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1. INTRODUCTION 

Fractional differential equations of fractional order were applied in many interesting applications was arise in many 

problems, such as the processing of single systems and diffusion reactions, as well as systems of electrical network, see 

[1]. The effectiveness of these fractional equations drew attention and attracted the authors through a study involving 

these equations in the field of applications modeling. For long time ago, the differential equations of fractional derivatives 

which extended of deferential equations of ordinary orders have been used in many branches of interesting scientific. 

moreover, through these years there are different methods as approaches described as analytically or numerically to solve 

many classes of differential equations involving fractional orders for many applications or models it had a great and 

important impactand open a more problems to study their solvability. The authors in the past decades  have been made a 

great effort for develop many methods were some of them are new to complete the solution for modeling of fractional 

differential formulations was needed analytic and numerical approach for solvability. All methods was efficient 

analytically and numerically and solved many presented and proposal problems such as series method, homotopy analysis 

and perturbation methods, iterative method, A domain decomposition method, differential transform method, non-integer 

power series, Taylor’s method [3], [4], [5], [6], [7], [8], and some other methods such as physical model, risk analysis, 

novel hybrid method, biological engineering image dispensation [9], [10], [11], [12], [13], and in [14] studied how to 

solve some classes of types which is linear or nonlinear differential equations with fractional derivatives. The method of 

residual part with power series is one of effective approach and accuracy methods for taking the differential equations 

with fractional order to explain their solutions, [15]. To find the series solution of nonlinear formulations involving of 

fractional deferential has need more challenging technical when working in this method. Moreover, the transformed 

functions also used to obtain the recurrence of the relations for solutions from using a residual power series technique by 
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computing the coefficients in iterative form. The residual power series explained as a technique which contained 

differentiation of nth of partial sum power series (n-1) times to compute terms of solution including in nth order of their 

combination. So, we can say the general of differential equations has ordinary derivatives is fractional derivatives as 

various nonlinear fractional differential equations which solved in [16]. There are many transformations such as Sumudu, 

Laplace, Elzaki, and others all are used to studied and introduced the solutions of differential equations involving 

fractional represented a order, see [17], [18], [19], [20], [21]. The BBM-Burger equations with fractional order as a model 

have been solved and studied and relaxation-oscillation in many articles, [22], [23], [24]. The studies have proven the 

residual Laplace power series it is very successful method for fractional equations under studied.  

 The diffusion equation with fractional order is one of topics in partial calculus which sometimes refer to the heat, 

mass, or particles the evolution of the temporal evolution for a variable. In [3] the classical diffusion equation opposed 

by fractional order diffusion equation and happened that in the temporal domain. This model is particularly useful by this 

property from make the studying of phenomena depended on complex temporal or interactions by long-range since it is 

allowed and satisfy accurately reflect for the model of non-local and behaviors of the memory-dependent actually in 

processes of diffusion, see [25], [26]. Moreover, still the solutions expressed analytical and numerical approaches are 

used for fractional diffusion equations of linear and nonlinear combination.  

In this paper, the article is organized as follows. Section 2 contains interesting definitions has big issue establish of 

fractional calculus and presented definitions of generalized Laplace transformations such as g-Laplace transform and 

log(t+1)-Laplace transform, including properties of this transform for certain fractional derivatives to satisfy the 

technique of certain method for certain problems, the method including a constriction between a generalized Laplace 

transforms of several fractional operators with respect to log(t+1). Section 3 included the L𝐿𝑜𝑔(𝑡+1)– Residual Power 

Series Method, and their explained in detail by algorithm steps as well as how this approach is applied to the Caputo-

Hadamard fractional equation including diffusion term. In section has number 4 explain the technical of applicability for 

proposal generalized Laplace transform with residual power series and their activity for appearing then explicitly solving 

for some classes of Caputo-Hadamard fractional diffusion introduced as initial value problems. Also, sectionhas number 

5 have been observed the results in some tables and figures. Finally, Section 6 makes concluding statements about this 

manuscript. 

 

2.  PRELIMINARIES 

 

In this section introduce the definitions are introduced, playing a good role in this article, and to understand the process 

of the definitions and concepts, as well as some interesting results for the presented technique.  

Definition [26]. The Let 𝑎 be positive number and 𝛼 a be a real number with 𝑘 = [𝛼] + 1. The left and right CH-FDE 

of order 𝛼 > 0 defined by  

𝐷𝑡
𝛼,𝜇

𝑎
𝐶𝐻 𝑥(𝑡) =

1

𝛤(𝑘 − 𝛼)
(𝑡

𝑑

𝑑𝑡
)
𝑘

∫ (log
𝑡

𝑠
)
𝑘−𝛼−1⁡

⁡
𝑥(𝑠) − 𝑥(𝑎)

𝑠

𝑡

𝑎

𝑑𝑠⁡𝑠 > 𝑎 

𝐷𝑡
𝛼,𝜇

𝑏
𝐶𝐻 𝑥(𝑡) =

1

𝛤(𝑘−𝛼)
(−𝑡

𝑑

𝑑𝑡
)
𝑘

∫ (log
𝑡

𝑠
)
𝑘−𝛼−1⁡

⁡
𝑥(𝑠)−𝑥(𝑎)

𝑠

𝑏

𝑡
𝑑𝑠, 𝑠 < 𝑏 

𝐷𝑡
𝑘,𝜇

𝑎
𝐶𝐻 𝑥(𝑡) = (𝑡

𝑑

𝑑𝑡
)
𝑘

𝑥(𝑡) and  

𝐷𝑡
𝑘,𝜇

𝑏
𝐶𝐻 𝑥(𝑡) = (−𝑡

𝑑

𝑑𝑡
)
𝑘

𝑥(𝑡) where 𝛼 = 𝑘. 

Definition, [27]. Let 𝑎, 𝑏⁡are two real numbers, 0 < 𝑎 < 𝑏. The left and right C-HFIE of order 𝛼 > 0 for function 

𝑓: [𝑎, 𝑏] → 𝑅 is defined by 

𝐷𝑡
−𝛼,𝜇

𝑎
𝐶𝐻 𝑥(𝑡) =

1

𝛤(𝛼)
∫ (log

𝑡

𝑠
)
𝛼−1⁡

⁡
𝑥(𝑠)−𝑥(𝑎)

𝜏

𝑡

𝑎
𝑑𝜏, 𝑠 > 𝑎,                                                                                   (1)  

𝐷𝑡
−𝛼,𝜇

𝑏
𝐶𝐻 𝑥(𝑡) =

1

𝛤(𝛼)
∫ (log

𝑡

𝑠
)
𝛼−1⁡

⁡
𝑥(𝑠)−𝑥(𝑎)

𝑠

𝑏

𝑡
𝑑𝜏, 𝑠 < 𝑏.                                                                                            (2) 

