SaLlog (t+1)u(xv y,t) — s tu(x, y,0) Liog (t+1) [Kch’pu(xr y, )]
= Sa{LlOg (t+1)u(xf Y t) - S_lu(x, Y 0)}

Hence,
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Sa{Llog (t+1)u(x' y,t) —g(xy,0)} =Liog (¢+1) (uxx(xv y,t)+ uyy(x’ Y, t)) we get Ljog (t+1)u(xr y,t) =g(xy,0)+

S_aLlog (t+1)(uxx(x: 3z t) + uyy(x' Z t)) (12)
Step 2 From inverse of log(t + 1) —Laplace transform over (12), we obtain,

u(6,y,) = G(6,,0) + Lty (c41) (S “Liog (e41) ((ax (2,7, 8) + 15 (.7, ) (13)

Such that the initial condition is a function G (X, y, 0).
Step 3 By Liog (¢+1)-Residual power series method for a given equation (9), we get that

) (log (t+1)™*
ulx,y,t) = Xn=o fn (0, ¥) Og(T)! (14)

Therefore, finite summation (14), can be written as:
i i (log(t+1))"«
5i = Zheotin (0,7, = Bhoo fr (6,3) =8 (15)

(na)!

Step 4 The log (t + 1) —Laplace residual function of (13) have the following formulation,

Resi (x' Y, t) =U; (x' Y t) - G(x' Y, O) - Ll_olg (t+1) (S_aLlog (t+1)((ui—1(x' Y, t)xx + ui—l(x' Y t)yy)) (16)
The values of f,,(x, y) can be computed with n = 0,1,2,... in the following,
t™Res; (x,¥,t)t=0 =0 (17)

The pseudo code of the algorithm Ly g (r41) — residual power series method description in the following.

4. Logt+1) — RESIDUAL POWER SERIES METHOD APPLIED ON CAPUTO-
HADAMARD FRACTIONAL DIFFUSION EQUATION

Using log (t + 1) — Laplace transform on (9), then Lj,g (Hl)(CHDg"u(x, Y, t) = Liog (t+1) oex (0, 7, ) + 1y (x, 3, 8))  (18)
By lemma 2.5, we get that

Llog (t+1)u(x' b2 t) = g(x' B2 0) + S_a(Llog (t+1) ((uxx(x' b2 t) + uyy(xt Y, t))) (19)

By using the inverse log (t + 1) —Laplace transform on (19), we get

u('x' Y, t) = G(X, Y, 0) + Ll_olg (t+1) (S_aLlog (t+1) (uxx(x! Y t) + uyy(xl Y, t)))

Now u;(X, y, t) have the following formulation (20)
(log (t+1))™*

Si = Yhooln (6, 0) = Xhoo fu (6, 1) e 1

fn(x,y) can be obtained by using

Resi (x' Y t) =y (x' Y, t) - G(x, ’Z 0) - Ll_olg (t+1) (S_aLlogt((ui—l(xl Y t)xx + ui—l(x' Y, t)yy)) (22)
When i = 0 from (22), we have that

Resy(x,y,t) = ug(x,y,t) — G(x,y,0) and from (21),

0=ug(x,y,t)—G(x,y,0)i.e

ug(x,y,t) = G(x,y,0) up(x,y,t) = G(x,y,0) = fo(x,y) = coshx.coshy

When i = 1 in (22), we have that (23)

Res; (6, 8) = 106, ) = 66, 0) = Litk 41y (S Liog (041 (o (.Y, Dz + (X, ¥, £),,) ) with equations

1 t+1))%
w (6, y,t) = fo(x,y) + fi(x,y) (g((T” Then

(og(t+1))* - -

Res (x,y,t) = folx,y) + f1(x,¥) Og(T — G(%,,0) = Ligg t+1) (5 “Ligge (o (%, ¥, ) xx + o (x, 3, t)yy))
(log (t + 1))~
(a)!

