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1 Introduction and Preliminaries 

The use of functional analysis, topology, probability theory, hyperspaces, and 

domain theory is known as approach theory. Approach theory is frequently concealed 

under other ideas, as shown by Lowen [19]. In 1989 approach space, a topological and 

metric space extension have certain fundamental concepts and theorems developed by 

Lowen [18]. Approach vector spaces are a new class of topological vector spaces that 

[2] has invented. The normed approach space was also created by Abbas and Hussein 

[1]. To analyze an approach completion space, the definition of an approach normed 

space was applied in [3]. The discovery that some Banach spaces exhibit intriguing 

behaviors when they are given an additional multiplication operation led to the 

beginning of the study of Banach algebras in the 20th century. The space of bounded 

linear operators on a Banach space was a common example, but function spaces are 

also crucial examples (of continuous, bounded, vanishing at infinity, etc. functions as 

well as functions with absolutely convergent Fourier series). Banach algebra is a broad 

field with many subfields of study and applications. In the general theory of Banach 

algebras, algebras over the complex field have received the majority of the attention.  

Surjective isometries between sets of invertible elements in unital Jordan-Banach 

algebras were introduced by Peralta [23].  [4] provides a description of the key 

techniques and findings in the theory of commutative and noncommutative Banach 

algebras. 

 The Banach algebras produced by an invertible isometry of an 𝐿𝑝-space and its 

inverse were fully described in [10]. The reader is directed to [17] for a thorough 

discussion of the theory of commutative Banach algebras. [11] algebras of operators on 

Banach spaces and homomorphisms thereof provided some properties of linear systems 

defined over a commutative Banach algebra. The sum of two group invertible elements 
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in a Banach algebra has a group inverse when certain new necessary and sufficient 

requirements [5] are met. 

Normed algebraic extensions are presented in [9]. [13] provided theory algebra of 

Banach algebra operators as axiomatics, examples, and invertibility in Banach algebra. 

Real normed algebras studied in [12]. In three different subfields of Banach algebra 

theory, each of which has some connection to homomorphisms, derivations, or both, 

issues and findings are presented in [6]. Concerning operators on Banach spaces, see 

[8]. [21] investigated the fundamental properties of Hilbert space operator algebras and 

Banach algebras. It is expected that the reader has already completed a first-level 

functional analysis course. We specifically assume that the reader is familiar with the 

information found in an introduction to functional analysis [20]. Both [7] and [22] are 

references for Banach algebras. 

After introducing and studying the Banach proximit algebra structure, we go on to a 

proximit algebra. We introduce key concepts in proximit space, including sub proximit 

algebra, normed proximit algebra, proximit algebra, unity, and communality. Using 

proximit algebra, Banach algebra homomorphism, and isometry with proximit 

structure, we examine new problems and arrive at novel conclusions for these ideas in 

this study. 

Definition 1.1:[14] 

  A collection of functions 𝑡𝜀: 2𝑋 → 2𝑋, 𝜀 ∈ 𝑅+ is called a tower on 𝑋 if the 

following conditions are satisfied : 

(T1)   ∀𝐴 ∈ 2𝑋 , ∀𝜀 ∈ 𝑅+: 𝐴 ⊂ 𝑡𝜀(𝐴), 
(T2)  ∀𝜀 ∈ 𝑅+: 𝑡𝜀(∅) = ∅ 

(T3)  ∀𝐴, 𝐵 ∈ 2𝑋 , ∀𝜀 ∈ 𝑅+: 𝑡𝜀(𝐴 ∪ 𝐵) = 𝑡𝜀(𝐴) ∪ 𝑡𝜀(𝐵), 
(T4)  ∀𝐴 ∈ 2𝑋 , ∀𝜀, 𝛾 ∈ 𝑅+: 𝑡𝜀(𝑡𝛾(𝐴)) ⊂ 𝑡𝜀+𝛾(𝐴), 

(T5)  ∀𝐴 ∈ 2𝑋 , ∀𝜀 ∈ 𝑅+: 𝑡𝜀(𝐴) = ⋂𝜀<𝛾𝑡𝛾(𝐴), 

Take note that with (T3) and (T5), we get ∀𝐴 ⊂ 𝐵 ⊂ 𝑋, ∀𝛼 ≤ 𝛽 ∈ 𝑅+: 𝑡𝛼(𝐴) ⊂
𝑡𝛽(𝐵). 