Definition, [28]. Let f, g ∶ ⁡ [a,∞⁡) → ⁡R are two real valued functions when g(t) is continuous and ǵ(t) ⁡>
⁡0⁡on⁡[a,∞), a > 0. If the generalized Laplace transformation exist, then 

ℒ⁡g{𝑓(𝑡)}(s) = ∫ 𝑒−s(g(t)−g(a))
∞

𝑎
f(t)g`(t)dt.⁡                                                                                            (3) 

Remark, [28]. If 𝑔(𝑡) = ⁡ log(𝑡 + 1) then (3) become log(𝑡 + 1) ⁡− Laplace transformation that is, 

ℒlog(𝑡+1){𝑓(𝑡)}(s) = ∫ 𝑒−𝑠(log(𝑡+1))
∞

0
f(t)

𝑑𝑡

𝑡
.                                                                                            (4) 

Lemma The 𝑙𝑜𝑔(𝑡 + 1) − Laplace Transformation of Caputo-Hadamard fractional derivative 𝐷𝑡
𝛽,𝜌

𝑥(𝑡)}(𝑠)0
𝐶𝐻  with 0 <

𝛽 < 1 and 𝜌 > 0, and 𝑥(𝑡) ∈ 𝐶́[0,∞). Then  

ℒ𝑙𝑜𝑔(𝑡+1){ 𝐷𝑡
𝛽,𝜌

𝑥(𝑡)}(𝑠) = 𝑠𝛽ℒ𝑙𝑜𝑔(𝑡+1)0
𝐶𝐻 {𝑥(𝑡)}(𝑠) − 𝑠𝛽−1𝑥(0)                                                             (5)  
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Proof: By ℒ𝑙𝑜𝑔(𝑡+1){𝑓(𝑡)}(𝑠) = ∫
𝑓(𝑡)

(𝑡+1)𝑠

∞

𝑎
𝑑𝑡. 

ℒ𝑙𝑜𝑔(𝑡+1){𝑓(𝑡)}(𝑠) = ∫
𝑓(𝑡)

(𝑡+1)𝑠

∞

𝑎
  

 ℒ𝑙𝑜𝑔(𝑡+1){𝑓(𝑡)}(𝑠) =
1

𝛤(1−𝛽)
∫ ⁡𝑥́(𝜏)(𝜏 + 1)1−𝜌

⁡𝑡

0
[∫ (𝑙𝑜𝑔

𝑡+1

𝜏+1
)
−𝛽 1

(𝑡+1)𝑠+1
𝑑𝑡 ⁡

𝑡

0
] 𝑑𝜏  

Let 𝑢 = 𝑙𝑜𝑔 (
𝑡+1

𝜏+1
) then 𝑡 + 1 = (𝜏 + 1)𝑒𝑢 and 𝑑𝑡 = (𝜏 + 1)𝑒𝑢  

Therefore 

 ∫ 𝑢−𝛼
1

[(𝜏+1)𝑒𝑢]𝑠+1
⁡(𝜏 + 1)𝑒𝑢⁡𝑑𝑢

∞

0
=

1

(𝜏+1)𝑠
∫ 𝑢−𝛽𝑒−𝑠𝑢𝑑𝑢
∞

0
 = ∫ 𝑢−𝛽𝑒−𝑠𝑢𝑑𝑢

∞

0
= 𝑠𝛽−1𝛤(1 − 𝛽)  

Hence, 

ℒ𝑙𝑜𝑔(𝑡+1){ 𝐷𝑡
𝛽,𝜌

𝑥(𝑡)}(𝑠) = 𝑠𝛽 ∫
𝑥́(𝜏)

(𝜏+1)𝑠+𝜌−1
𝑑𝜏

∞

00
𝐶𝐻   

From, ∫
𝑥́(𝜏)

(𝜏+1)𝑧
𝑑𝜏 = −𝑥(0)𝑧 ∫

𝑥́(𝜏)

(𝜏+1)𝑧+1
𝑑𝜏

∞

0

∞

0
+…. 

Thus,  

 ℒ𝑙𝑜𝑔(𝑡+1){𝑥(𝑡)́ }(𝑠) = 𝑠𝛽ℒ𝑙𝑜𝑔(𝑡+1){𝑥(𝑡)}(𝑠) − 𝑥(0) 

 Hence,  

ℒ𝑙𝑜𝑔(𝑡+1){ 𝐷𝑡
𝛽,𝜌

𝑥(𝑡)}(𝑠) = 𝑠𝛽ℒ𝑙𝑜𝑔(𝑡+1)0
𝐶𝐻 {𝑥(𝑡)}(𝑠) − 𝑠𝛽−1𝑥(0) 

Lemma. The 𝑙𝑜𝑔(𝑡 + 1) − Laplace Transformation of Caputo-Hadamard fractional derivative { 𝐷𝑡
𝛽,𝜌

𝑥(𝑡)}(𝑠)0
𝐶𝐻  with 

1 < 𝛽 < 2 and 𝜌 > 0, and 𝑥(𝑡) ∈ 𝐶2[0,∞)  
Then  

ℒ𝑙𝑜𝑔(𝑡+1){ 𝐷𝑡
𝛽,𝜌

𝑥(𝑡)}(𝑠) = 𝑠𝛽ℒ𝑙𝑜𝑔(𝑡+1)0
𝐶𝐻 {𝑥(𝑡)}(𝑠) − 𝑠𝛽−1𝑥(0) − 𝑠𝛽−2𝑥́(0)                                              (6) 

Proof: From ℒ𝑙𝑜𝑔(𝑡+1){𝑓(𝑡)}(𝑠) = ∫
𝑓(𝑡)

(𝑡+1)𝑠

∞

𝑎
𝑑𝑡. We get that  

ℒ𝑙𝑜𝑔(𝑡+1){𝑓(𝑡)}(𝑠) = ∫
𝑓(𝑡)

(𝑡+1)𝑠
[

1

𝛤(2−𝛽)
∫ (𝑙𝑜𝑔

𝑡+1

𝜏+1
)
1−𝛽

(𝜏 + 1)2−𝜌
⁡

⁡𝑥˶(𝜏)
𝑡

0
𝑑𝜏]

𝑑𝑡

𝑡+1

∞

𝑎
  

ℒ𝑙𝑜𝑔(𝑡+1){𝑓(𝑡)}(𝑠) =
1

𝛤(2−𝛽)
∫ ⁡𝑥˶(𝜏)(𝜏 + 1)1−𝜌 [∫ (𝑙𝑜𝑔

𝑡+1

𝜏+1
)
1−𝛽 1

(𝑡+1)𝑠+1
𝑑𝑡 ⁡

𝑡

0
] 𝑑𝜏 ⁡

𝑡

0
  

Now let 𝑢 = 𝑙𝑜𝑔 (
𝑡+1

𝜏+1
) then 𝑡 + 1 = (𝜏 + 1)𝑒𝑢 and 𝑑𝑡 = (𝜏 + 1)𝑒𝑢 

Thus, 

∫ 𝑢−𝛽𝑒−𝑠𝑢𝑑𝑢
∞

0
= 𝑠𝛽−1𝛤(1 − 𝛽)  