- Ll_olg (t+1) (s“"LlOg (Hl)(((coshx. coshy ), + (coshx.coshy )yy))
(log (t + 1))“ 1

= coshx.coshy + f,(x,y) — coshx.coshy

= f1(x,y) @ — Liog (t+1) (s“)‘Llog (t+1)(coshx. coshy + coshx.coshy ))
(og (¢ +1))* _ _

= fikx,y) T - L]01g (t+1) (S ®Liog (¢+1)(2coshxcoshy ))
(log (t + 1)) _ _

= fi(x,y) — @ 2coshx.coshy Lig, (s “Ligge (1 ))
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(log (t + 1))“ _ 1
= fi(x,y) — @ 2coshx.coshy Llolg (t+1) <s @ ;)
_ (log (t + 1))~
= ikx,y) @

_ 1

—2coshx. coshy Ligy 141 (W)

(log (t + 1)“ 1 (log (t + 1))“
= ,y) ——————— — 2coshx. cosh

fiGen) = COSRX-COSY LA+ @) (@)
1 log (t+1))*
= (fi(x,y) — 2coshx.coshy m) %
Then after solving t“*Res; (x,y, t);=o = 0 gives that
g 15 Y, V=0 g
1 .
fi(x,y) — 20shx.coshy vt Oi.e
_ 1

fi(x,y) = 2o0shx.coshy e (24)

When i=2 from (22), we have that

Res,;(x,y,8) = uy(x,y,t) — G(x,y,0) — Ll_olg (t+1) (S_aLlog (t+1)((u1(x' Yo Dxx + s (%, t)yy))a with equations
log (t+1))% log (t+1))% log (t+1))%%

G630 = foe ) + il ) CEED and iy (x,,6) = fo00,y) + fi06,y) CEEEDE 4, ) Lo CHDIE

we get that,

(log (t+1)% (log (t+1))3% _ (logt)*
Resa(6,9,) = fo3) + i) CBED 4 £, 3) CBEDT Gy 0) — 17 ) 0%

1 ) (log (t+1))*

L]-Olg 41 (s-aLlog (t+1) ((coshx. coshy + 2coshx.coshy g @ Vax + (coshx. coshy +

+a)
1 (log (¢+1)% _ 1 (log (t+1)* (log (t+1))%¢
2coshx.coshy mT)yy)) = 2coshx.coshy e @ + f2(x,y) 2a)!

1 (log (t+1)%
r(1+a) (a)!

—Ll_olg (t+1) (s‘“Llog (t+1) (coshx. coshy + 2coshx.coshy + coshx.coshy +

1 (log (t+1))*
2coshx.coshy Gt @ ))

1 (log (t+1)* (log (t+1))2% _ -
= 2coshx. coshy mog— +f, (0, y) 2D —Llolg (t+1) (s “Liog (¢+1) (2coshx. coshy +

(a)! a)!

(@)!

_ 1 (log (t+1))% (log (t+1))%*
= 2coshx.coshy e @ + £,0x,y) —am

a
4coshx. coshy r(ll—m)w))

- - 1 (log (t+1))%
L101g t+1) (s a (2coshx. coshyLiog (t+1)(1) + 4coshx. coshy leog (t+1)(T))>

1 (log (t+1)%
= 2coshx.coshy @

(log (t+1))%% _ _ _ 1 1 r(1+a)
+£,(x,y) e Liog (t+1) (s @ (2coshx. coshy( ) + 4coshx. coshy ( e )))

s r(1+a)
1 (log(t+ 1)~ (log (t + 1))%@ _ 1
= 2coshx.coshy T+ a) @) + f5(x,y) T — 2coshx. CoshyLlolg (+1) <—51+a)
— 4coshx. coshyLig, 41 (W)
1 log (t + 1)) log (¢t + 1))%® 1 log (t + 1))
= 2coshx.coshy (log ( ) + f5(x,y) M — 2coshx.coshy (log ( )

D @) Ra)!
1 (log (t +1)%
— 4coshx.coshy r(1 + 2a) (2a)!
Qg+ 1" e cosmy— L (oB(E+ 1
(a)! . > I+ 2a) e

_ _ 1 (log (t+1))%¢
= (f2(x,y) — 4coshx. coshy F(1+M)) 2!