Definition 1.2:[14]  

     Given a set 𝑋, a functional  𝜌: 2𝑋 × 2𝑋 → [0, ∞] is said to be an Dh-functional 

on 𝑋 if and only if it satisfies the following requirements: 

(G1) ∀ 𝐴, 𝐵 ∈ 2𝑋:  𝜌(𝐴, 𝐵) = 𝜌(𝐵, 𝐴), 
(G2) ∀ 𝐴, 𝐵 ∈ 2𝑋 , 𝐴 = ∅ ∨ 𝐵 = ∅  ⇒  𝜌(𝐴, 𝐵) = ∞, 

(𝐺3)  ∀ 𝐴, 𝐵 ∈ 2𝑋, 𝜌(𝐴, 𝐵)  =  0  ⇒ 𝐴 ∩ 𝐵 ≠  ∅, 
(𝐺4)  ∀𝐴, 𝐵, 𝐶 ∈ 2𝑋 ∶  𝜌(𝐴, 𝐵 ∪ 𝐶) = {𝜌(𝐴, 𝐵), 𝜌(𝐴, 𝐶)} , 

(G5)   ∀𝐴, 𝐵 ∈ 2𝑋 , ∀𝜀, 𝜂 ∈  [0, ∞] ∶  𝜌(𝐴, 𝐵) ≤  𝜌(𝐴𝜀 , 𝐵𝜂) + 𝜀 + 𝜂. 

      For every 𝐴 ∈ 2𝑋 , 𝜀 ∈ [0, ∞], we write 𝑡𝜀(𝐴): = {𝑥 ∈ 𝑋 | 𝜌({𝑥}, 𝐴) ≤ 𝜀}. 

Therefore the triple (𝑋, 𝜌, 𝑡𝜀) is called proximit space. 

 

Example 1.3: [14] 

  Let  𝑋 = [0, ∞], define  𝜌: 2[0,∞] × 2[0,∞] → [0, ∞] by  

𝜌(𝐴, 𝐵) = {          0                            𝑛, 𝑚
= ∞, 𝐴, 𝐵 𝑢𝑛𝑏𝑜𝑢𝑛𝑑𝑒𝑑            ∞                           𝑛, 𝑚
= ∞, 𝐴, 𝐵 𝑏𝑜𝑢𝑛𝑑𝑒𝑑        𝑖𝑛𝑓 𝑚∈𝐵|𝑛 − 𝑚|                    𝑛, 𝑚
< ∞                                 

Then (𝑋, 𝜌, 𝑡𝜀) is proximit space. 
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Definition 1.4: [15] 

  A function 𝑓: (𝑋, 𝜌𝑋, 𝑡𝜀) → (𝑌, 𝜌𝑌 , 𝑡𝜀) such that (𝑋, 𝜌𝑋, 𝑡𝜀) and (𝑌, 𝜌𝑌, 𝑡𝜀) are 

proximit space is called Dh-contraction if  𝑓 (𝑡𝜀𝑋
(𝐴)) ⊆ 𝑡𝜀𝑌

(𝑓(𝐴))  ∀𝐴 ⊆ 𝑋, ∀𝜀 ∈ 𝑅+  

.  

Proposition 1.5: [15] 

   Suppose that (𝑋, 𝜌𝑋, 𝑡𝜀) is proximit spaces. Then identity map 𝐼𝑥: (𝑋, 𝜌𝑋, 𝑡𝜀) →
(𝑋, 𝜌𝑋, 𝑡𝜀) ∀𝐴 ⊆ 𝑋, ∀𝜀 ∈ 𝑅+ is Dh-contraction. 

Definition 1.6: [15] 

   If (𝛶, 𝜌𝛶 , 𝑡𝜀) and (𝑊, 𝜌𝑊 , 𝑡𝜀) are proximit spaces. A function 𝜑: 𝛶 ⟶ 𝑊 is said to 

be sequentially Dh-contraction if  𝑙𝑖𝑚 𝑛→∞ 𝜑 (𝑡𝜀𝛶
({𝑢𝑛})) = 0 whenever 

𝑙𝑖𝑚 𝑛→∞ 𝑡𝜀𝑊
(𝜑({𝑢𝑛})) = 0. 

Theorem 1.7: [15] 

    If (𝛶, 𝜌𝛶 , 𝑡𝜀) and (𝑊, 𝜌𝑊 , 𝑡𝜀) are proximit spaces. Then a function 𝜑: 𝛶 ⟶ 𝑊 is 

Dh-contraction if and only if its sequentially Dh-contraction. 