Hence, 

ℒ𝑙𝑜𝑔(𝑡+1){ 𝐷𝑡
𝛽,𝜌

𝑥(𝑡)}(𝑠) = 𝑠𝛽 ∫
⁡𝑥˶(𝜏)

(𝜏+1)𝑠+𝜌−2
𝑑𝜏

∞

00
𝐶𝐻   

Then 

ℒ𝑙𝑜𝑔(𝑡+1){ 𝐷𝑡
𝛽,𝜌

𝑥(𝑡)}(𝑠) = 𝑠𝛽ℒ𝑙𝑜𝑔(𝑡+1)0
𝐶𝐻 {𝑥(𝑡)}(𝑠) − 𝑠𝛽−1𝑥(0) − 𝑠𝛽−2𝑥`(0) 

Lemma, [28], [29]: 

1)     ∫ 𝑡−𝑠−1(ln⁡(𝑡 + 1))𝛼𝑑𝑡 =
Γ(𝛼+1)

𝑠𝛼+1

∞

0
                                                                                                          (7) 

2)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∫ 𝑡−𝑠𝑙𝑜𝑔(𝑡+1)
𝑑𝑡

𝑡
=

1

𝑠

∞

0
                                                                                                                (8) 

 

3. THE 𝐋𝐋𝐨𝐠(𝐭+𝟏)⁡– RESIDUAL POWER SERIES METHOD 

The interesting approach of this section is to approximate a solution of Caputo-Hadamard diffusion equation with 

fractional order by LLog(t+1)⁡– Residual Power Series Method discussed by steps of technical algorithm which given 

their steps in details. Consider now the following Caputo- Hadamard diffusion equation has fractional derivatives.  

𝐷𝑡
𝛼

𝑎
𝐶𝐻 𝑢(𝑥, 𝑦, 𝑡) = 𝑢𝑥𝑥(𝑥, 𝑦, 𝑡) + 𝑢𝑦𝑦(𝑥, 𝑦, 𝑡)⁡𝑤𝑖𝑡ℎ⁡0 < 𝛼 ≤ 1 𝑢(𝑥, 𝑦, 0) = 𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦                         (10) 

Steps Algorithm:       

Step 1 Applying log⁡(𝑡 + 1) −Laplace transform on (9) as, 

𝐿log⁡(𝑡+1)( 𝐷𝑡
𝛼,𝜌𝐾𝐶 𝑢(𝑥, 𝑦, 𝑡) = 𝐿log⁡(𝑡+1)(𝑢𝑥𝑥(𝑥, 𝑦, 𝑡) + 𝑢𝑦𝑦(𝑥, 𝑦, 𝑡))                                                             (11) 

By lemma 2.5 we have that,  
𝐿log⁡(𝑡+1)⁡[ 𝐷𝑡

𝛼,𝜌𝐾𝐶 𝑢(𝑥, 𝑦, 𝑡)] = 𝑠𝛼𝐿log⁡(𝑡+1)𝑢(𝑥, 𝑦, 𝑡) − 𝑠𝛼−1𝑢(𝑥, 𝑦, 0)⁡𝐿log⁡(𝑡+1)⁡[ 𝐷𝑡
𝛼,𝜌𝐾𝐶 𝑢(𝑥, 𝑦, 𝑡)]

= 𝑠𝛼{𝐿log⁡(𝑡+1)𝑢(𝑥, 𝑦, 𝑡) − 𝑠−1𝑢(𝑥, 𝑦, 0)}⁡ 

Hence, 
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𝑠𝛼{𝐿log⁡(𝑡+1)𝑢(𝑥, 𝑦, 𝑡) − 𝑔(𝑥, 𝑦, 0)} =𝐿log⁡(𝑡+1) (𝑢𝑥𝑥(𝑥, 𝑦, 𝑡) + 𝑢𝑦𝑦(𝑥, 𝑦, 𝑡)) we get 𝐿log⁡(𝑡+1)𝑢(𝑥, 𝑦, 𝑡) = 𝑔(𝑥, 𝑦, 0) + 

𝑠−𝛼𝐿log⁡(𝑡+1)(𝑢𝑥𝑥(𝑥, 𝑦, 𝑡) + 𝑢𝑦𝑦(𝑥, 𝑦, 𝑡))                                                                                                                      (12) 

Step 2 From inverse of log(𝑡 + 1) −Laplace transform over (12), we obtain, 

𝑢(𝑥, 𝑦, 𝑡) = 𝐺(𝑥, 𝑦, 0) + Llog⁡(𝑡+1)
−1 (𝑠−𝛼𝐿log⁡(𝑡+1) ((𝑢𝑥𝑥(𝑥, 𝑦, 𝑡) + 𝑢𝑦𝑦(𝑥, 𝑦, 𝑡)))                                                         (13) 

Such that the initial condition is a function G (x, y, 0). 

Step 3 By 𝐿log⁡(𝑡+1)-Residual power series method for a given equation (9), we get that  

 𝑢(𝑥, 𝑦, 𝑡) = ∑ 𝑓𝑛
∞
𝑛=0 (𝑥, 𝑦)

(log⁡(𝑡+1))𝑛𝛼

(𝑛𝛼)!
                                                                                                                         (14) 

Therefore, finite summation (14), can be written as: 

𝑠𝑖 = ∑ 𝑢𝑛
𝑖
𝑛=0 (𝑥, 𝑦, 𝑡) = ∑ 𝑓𝑛

𝑖
𝑛=0 (𝑥, 𝑦)

(log(𝑡+1))𝑛𝛼

(𝑛𝛼)!
                                                                                                                           (15) 

Step 4 The log⁡(𝑡 + 1) −Laplace residual function of (13) have the following formulation, 

𝑅𝑒𝑠𝑖(𝑥, 𝑦, 𝑡) = 𝑢𝑖(𝑥, 𝑦, 𝑡) − 𝐺(𝑥, 𝑦, 0) − Llog⁡(𝑡+1)
−1 (𝑠−𝛼𝐿log⁡(𝑡+1)((𝑢𝑖−1(𝑥, 𝑦, 𝑡)𝑥𝑥 + 𝑢𝑖−1(𝑥, 𝑦, 𝑡)𝑦𝑦))                     (16)             

The values of 𝑓𝑛(x, y) can be computed with n = 0,1,2,... in the following, 

𝑡−𝑛𝛼𝑅𝑒𝑠1(𝑥, 𝑦, 𝑡)𝑡=0 = 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡                                                                                                                                                     (17)                                                                                                    

The pseudo code of the algorithm 𝐿Log⁡(𝑡+1) − residual power series method description in the following. 