From t2%Res, (x,y,t)/t=0= 0 we get that,

rd+aw (a)!

=fz(x')’)

1
r(1+2a)

(fz (x,y) — 4coshx.coshy ) =0i.e f,(x,y) = 4coshx.coshy

1
r(1+2a)
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Now, the approximate of second solution is,
1 (log(t+ 1)~ + 4cosh L 1 (log (t + 1))%*
r(1+a) (a)! COShX. coshy r(1 + 2a) 2a)!

u,(x,y,t) = coshx.coshy + 2coshx. coshy
When i = 3 from (2.34), we get that
R653 (X, Y t) =Us (x: Y t) - G(xv Y 0) - Ll_olg (t+1) (S_aLlog (t+1) ((uz(x: Y, t)xx + Uy (X, Y t)yy)): with equations

a 2a
us(6,,8) = foa,y) + fi(x,y) LEED 4 g () LEEDT 4ng

(a)! a)!
log (t+1)* log (¢+1)2¢ log (t+1)3%
us(6,3,8) = fo06,y) + 1 y) P SE=+ f0y) CEEEI + f30r, ) R we get
log (¢+1))* log (¢+1)2% log (t+1)3%
Res; (6,7,6) = fo(x,y) + fi(e, ) CE S+ (6, 3) PB4 () R~ Gy, 0)

_ _ (logt)* (logt)%@ (logt)*
Liog (e+1) (s “Liog (t41) ((fo(x.y)+f1(x,y) U+ Lo CE) + (foloy) + il y) CE-+
: xx

(2)! (a)!
(logt)*«
£, y) 22— )yy))

_ 1 (logt)® 1 (logt)?® (logt)3@ _
= 2coshx.coshy e @ + 4coshx.coshy Tz o + f3(x,y) Go)l
_ _ 1 (log (t+1))* 1 (log (t+1))3%%
Llolg 41 (s *Liog (t+1) ((coshx. coshy + 2coshx.coshy m) — @ + 4coshx.coshy o aa) Vax +
1 (log (t+1)% 1 (log (t+1))3%¢
(coshx. coshy + 2coshx.coshy _r(1+a)) —ar + 4coshx.coshy Wz aa )yy))
_ 1 (log (t+1)% 1 (log(t+1))%“ (log(t+1))3¢
= 2coshx. coshy e @ + 4coshx.coshy e ol +f5(x,y) G
1 —a 1 (log(t+1)* 1 (log(t+1))3%“
—Liog t+1) (5 “Liog(t+1) (coshx. coshy + 2coshx.coshy s @ + 4coshx. coshymw)
1 (log (t+1)* 1 (log (t+1))%*

+(coshx.coshy + 2coshx.coshy + 4coshx. coshy e ) )

r(l1+a) (a)!
1 (log(t+1)“ 1 (log(t+1))%« (log (t+1))3¢
r(1+a) (a)! +4coshx. COShy r(1+2a) a)! +f3 (X, y) (Ba)!

= 2coshx.coshy

(a)! a)!
1 (log (t+1)% 1 (log (t+1))%¢ (log (t+1))3%
r(1+a) (a)! +4coshx. coshy r(1+2a) 2a)! +f3(x,y) (Ba)!
(log (t+1))*
(a)!

1 _ 1 (logtlog (t+1)% 1 (log (t+1))%“
—Liog (t+1) (s “Liog (¢+1) (ZCoshx. coshy + 4coshx.coshy F(1+a)) 8coshx.coshy ez )>

= 2coshx. coshy

— — 1
~Liog (t+1) (s @ (ZCOth. coshyLiog (t+1)(1) + 4coshx. coshy m)lllog t+1)( +

(2a)!