Definition 1.8: [15] 

     A quadruple (𝑋, 𝜌, 𝑡𝜀 , +) is said to be proximit group if and only if  

1. (𝑋, 𝜌, 𝑡𝜀) is proximit space. 

2.  (𝑋, +) is group. 

3. +: 𝑋⨂𝑋 → 𝑋 such that (𝑥, 𝑦) ⟼ 𝑥 + 𝑦 is Dh-contraction. 

4. −: 𝑋 ⟶ 𝑋 such that 𝑥 ⟼ −𝑥 is Dh-contraction. 

Definition 1.9: [15]   

  A quintuple (𝑋, 𝜌, 𝑡𝜀 , +, . ) is called proximit vector space such that 𝑋 is a non-

empty set with two binary operations (addition and scalar multiplication) and triple 

(𝑋, 𝜌, 𝑡𝜀) is Proximit space if satisfy the following conditions ∀𝑔, 𝑔∗ ∈ 𝑋, 𝜗, 𝜁 ∈
𝑓𝑖𝑒𝑙𝑑 𝐸.  

1. (𝑋, 𝜌, 𝑡𝜀, +) is proximit group. 

2. 𝜁. 𝑔 ∈ 𝑋 

3. 𝜁. (𝑔 + 𝑔∗) = 𝜁𝑔 + 𝜁𝑔∗ 

4. (𝑔 + 𝑔∗)𝜁 = 𝑔. 𝜁 + 𝑔∗. 𝜁 

5. (𝜗. 𝜁). 𝑔 = 𝜗(𝜁𝑔)  

6. 1. 𝑔 = 𝑔 

Definition 1.10:[16] 

   Let 𝑋 be proximit vector space. A quadrilateral (𝑋, ‖. ‖𝑝, 𝜌, 𝑡𝜀) said to be normed 

proximit space if satisfy the following : 

1. ‖𝑢‖𝑝 ≥ 0  for all 𝑢 ∈ 𝑋 

2. If there exists 𝑐 ≥ 1 , then ‖𝑢 + 𝑣‖𝑝 ≤ 𝑐(‖𝑢‖𝑝 + ‖𝑣‖𝑝) 

3. 𝑙𝑖𝑚
𝜍→0

‖𝜍𝑢‖𝑝 = 0  ∀ 𝑢 ∈ 𝑋 

4. 𝜌(𝐴, 𝐵) = 𝑖𝑛𝑓𝑢∈𝐴 𝑖𝑛𝑓𝑣∈𝐵‖𝑢 − 𝑣‖𝑝 

5. ‖ (𝑓 ∘ 𝑡𝜀)(𝐴)‖𝑝 = ‖𝑢‖𝑝 where 𝑓: 2𝑋 ⟶ 𝑋 is choice function defined by 𝑓(𝐴) =

𝑢  ∀𝑢 ∈ 𝐴. 

Normed proximit space is called quasi-normed proximit space if satisfy the 

following condition ‖𝜍𝑢‖𝑝 = |𝜍|‖𝑢‖𝑝      ∀ 𝜍 ∈ 𝐹 
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2 Normed proximit algebra and New Results   

we introduce a new definition of proximit algebra, commutivite , unital and normed 

proximit algebra also we discuss new properties about of them.   

Definition 2.1  

    Let 𝐵 be a non-empty set. We say  𝐵 is a proximit algebra if 

(1) (𝐵, 𝜌, 𝑡𝜀, +, . ) is a proximit vector space over a field 𝐹 

(2)  A multiplication operators of proximit space 𝑋 satisfy the conditions: for all 

𝑈, 𝑉, 𝑊 ⊆ 𝑋 , 𝜁 ∈ 𝐹. 
a) 𝜁(𝑈. 𝑉) = (𝜁𝑈)𝑉 = 𝑈(𝜁𝑉)   

b) (𝑈𝑉)𝑊 = 𝑈(𝑉𝑊) 

c) (𝑈 + 𝑉)𝑊 = 𝑈𝑊 + 𝑉𝑊      𝑎𝑛𝑑      𝑈(𝑉 + 𝑊) = 𝑈. 𝑉 + 𝑈𝑊   

 (3) . : 𝐵 × 𝐵 ⟶ 𝐵 such that (𝑈, 𝑉) ⟼ 𝑈. 𝑉  𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑈, 𝑉 ⊆ 𝐵 is Dh-contraction. 