4. L log(t+1) – RESIDUAL POWER SERIES METHOD APPLIED ON CAPUTO-

HADAMARD FRACTIONAL DIFFUSION EQUATION 

Using log⁡(𝑡 + 1) − Laplace transform on (9), then  𝐿log⁡(𝑡+1)( 𝐷𝑡
𝛼𝐶𝐻 𝑢(𝑥, 𝑦, 𝑡) = 𝐿log⁡(𝑡+1)(𝑢𝑥𝑥(𝑥, 𝑦, 𝑡) + 𝑢𝑦𝑦(𝑥, 𝑦, 𝑡))     (18) 

By lemma 2.5, we get that   

𝐿log⁡(𝑡+1)𝑢(𝑥, 𝑦, 𝑡) = 𝑔(𝑥, 𝑦, 0) + 𝑠−𝛼(𝐿log⁡(𝑡+1) ((𝑢𝑥𝑥(𝑥, 𝑦, 𝑡) + 𝑢𝑦𝑦(𝑥, 𝑦, 𝑡)))                                                         (19) 

By using the inverse log⁡(𝑡 + 1) −Laplace transform on (19), we get  

𝑢(𝑥, 𝑦, 𝑡) = 𝐺(𝑥, 𝑦, 0) + Llog⁡(𝑡+1)
−1 (𝑠−𝛼𝐿log⁡(𝑡+1) (𝑢𝑥𝑥(𝑥, 𝑦, 𝑡) + 𝑢𝑦𝑦(𝑥, 𝑦, 𝑡)))                    

 Now 𝑢𝑖(x, y, t) have the following formulation                                                                                                            (20) 

𝑠𝑖 = ∑ 𝑢𝑛
𝑖
𝑛=0 (𝑥, 𝑦, 𝑡) = ∑ 𝑓𝑛

𝑖
𝑛=0 (𝑥, 𝑦)

(log⁡(𝑡+1))𝑛𝛼

(𝑛𝛼)!
                                                                                                                            (21) 

 𝑓𝑛(x, y) can be obtained by using 

𝑅𝑒𝑠𝑖(𝑥, 𝑦, 𝑡) = 𝑢𝑖(𝑥, 𝑦, 𝑡) − 𝐺(𝑥, 𝑦, 0) − Llog⁡(𝑡+1)
−1 (𝑠−𝛼𝐿𝑙𝑜𝑔𝑡((𝑢𝑖−1(𝑥, 𝑦, 𝑡)𝑥𝑥 + 𝑢𝑖−1(𝑥, 𝑦, 𝑡)𝑦𝑦))                            (22) 

When 𝑖 = 0 from (22), we have that 

𝑅𝑒𝑠0(𝑥, 𝑦, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) − 𝐺(𝑥, 𝑦, 0) and from (21), 
0 = 𝑢0(𝑥, 𝑦, 𝑡) − 𝐺(𝑥, 𝑦, 0)⁡𝑖. 𝑒 

⁡𝑢0(𝑥, 𝑦, 𝑡) = 𝐺(𝑥, 𝑦, 0)⁡𝑢0(𝑥, 𝑦, 𝑡) = 𝐺(𝑥, 𝑦, 0) = 𝑓0(𝑥, 𝑦) = 𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦  

When 𝑖 = 1 in (22), we have that                                                                                                                                   (23) 

𝑅𝑒𝑠1(𝑥, 𝑦, 𝑡) = 𝑢1(𝑥, 𝑦, 𝑡) − 𝐺(𝑥, 𝑦, 0) − Llog⁡(𝑡+1)
−1 (𝑠−𝛼𝐿log⁡(𝑡+1)((𝑢0(𝑥, 𝑦, 𝑡)𝑥𝑥 + 𝑢0(𝑥, 𝑦, 𝑡)𝑦𝑦)) with equations 

  𝑢1(𝑥, 𝑦, 𝑡) = 𝑓0(𝑥, 𝑦) + 𝑓1(𝑥, 𝑦)
(log⁡(𝑡+1))𝛼

(𝛼)!
. Then  

 𝑅𝑒𝑠1(𝑥, 𝑦, 𝑡) = ⁡𝑓0(𝑥, 𝑦) + 𝑓1(𝑥, 𝑦)
(log(𝑡+1))𝛼

(𝛼)!
− 𝐺(𝑥, 𝑦, 0) − Llog⁡(𝑡+1)

−1 (𝑠−𝛼𝐿𝑙𝑜𝑔𝑡((𝑢0(𝑥, 𝑦, 𝑡)𝑥𝑥 + 𝑢0(𝑥, 𝑦, 𝑡)𝑦𝑦)) 

= 𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦 + 𝑓1(𝑥, 𝑦)
(log⁡(𝑡 + 1))𝛼

(𝛼)!
− 𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦⁡

− Llog⁡(𝑡+1)
−1 (𝑠−𝛼𝐿log⁡(𝑡+1)(((𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦⁡)𝑥𝑥 + (𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦⁡)𝑦𝑦)) 

=⁡𝑓1(𝑥, 𝑦)
(log⁡(𝑡 + 1))𝛼

(𝛼)!
⁡− Llog⁡(𝑡+1)

−1 (𝑠−𝛼𝐿log⁡(𝑡+1)(𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦 + 𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦⁡)) 

=⁡𝑓1(𝑥, 𝑦)
(log⁡(𝑡 + 1))𝛼

(𝛼)!
⁡− Llog⁡(𝑡+1)

−1 (𝑠−𝛼𝐿log⁡(𝑡+1)(2𝑐𝑜𝑠ℎ𝑥𝑐𝑜𝑠ℎ𝑦⁡)) 

=⁡𝑓1(𝑥, 𝑦)
(log⁡(𝑡 + 1))𝛼

(𝛼)!
− 2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦⁡Llog⁡(𝑡

−1 (𝑠−𝛼𝐿𝑙𝑜𝑔𝑡(1⁡)) 
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=⁡𝑓1(𝑥, 𝑦)
(log⁡(𝑡 + 1))𝛼

(𝛼)!
− 2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦⁡Llog⁡(𝑡+1)

−1 (𝑠−𝛼
1

𝑠
) 

=⁡𝑓1(𝑥, 𝑦)
(log⁡(𝑡 + 1))𝛼

(𝛼)!
 

−2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦⁡Llog⁡(𝑡+1)
−1 (

1

𝑠𝛼+1
) 

=⁡𝑓1(𝑥, 𝑦)
(log⁡(𝑡 + 1))𝛼

(𝛼)!
− 2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦⁡

1

ᴦ(1 + 𝛼)

(log⁡(𝑡 + 1))𝛼

(𝛼)!
 