1 (log (t+1))“ 1 (log (t+1))%%
@ +4coshx.coshy YY)

1 (log (t+1))%*
8coshx.coshy ) Ligg( )))

log (t+1))3¢
+f3(x,y)u

= 2coshx.coshy ) Ga)!

1 a 1 1 [A+a)
—Lisg e+ | S 2coshx.coshy (;) + 4coshx.coshy e 0()) pEwe

1 1+2 1 (log(t+1)“
+ 8coshx. coshy <F( O (log ( )

=2 .
r(l1+2a)\ st+2e )) coshx. coshy r(l+a) (a)!

1 (log (t+1))%% (log (t+1))3¢
ra+2e) (a) +f3(x,y) GBa)!

+4coshx. coshy (;) +8coshx. coshy (;)) = 2coshx.coshy

slt2a sl+3a

+4coshx. coshy _Ll_olg (t+1)(2COth' coshy (51%)
1 (log (t+1)%

r(1+a) (a)!

(log (t+1))%%

ra+2a) a)!

(log (t+1))3% B 1
+£3(x,y) — Ga —2coshx. COShyLlolg (t+1) (m)

1 1 -1 1 _ . . 1 (logtlog (t+1)*
—4coshx. coshy Ligg (¢41) (M) —8coshx. coshyLigg (¢41) (m) = 2sinxsiny D @

+4coshx.coshy

1 (log (t+1))2%
ra+2a) a)!
1 (log (t+1))%*

r(1+2a) Qa)!

3a
= f30x,y) % —8coshx. coshy

(og (£+1))3% _ L (og(t+1)%
+£3(x,y) Gl 2coshx.coshy e @)

—8coshx.coshy

+4coshx.coshy

1 (log (t+1))3%

r(1+3a) GBa)!
1 (log (t+1))3¢

r(1+3a) Ba)!

4coshx.coshy
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= (f3(x,y) — 8coshx. coshy

1

(log (t+1))3¢

r(1+3a)
Therefore, from t3%Res;(x,y,t)/i=o= 0 we have,

(f 3(x,¥) — 8coshx. coshy

r(1+3a)

)

1

(Ba)!

Now, to compute approximate of third solution is,

us(x,y,t) = coshx.coshy +2coshx.coshy g

+8coshx.coshy

u,(x,y,t) = coshx.coshy Z%:o

5. (C-HDFE) AND ITS GRAPHS RESPECT TO NUMERICAL SIMULATIONS

1

(log (t+1))3%

)

r(a+3a)

(Ba)!
Similarly, the n™ coefficient of u(x, y, t)is

fu(x,¥) = (2)"coshx.coshy

atlast the n'h Liog (t+1) — RPSM approximate solution of u(x, y, t) is

1

r(1+na)

1

(Qog (t+1))H ™
I@A+na)(na)!

(log (t+1))%

(a)!

) =0i.e (f5(x,y) = 8coshx.coshy

+ 4coshx.coshy

1

l,"(1+30c))

1

(log (t+1))%*

r1+2a)

Qa)!

(25)

The following tables and figures explained the simulation of the presented numerical method from throughout of values
represented as decreasing or increasing monotonic that refer that the method is efficient and active for solving C-HDFE
and shown that the parameters and fractional order made a good role for achieved the purpose of the method.

Table 1: Solution at t = 0.1 when value of a = 0.1 and i=10.

X/y 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.0

0.2 152 154 158 163 170.7 179.5 190.0 202.5 216.9 233.6 233.6

0.4 161 163 167 173 180.9 190.2 201.4 214.6 229.9 247.6 233.6

0.6 176 179 183 190 198.4 208.6 220.8 235.3 252.1 271.5 247.6

0.8 199. 202 207 214 223.8 235.3 249.1 265.5 284.5 306.3 271.5

1.0 230 233 239 247 258.2 271.5 287.5 306.3 328.2 3534 306.3
Table 2: Solution at t = 0.2 when value of a = 0.2 and i=10.