= (𝑓1(𝑥, 𝑦) − 2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦
1

ᴦ(1+𝛼)
)
(log⁡(𝑡+1))𝛼

(𝛼)!
  

Then after solving 𝑡−𝛼𝑅𝑒𝑠1(𝑥, 𝑦, 𝑡)𝑡=0 = 0 gives that 

 𝑓1(𝑥, 𝑦) − 2𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦
1

ᴦ(1+𝛼)
= 0⁡𝑖. 𝑒⁡ 

𝑓1(𝑥, 𝑦) = 2𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦
1

ᴦ(1+𝛼)
⁡                                                                                                                      (24) 

When i=2 from (22), we have that  

𝑅𝑒𝑠2(𝑥, 𝑦, 𝑡) = 𝑢2(𝑥, 𝑦, 𝑡) − 𝐺(𝑥, 𝑦, 0) − Llog⁡(𝑡+1)
−1 (𝑠−𝛼𝐿log⁡(𝑡+1)((𝑢1(𝑥, 𝑦, 𝑡)𝑥𝑥 + 𝑢1(𝑥, 𝑦, 𝑡)𝑦𝑦)), with equations  

 𝑢1(𝑥, 𝑦, 𝑡) = 𝑓0(𝑥, 𝑦) + 𝑓1(𝑥, 𝑦)
(log⁡(𝑡+1))𝛼

(𝛼)!
 and  𝑢2(𝑥, 𝑦, 𝑡) = 𝑓0(𝑥, 𝑦) + 𝑓1(𝑥, 𝑦)

(log⁡(𝑡+1))𝛼

(𝛼)!
+ 𝑓2(𝑥, 𝑦)

(log⁡(𝑡+1))2𝛼

(2𝛼)!
,  

we get that,  

 𝑅𝑒𝑠2(𝑥, 𝑦, 𝑡) = 𝑓0(𝑥, 𝑦) + 𝑓1(𝑥, 𝑦)
(log⁡(𝑡+1))𝛼

(𝛼)!
+ 𝑓2(𝑥, 𝑦)

(log⁡(𝑡+1))2𝛼

(2𝛼)!
− 𝐺(𝑥, 𝑦, 0) − Llog⁡(𝑡+1)

−1 (𝑙𝑜𝑔𝑡)𝛼

(𝛼)!
−  

Llog⁡(𝑡+1)
−1 (𝑠−𝛼𝐿log⁡(𝑡+1) ((𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦 + 2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦⁡

1

ᴦ(1+𝛼)
)
(log⁡(𝑡+1))𝛼

(𝛼)!
)𝑥𝑥 + (𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦 +

2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦⁡
1

ᴦ(1+𝛼)

(log⁡(𝑡+1))𝛼

(𝛼)!
)
𝑦𝑦
)) = 2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦

1

ᴦ(1+𝛼)

(log⁡(𝑡+1))𝛼

(𝛼)!
+ 𝑓2(𝑥, 𝑦)

(log⁡(𝑡+1))2𝛼

(2𝛼)!
  

−Llog⁡(𝑡+1)
−1 (𝑠−𝛼𝐿log⁡(𝑡+1) (𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦 + 2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦⁡

1

ᴦ(1+𝛼)

(log⁡(𝑡+1))𝛼

(𝛼)!
+ 𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦 +

2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦⁡
1

ᴦ(1+𝛼)

(log⁡(𝑡+1))𝛼

(𝛼)!
))  

= 2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦⁡
1

ᴦ(1+𝛼)

(log⁡(𝑡+1))𝛼

(𝛼)!
 +𝑓2(𝑥, 𝑦)

(log⁡(𝑡+1))2𝛼

(2𝛼)!
 −Llog⁡(𝑡+1)

−1 (𝑠−𝛼𝐿log⁡(𝑡+1) (2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦 +

4𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦⁡
1

ᴦ(1+𝛼)

(log⁡(𝑡+1))𝛼

(𝛼)!
))  

 = 2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦⁡
1

ᴦ(1+𝛼)

(log⁡(𝑡+1))𝛼

(𝛼)!
+ 𝑓2(𝑥, 𝑦)

(log⁡(𝑡+1))2𝛼

(2𝛼)!
−  

Llog⁡(𝑡+1)
−1 (𝑠−𝛼 (2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦𝐿log⁡(𝑡+1)(1) + 4𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦⁡

1

ᴦ(1+𝛼)
𝐿log⁡(𝑡+1)(

(log⁡(𝑡+1))𝛼

(𝛼)!
))) 

=⁡2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦⁡
1

ᴦ(1+𝛼)

(log⁡(𝑡+1))𝛼

(𝛼)!
 

+𝑓2(𝑥, 𝑦)
(log⁡(𝑡+1))2𝛼

(2𝛼)!
Llog⁡(𝑡+1)
−1 (𝑠−𝛼 (2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦 (

1

𝑠
) + 4𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦⁡

1

ᴦ(1+𝛼)
(
Ӷ(1+𝛼)

𝑠1+𝛼
)))   

= 2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦⁡
1

ᴦ(1 + 𝛼)

(log⁡(𝑡 + 1))𝛼

(𝛼)!
+ 𝑓2(𝑥, 𝑦)

(log⁡(𝑡 + 1))2𝛼

(2𝛼)!
− 2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦Llog⁡(𝑡+1)

−1 (
1

𝑠1+𝛼
)

− 4𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦Llog⁡(𝑡+1)
−1 ⁡(

1

𝑠1+2𝛼
) 

= 2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦⁡
1

ᴦ(1 + 𝛼)

(log⁡(𝑡 + 1))𝛼

(𝛼)!
+ 𝑓2(𝑥, 𝑦)

(log⁡(𝑡 + 1))2𝛼

(2𝛼)!
− 2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦

1

Ӷ(1 + 𝛼)

(log⁡(𝑡 + 1))𝛼

(𝛼)!

− 4𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦
1

ᴦ(1 + 2𝛼)

(log⁡(𝑡 + 1))2𝛼

(2𝛼)!
 

= 𝑓2(𝑥, 𝑦)
(log⁡(𝑡 + 1))𝛼

(𝛼)!
− 4𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦

1

ᴦ(1 + 2𝛼)

(log⁡(𝑡 + 1))2𝛼

(2𝛼)!
 

 = (𝑓2(𝑥, 𝑦) − 4𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦
1

ᴦ(1+2𝛼)
)
(log⁡(𝑡+1))2𝛼

(2𝛼)!
 

From 𝑡−2𝛼𝑅𝑒𝑠2(𝑥, 𝑦, 𝑡)/𝑡=0= 0 we get that, 

 (𝑓2(𝑥, 𝑦) − 4𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦
1

ᴦ(1+2𝛼)
) = 0⁡i.e 𝑓2(𝑥, 𝑦) = 4𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦

1

ᴦ(1+2𝛼)
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Now, the approximate of second solution is,  

𝑢2(𝑥, 𝑦, 𝑡) = 𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦 + 2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦⁡
1

ᴦ(1 + 𝛼)

(log⁡(𝑡 + 1))𝛼

(𝛼)!
+ 4𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦

1

ᴦ(1 + 2𝛼)

(log⁡(𝑡 + 1))2𝛼

(2𝛼)!
 

When 𝑖 = 3 from (2.34), we get that  

𝑅𝑒𝑠3(𝑥, 𝑦, 𝑡) = 𝑢3(𝑥, 𝑦, 𝑡) − 𝐺(𝑥, 𝑦, 0) − Llog⁡(𝑡+1)
−1 (𝑠−𝛼𝐿log⁡(𝑡+1)((𝑢2(𝑥, 𝑦, 𝑡)𝑥𝑥 + 𝑢2(𝑥, 𝑦, 𝑡)𝑦𝑦)), with equations  

𝑢3(𝑥, 𝑦, 𝑡) = 𝑓0(𝑥, 𝑦) + 𝑓1(𝑥, 𝑦)
(log⁡(𝑡+1))𝛼

(𝛼)!
+ 𝑓2(𝑥, 𝑦)

(log⁡(𝑡+1)2𝛼

(2𝛼)!
 and   

 𝑢3(𝑥, 𝑦, 𝑡) = 𝑓0(𝑥, 𝑦) + 𝑓1(𝑥, 𝑦)
(log⁡(𝑡+1)𝛼

(𝛼)!
+ 𝑓2(𝑥, 𝑦)

(log⁡(𝑡+1)2𝛼

(2𝛼)!
+ 𝑓3(𝑥, 𝑦)

(log⁡(𝑡+1)3𝛼

(3𝛼)!
, we get 

 𝑅𝑒𝑠3(𝑥, 𝑦, 𝑡) = 𝑓0(𝑥, 𝑦) + 𝑓1(𝑥, 𝑦)
(log⁡(𝑡+1))𝛼

(𝛼)!
+ 𝑓2(𝑥, 𝑦)

(log⁡(𝑡+1)2𝛼

(2𝛼)!
+ 𝑓3(𝑥, 𝑦)

(log⁡(𝑡+1)3𝛼

(3𝛼)!
− 𝐺(𝑥, 𝑦, 0) −

Llog⁡(𝑡+1)
−1 (𝑠−𝛼𝐿log⁡(𝑡+1) ((𝑓0(𝑥, 𝑦) + 𝑓1(𝑥, 𝑦)

(𝑙𝑜𝑔𝑡)𝛼

(𝛼)!
+ 𝑓2(𝑥, 𝑦)

(𝑙𝑜𝑔𝑡)2𝛼

(2𝛼)!
)
𝑥𝑥

+ (𝑓0(𝑥, 𝑦) + 𝑓1(𝑥, 𝑦)
(𝑙𝑜𝑔𝑡)𝛼

(𝛼)!
+

𝑓2(𝑥, 𝑦)
(𝑙𝑜𝑔𝑡)2𝛼

(2𝛼)!
)
𝑦𝑦
))  

 = 2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦
1

ᴦ(1+𝛼)

(𝑙𝑜𝑔𝑡)𝛼

(𝛼)!
+ 4𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦

1

ᴦ(1+2𝛼)

(𝑙𝑜𝑔𝑡)2𝛼

(2𝛼)!
+ 𝑓3(𝑥, 𝑦)

(𝑙𝑜𝑔𝑡)3𝛼

(3𝛼)!
−

Llog⁡(𝑡+1)
−1 (𝑠−𝛼𝐿log⁡(𝑡+1) ((𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦 + 2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦⁡

1

ᴦ(1+𝛼)
)
(log⁡(𝑡+1))𝛼

(𝛼)!
+ 4𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦

1

ᴦ(1+2𝛼)

(log⁡(𝑡+1))2𝛼

(2𝛼)!
)𝑥𝑥 +

(𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦 + 2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦⁡
1

ᴦ(1+𝛼)
)
(log⁡(𝑡+1))𝛼

(𝛼)!
+ 4𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦

1

ᴦ(1+2𝛼)

(log⁡(𝑡+1))2𝛼

(2𝛼)!
)
𝑦𝑦
))  

= 2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦⁡
1

ᴦ(1+𝛼)

(log⁡(𝑡+1))𝛼

(𝛼)!
+ 4𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦

1

ᴦ(1+2𝛼)

(log(𝑡+1))2𝛼

(2𝛼)!
 +𝑓3(𝑥, 𝑦)

(log(𝑡+1))3𝛼

(3𝛼)!
  

−Llog⁡(𝑡+1)
−1 ⁡(𝑠−𝛼𝐿log(𝑡+1) (𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦 + 2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦⁡

1

ᴦ(1+𝛼)

(log(𝑡+1))𝛼

(𝛼)!
+ 4𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦

1

ᴦ(1+2𝛼)

(log(𝑡+1))2𝛼

(2𝛼)!
)  

+(𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦 + 2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦⁡
1

ᴦ(1+𝛼)

(log⁡(𝑡+1))𝛼

(𝛼)!
+ 4𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦

1

ᴦ(1+2𝛼)

(log⁡(𝑡+1))2𝛼

(2𝛼)!
))  

= 2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦⁡
1

ᴦ(1+𝛼)

(log(𝑡+1))𝛼

(𝛼)!
 +4𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦

1

ᴦ(1+2𝛼)

(log(𝑡+1))2𝛼

(2𝛼)!
 +𝑓3(𝑥, 𝑦)

(log⁡(𝑡+1))3𝛼

(3𝛼)!
  

−Llog⁡(𝑡+1)
−1 (𝑠−𝛼𝐿log⁡(𝑡+1) (2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦 + 4𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦⁡

1

ᴦ(1+𝛼)
)
(𝑙𝑜𝑔𝑡log⁡(𝑡+1))𝛼

(𝛼)!
8𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦

1

ᴦ(1+2𝛼)

(log⁡(𝑡+1))2𝛼

(2𝛼)!
))  

= 2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦
1

ᴦ(1+𝛼)

(log⁡(𝑡+1))𝛼

(𝛼)!
 +4𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦

1

ᴦ(1+2𝛼)

(log⁡(𝑡+1))2𝛼

(2𝛼)!
 +𝑓3(𝑥, 𝑦)

(log⁡(𝑡+1))3𝛼

(3𝛼)!
  

−Llog⁡(𝑡+1)
−1 (𝑠−𝛼 (2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦𝐿log⁡(𝑡+1)(1) + 4𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦⁡

1

ᴦ(1+𝛼)
)𝐿log⁡(𝑡+1)(

(log⁡(𝑡+1))𝛼

(𝛼)!
+

8𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦
1

ᴦ(1+2𝛼)
𝐿𝑙𝑜𝑔(

(log⁡(𝑡+1))2𝛼

(2𝛼)!
)))  

 = 2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦⁡
1

ᴦ(1+𝛼)

(log⁡(𝑡+1))𝛼

(𝛼)!
 +4𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦

1

ᴦ(1+2𝛼)

(log⁡(𝑡+1))2𝛼

(2𝛼)!
 +𝑓3(𝑥, 𝑦)

(log⁡(𝑡+1))3𝛼

(3𝛼)!
  