x/y 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.0

0.2 225 | 228 234 24.2 25.2 26.5 28.1 29.9 32.1 34.5 34.59

0.4 23.8 | 24.8 25.6 26.7 28.1 29.8 31.7 34.0 36.6 36.6

0.6 26.1 | 26.5 27.2 28.1 293 30.8 32.7 34.8 373 40.2 40.20

0.8 29.5 | 29.9 30.7 31.7 33.1 34.8 36.9 393 42.1 453

1.0 340 | 345 354 36.6 38.2 40.2 42.5 453 48.6 52.3 42.13
Table 3: Solution at t = 0.3 when value of o. = 0.3 and i=10.

x/y 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.2 7.75 7.87 8.06 8.34 8.70 9.14 9.68 10.3 11.05 11.90

0.4 8.21 8.34 8.54 8.84 9.22 9.695 10.26 10.93 11.72 12.61

0.6 9.01 9.14 9.37 9.69 10.11 10.63 11.25 11.99 12.85 13.83

0.8 10.16 10.32 10.57 10.93 11.40 11.99 12.69 13.53 14.49 15.61

1.0 11.73 11.90 12.20 12.61 13.16 13.83 14.65 15.61 16.72 18.01
Table 4: Solution at t = 0.4 when value of a = 0.4 and i=10.

x/y 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.2 4.57 4.646 4.76 4.92 5.13 5.39 5.71 6.09 6.52 .02

0.4 4.85 4.923 5.04 5.21 5.44 5.72 6.05 6.45 6.91 7.44

0.6 5.3 5.399 5.53 5.72 5.96 6.27 6.64 7.07 7.58 8.16

0.8 6.00 6.091 6.24 6.45 6.73 7.07 7.49 7.98 8.55 9.21

1.0 6.92 7.028 7.20 7.44 7.76 8.16 8.64 9.21 9.87 10.63
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Table 5: Solution at t = 0.5 when value of a = 0.5 and i=10.

x/y 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.2 3.36 341 3.49 3.61 3.77 3.96 4.20 4.47 4.79 5.16
0.4 3.56 3.61 3.70 3.83 4 4.20 4.45 4.74 5.08 5.47
0.6 3.91 3.96 4.06 4.20 4.38 4.61 4.88 5.20 5.57 6.00
0.8 441 4.47 4.58 4.74 4.94 5.20 5.50 5.87 6.29 6.77
1.0 5.08 5.16 5.29 5.47 5.71 6.00 6.35 6.77 7.25 7.81

Table 6: Solution at t = 0.6 when value of a = 0.6 and i=10.

x/y 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.2 2.73 2.77 2.84 2.94 3.06 3.22 3.41 3.63 3.89 4.19
0.4 2.89 2.94 3.01 3.11 3.25 341 3.61 3.85 4.13 4.44
0.6 3.17 3.22 3.30 3.41 3.56 3.74 3.96 4.22 4.53 4.87
0.8 3.58 3.63 3.72 3.85 4.02 4.22 4.47 4.77 5.11 5.50
1.0 4.13 4.19 4.30 4.44 4.64 4.87 5.16 5.50 5.89 6.34

Table 7: Solution at t = 0.7 when value of a = 0.7 i=10.

x/y 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.2 2.34 2.38 2.44 2.52 2.63 2.76 2.93 3.12 3.34 3.60
0.4 2.48 2.52 2.58 2.67 2.79 2.93 3.10 3.30 3.54 3.81
0.6 2.72 2.76 2.83 2.93 3.05 3.21 3.40 3.62 3.88 4.18
0.8 3.07 3.12 3.2 3.30 3.45 3.62 3.84 4.09 4.38 4.72
1.0 3.54 3.60 3.69 3.81 3.98 4.18 4.43 4.72 5.06 5.44

Table 8: Solution at t = 0.8 when value of a = 0.8 and i=10.