−Llog⁡(𝑡+1)
−1 (𝑠−𝛼 (2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦 (

1

𝑠
) + 4𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦⁡

1

ᴦ(1 + 𝛼)
) (

Ӷ(1 + 𝛼)

𝑠1+𝛼
)

+ 8𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦
1

ᴦ(1 + 2𝛼)
(
Ӷ(1 + 2𝛼)

𝑠1+2𝛼
)))⁡= 2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦⁡

1

ᴦ(1 + 𝛼)

(log⁡(𝑡 + 1))𝛼

(𝛼)!
 

+4𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦
1

Ӷ(1+2𝛼)

(log⁡(𝑡+1))2𝛼

(2𝛼)!
 +𝑓3(𝑥, 𝑦)

(log⁡(𝑡+1))3𝛼

(3𝛼)!
 −Llog⁡(𝑡+1)

−1 (2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦 (
1

𝑠1+𝛼
)  

+4𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦⁡ (
1

𝑠1+2𝛼
) +8𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦 (

1

𝑠1+3𝛼
)) ⁡= 2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦⁡

1

ᴦ(1+𝛼)

(log⁡(𝑡+1))𝛼

(𝛼)!
 

+4𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦
1

Ӷ(1+2𝛼)

(log⁡(𝑡+1))2𝛼

(2𝛼)!
 +𝑓3(𝑥, 𝑦)

(log⁡(𝑡+1))3𝛼

(3𝛼)!
 −2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦Llog⁡(𝑡+1)

−1 (
1

𝑠1+𝛼
)  

−4𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦⁡Llog⁡(𝑡+1)
−1 (

1

𝑠1+2𝛼
) −8𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦Llog⁡(𝑡+1)

−1 (
1

𝑠1+3𝛼
) = 2𝑠𝑖𝑛𝑥𝑠𝑖𝑛𝑦⁡

1

ᴦ(1+𝛼)

(𝑙𝑜𝑔𝑡log⁡(𝑡+1))𝛼

(𝛼)!
  

+4𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦
1

Ӷ(1+2𝛼)

(log⁡(𝑡+1))2𝛼

(2𝛼)!
 +𝑓3(𝑥, 𝑦)

(log⁡(𝑡+1))3𝛼

(3𝛼)!
 −2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦

1

ᴦ(1+𝛼)

(log⁡(𝑡+1))𝛼

(𝛼)!
−

4𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦
1

Ӷ(1+2𝛼)

(log⁡(𝑡+1))2𝛼

(2𝛼)!
 −8𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦

1

Ӷ(1+3𝛼)

(log⁡(𝑡+1))3𝛼

(3𝛼)!
  

= 𝑓3(𝑥, 𝑦)
(log⁡(𝑡+1))3𝛼

(3𝛼)!
 −8𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦

1

Ӷ(1+3𝛼)

(log⁡(𝑡+1))3𝛼

(3𝛼)!
  



Ali et al., Wasit Journal for Pure Science Vol. 4 No. 4 (2025) p. 13-24 

 

 

 19 

= (𝑓3(𝑥, 𝑦) − 8𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦
1

Ӷ(1+3𝛼)
)
(log⁡(𝑡+1))3𝛼

(3𝛼)!
  

Therefore, from 𝑡−3𝛼𝑅𝑒𝑠3(𝑥, 𝑦, 𝑡)/𝑡=0= 0 we have,  

 (𝑓3(𝑥, 𝑦) − 8𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦
1

Ӷ(1+3𝛼)
) = 0 𝑖. 𝑒⁡(𝑓3(𝑥, 𝑦) = 8𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦

1

Ӷ(1+3𝛼)
)                                        (25)    

Now, to compute approximate of third solution is,  

𝑢3(𝑥, 𝑦, 𝑡) = 𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦 +2𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦⁡
1

ᴦ(1+𝛼)

(log⁡(𝑡+1))𝛼

(𝛼)!
⁡+ 4𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦

1

Ӷ(1+2𝛼)

(log⁡(𝑡+1))2𝛼

(2𝛼)!
 

+8𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦
1

Ӷ(1+3𝛼)
)
(log⁡(𝑡+1))3𝛼

(3𝛼)!
  

 Similarly, the nth coefficient of 𝑢(𝑥, 𝑦, 𝑡)is⁡ 

 𝑓𝑛(𝑥, 𝑦) = (2)𝑛𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦
1

ᴦ(1+𝑛𝛼)
 

at⁡last⁡the⁡nth⁡Llog⁡(t+1) − RPSM approximate solution of u(x, y, t) is 

 𝑢𝑛(𝑥, 𝑦, 𝑡) = 𝑐𝑜𝑠ℎ𝑥. 𝑐𝑜𝑠ℎ𝑦 ∑
(2(log⁡(𝑡+1))𝛼)⁡𝑛

Ӷ(1+𝑛𝛼)(𝑛𝛼)!

𝑖
𝑛=0  

5. (C-HDFE) AND ITS GRAPHS RESPECT TO NUMERICAL SIMULATIONS  

The following tables and figures explained the simulation of the presented numerical method from throughout of values 

represented as decreasing or increasing monotonic that refer that the method is efficient and active for solving C-HDFE 

and shown that the parameters and fractional order made a good role for achieved the purpose of the method. 

Table 1: Solution at t = 0.1 when value of α = 0.1 and i=10. 

1.0 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 x/y 

233.6 233.6 216.9 202.5 190.0 179.5 170.7 163 158 154 152 0.2 

233.6 247.6 229.9 214.6 201.4 190.2 180.9 173 167 163 161 0.4 

247.6 271.5 252.1 235.3 220.8 208.6 198.4 190 183 179 176 0.6 

271.5 306.3 284.5 265.5 249.1 235.3 223.8 214 207 202 199. 0.8 

306.3 353.4 328.2 306.3 287.5 271.5 258.2 247 239 233 230 1.0 

Table 2: Solution at t = 0.2 when value of α = 0.2 and i=10. 

1.0 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 x/y 

34.59 34.5 32.1 29.9 28.1 26.5 25.2 24.2 23.4 22.8 22.5 0.2 

 36.6 36.6 34.0 31.7 29.8 28.1 26.7 25.6 24.8 23.8 0.4 

40.20 40.2 37.3 34.8 32.7 30.8 29.3 28.1 27.2 26.5 26.1 0.6 

 45.3 42.1 39.3 36.9 34.8 33.1 31.7 30.7 29.9 29.5 0.8 

42.13 52.3 48.6 45.3 42.5 40.2 38.2 36.6 35.4 34.5 34.0 1.0 

Table 3: Solution at t = 0.3 when value of α = 0.3 and i=10. 

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 x/y 

11.90 11.05 10.3 9.68 9.14 8.70 8.34 8.06 7.87 7.75 0.2 

12.61 11.72 10.93 10.26 9.695 9.22 8.84 8.54 8.34 8.21 0.4 

13.83 12.85 11.99 11.25 10.63 10.11 9.69 9.37 9.14 9.01 0.6 

15.61 14.49 13.53 12.69 11.99 11.40 10.93 10.57 10.32 10.16 0.8 

18.01 16.72 15.61 14.65 13.83 13.16 12.61 12.20 11.90 11.73 1.0 

Table 4: Solution at t = 0.4 when value of α = 0.4 and i=10. 

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 x/y 

.02 6.52 6.09 5.71 5.39 5.13 4.92 4.76 4.646 4.57 0.2 

7.44 6.91 6.45 6.05 5.72 5.44 5.21 5.04 4.923 4.85 0.4 

8.16 7.58 7.07 6.64 6.27 5.96 5.72 5.53 5.399 5.3 0.6 

9.21 8.55 7.98 7.49 7.07 6.73 6.45 6.24 6.091 6.00 0.8 

10.63 9.87 9.21 8.64 8.16 7.76 7.44 7.20 7.028 6.92 1.0 
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Table 5: Solution at t = 0.5 when value of α = 0.5 and i=10. 

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 x/y 

5.16 4.79 4.47 4.20 3.96 3.77 3.61 3.49 3.41 3.36 0.2 

5.47 5.08 4.74 4.45 4.20 4 3.83 3.70 3.61 3.56 0.4 

6.00 5.57 5.20 4.88 4.61 4.38 4.20 4.06 3.96 3.91 0.6 

6.77 6.29 5.87 5.50 5.20 4.94 4.74 4.58 4.47 4.41 0.8 

7.81 7.25 6.77 6.35 6.00 5.71 5.47 5.29 5.16 5.08 1.0 

Table 6: Solution at t = 0.6 when value of α = 0.6 and i=10. 

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 x/y 

4.19 3.89 3.63 3.41 3.22 3.06 2.94 2.84 2.77 2.73 0.2 

4.44 4.13 3.85 3.61 3.41 3.25 3.11 3.01 2.94 2.89 0.4 

4.87 4.53 4.22 3.96 3.74 3.56 3.41 3.30 3.22 3.17 0.6 

5.50 5.11 4.77 4.47 4.22 4.02 3.85 3.72 3.63 3.58 0.8 

6.34 5.89 5.50 5.16 4.87 4.64 4.44 4.30 4.19 4.13 1.0 

Table 7: Solution at t = 0.7 when value of α = 0.7 i=10. 

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 x/y 

3.60 3.34 3.12 2.93 2.76 2.63 2.52 2.44 2.38 2.34 0.2 

3.81 3.54 3.30 3.10 2.93 2.79 2.67 2.58 2.52 2.48 0.4 

4.18 3.88 3.62 3.40 3.21 3.05 2.93 2.83 2.76 2.72 0.6 

4.72 4.38 4.09 3.84 3.62 3.45 3.30 3.2 3.12 3.07 0.8 

5.44 5.06 4.72 4.43 4.18 3.98 3.81 3.69 3.60 3.54 1.0 

Table 8: Solution at t = 0.8 when value of α = 0.8 and i=10. 

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 x/y 

3.19 2.96 2.77 2.60 2.45 2.33 2.24 2.16 2.11 2.082 0.2 

3.38 3.14 2.93 2.75 2.60 2.47 2.37 2.29 2.24 2.207 0.4 

3.71 3.45 3.22 3.02 2.85 2.71 2.60 2.51 2.45 2.42 0.6 

4.19 3.89 3.63 3.41 3.22 3.06 2.93 2.84 2.77 2.73 0.8 

4.83 4.49 4.19 3.93 3.71 3.53 3.38 3.27 3.19 3.15 1.0 

Table 9: Solution at t = 0.9 when value of α = 0.9 and i=10. 

1.0 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 x/y 

2.901 2.90 2.69 2.51 2.36 2.22 2.12 2.03 1.96 1.918 1.89 0.2 

075 3.07 2.85 2.66 2.50 2.36 2.24 2.15 2.08 2.033 2.00 0.4 

3.372 3.37 3.13 2.92 2.74 2.59 2.46 2.3 2.28 2.229 2.19 0.6 

3.804 3.80 3.53 3.29 3.09 2.92 2.78 2.66 2.57 2.515 2.47 0.8 

4.389 4.38 4.07 3.80 3.57 3.37 3.20 3.07 2.97 2.901 2.85 1.0 

Table 10: Solution at t = 1 when value of α =1and i=10. 

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 x/y 

2.67 2.48 2.31 2.17 2.05 1.95 1.87 1.81 1.76 1.74 0.2 

2.83 2.63 2.45 2.30 2.17 2.07 1.98 1.92 1.87 1.84 0.4 

3.10 2.88 2.69 2.52 2.38 2.27 2.17 2.10 2.05 2.02 0.6 

3.50 3.25 3.03 2.85 2.69 2.56 2.45 2.37 2.31 2.28 0.8 

4.04 3.75 3.50 3.29 3.10 2.95 2.83 2.74 2.67 2.63 1.0 
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Figure 1: Solution when value of α = 0.1, t = 0.1, 𝛒 = 1 and i = 10. 

 

Figure 2: Solution when value of α = 0.2, t = 0.2 and i = 10. 

 

Figure 3: Solution when value of α = 0.3, t = 0.3 and i = 10. 
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Figure 4: Solution when value of α = 0.4, t = 0.4 and i = 10. 

 

Figure 5: Solution when value of α = 0.5, t = 0.5 i = 10. 

 

Figure 6: Solution when value of α = 0.16, t = 0.6 and i = 10. 

 

Figure 7: Solution when value of α = 0.7, t = 0.7 and i = 10. 
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Figure 8: Solution when value of α = 0.8, t = 0.8 and i = 10. 

 

Figure 9: Solution when value of α = 0.9, t = 0.9 and i = 10. 

 

Figure 10: Solution when value of α = 1.0, t = 1.0 and i = 10. 

  

6. CONCLUSIONS 

We concluded through our work that working in this the Llog⁡(t+1)– Residual Power Series Method on this for the solution 

of the Caputo--Hadamard fractional diffusion equation  is highly effective, and this is clear from the tables and graphs 

that indicate the increase or decrease of values for these tables, also the analytic technique is very interest with assumption 

of residual series suitable with the fractional derivatives and assumption equation and this indicates the validity of the 

method. 
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