x/y 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.2 2.082 2.11 2.16 2.24 2.33 2.45 2.60 2.77 2.96 3.19
0.4 2.207 2.24 2.29 2.37 247 2.60 2.75 2.93 3.14 3.38
0.6 242 2.45 2.51 2.60 2.71 2.85 3.02 3.22 3.45 3.71
0.8 2.73 2.77 2.84 2.93 3.06 3.22 3.41 3.63 3.89 4.19
1.0 3.15 3.19 3.27 3.38 3.53 3.71 3.93 4.19 4.49 4.83

Table 9: Solution at t = 0.9 when value of a = 0.9 and i=10.

x/y 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.0
0.2 1.89 1.918 1.96 2.03 2.12 222 2.36 2.51 2.69 2.90 2.901
0.4 2.00 2.033 2.08 2.15 2.24 2.36 2.50 2.66 2.85 3.07 075
0.6 2.19 2.229 2.28 2.3 2.46 2.59 2.74 2.92 3.13 3.37 3.372
0.8 247 2.515 2.57 2.66 2.78 2.92 3.09 3.29 3.53 3.80 3.804
1.0 2.85 2.901 297 3.07 3.20 3.37 3.57 3.80 4.07 4.38 4.389

Table 10: Solution at t = 1 when value of a =land i=10.

x/y 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.2 1.74 1.76 1.81 1.87 1.95 2.05 2.17 231 2.48 2.67
0.4 1.84 1.87 1.92 1.98 2.07 2.17 2.30 245 2.63 2.83
0.6 2.02 2.05 2.10 2.17 2.27 2.38 2.52 2.69 2.88 3.10
0.8 2.28 2.31 2.37 245 2.56 2.69 2.85 3.03 3.25 3.50
1.0 2.63 2.67 2.74 2.83 2.95 3.10 3.29 3.50 3.75 4.04
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2D Line Plot of Table Data (t = 0.1, = = 0.1 ,i= 10)
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Figure 1: Solution when value of 0 =0.1,t=0.1,p=1 and i = 10.

2D Line Plot of Table Data (t = 0.2, = = 0.2 i= 10}
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Figure 2: Solution when value of a =0.2,t=0.2 and i = 10.

2D Line Plot of Table Data (t = 0.3, + = 0.3 ,i= 10)
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Figure 3: Solution when value of = 0.3,t=0.3 and i = 10.

2D Line Plot of Table Data (t = 0.4, = = 0.4 i= 10}
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Figure 4: Solution when value of a = 0.4, t=0.4 and i = 10.

2D Line Plot of Table Data (t = 0.5, ~ = 0.5 ,i= 10}
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Figure 5: Solution when value of a =0.5,t=0.51= 10.

2D Line Plot of Table Data (t = 0.6, + = 0.6 ,i= 10)
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Figure 6: Solution when value of 0. = 0.16, t=0.6 and i = 10.

2D Line Plot of Table Data (t = 0.7, + = 0.7 .i= 10)
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Figure 7: Solution when value of  =0.7,t=0.7 and i = 10.



Ali et al., Wasit Journal for Pure Science Vol. 4 No. 4 (2025) p. 13-24

2D Line Plot of Table Data (t = 0.8, » = 0.8 ,i= 10)
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Figure 8: Solution when value of 0 =0.8,t= 0.8 and i = 10.

2D Line Plot of Table Data (t = 0.9, » = 0.9 i= 10)
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Figure 9: Solution when value of 0 =0.9,t= 0.9 and i = 10.

2D Line Plot of Table Data (t = 1.0, > = 1.0 ,i= 10)
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Figure 10: Solution when value of a = 1.0, t=1.0 and i = 10.

6. CONCLUSIONS

We concluded through our work that working in this the Lyog (t+1)— Residual Power Series Method on this for the solution
of the Caputo--Hadamard fractional diffusion equation is highly effective, and this is clear from the tables and graphs
that indicate the increase or decrease of values for these tables, also the analytic technique is very interest with assumption
of residual series suitable with the fractional derivatives and assumption equation and this indicates the validity of the

method.
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