Proposition 2.2: 

  Given proximit vector spaces 𝑋, 𝑌 throughout the same field 𝐹. Let 𝐿(𝑋, 𝑌) be the 

set of all linear mappings of 𝑋 into 𝑌 with the pointwise addition, scalar multiplication 

and the product defined by composition  

(𝑇1𝑇2)(𝑠) = 𝑇1(𝑇2(𝑠)) ∀𝑠 ∈ 𝑋 

is proximit algebra. 

Proof 

1) We proof  𝐿(𝑋, 𝑌) is a proximit vector space, to prove this, we must 

a) (𝐿(𝑋, 𝑌), 𝜌, 𝑡𝜀, +) is proximit group. 

Define  𝜌(𝑈, 𝑉) = {   ∞                       ,       𝑈 = ∅   𝑜𝑟   𝑉 =
∅ 𝑖𝑛𝑓 𝑇1∈𝑈 𝑖𝑛𝑓 𝑇2∈𝑉|𝑇1(𝑠) − 𝑇2(𝑠)|,     𝑈 ≠ ∅   𝑎𝑛𝑑  𝑉 ≠ ∅  

(h1) If 𝑈 ≠ ∅ 𝑎𝑛𝑑 𝑉 ≠ ∅, then 

𝜌(𝑈, 𝑉) = 𝑖𝑛𝑓 𝑇1∈𝑈 𝑖𝑛𝑓 𝑇2∈𝑉|𝑇1(𝑠) − 𝑇2(𝑠)| = 𝑖𝑛𝑓 𝑇2∈𝑉  𝑖𝑛𝑓 𝑇1∈𝑈 |𝑇2(𝑠) − 𝑇1(𝑠)|

= 𝜌(𝑉, 𝑈) 
(h2) If 𝑈 = ∅ , then 𝜌(𝑈, 𝑉) = ∞ and if 𝑉 = ∅, then 𝜌(𝑈, 𝑉) = ∞. 

(h3) Let 𝜌(𝑈, 𝑉) = 0, then 𝑖𝑛𝑓 𝑇1∈𝑈 𝑖𝑛𝑓 𝑇2∈𝑉|𝑇1(𝑠) − 𝑇2(𝑠)| = 0. Hence  𝑇1(𝑠) =

𝑇2(𝑠) implies that there exists 𝑥 ∈ 𝑇1(𝑠) ∩ 𝑇2(𝑠). Thus If 𝑇1(𝑠) ≠ ∅ 𝑎𝑛𝑑 𝑇2(𝑠) ≠ ∅, 

then 𝑇1(𝑠) ∩ 𝑇2(𝑠) ≠ ∅ 

(h4) 

𝜌(𝑈, 𝑉 ∪ 𝑊) = 𝑖𝑛𝑓 𝑇1∈𝑈 𝑖𝑛𝑓 𝑇2∈𝑉∪𝑊|𝑇1(𝑠) − 𝑇2(𝑠)|

= {𝑖𝑛𝑓 𝑇1∈𝑈 𝑖𝑛𝑓 𝑇2∈𝑉|𝑇1(𝑠) − 𝑇2(𝑠)|, 𝑖𝑛𝑓 𝑇1∈𝑈 𝑖𝑛𝑓 𝑇2∈𝑊|𝑇1(𝑠)

− 𝑇2(𝑠)|}  = {𝜌(𝑈, 𝑉), 𝜌(𝑈, 𝑊)}  
(h5)  If 𝜀, 𝜂 ∈ [0, ∞], then 

𝜌(𝑈, 𝑉) = 𝑖𝑛𝑓 𝑇1∈𝑈 𝑖𝑛𝑓 𝑇2∈𝑉|𝑇1(𝑠) − 𝑇2(𝑠)| ≤ 𝑖𝑛𝑓 𝑇1∈𝑈𝜀  𝑖𝑛𝑓 𝑇2∈𝑉𝜂|𝑇1(𝑠) − 𝑇2(𝑠)| +

𝜀 + 𝜂 = 𝜌(𝑈𝜀 , 𝑉𝜂) + 𝜀 + 𝜂. 

b) we prove the function 𝑓: 𝐿(𝑋, 𝑌) × 𝐿(𝑋, 𝑌)  ⟶ 𝐿(𝑋, 𝑌) defined as (𝑇1, 𝑇2) ⟼ 𝑇1 +
𝑇2 is Dh-contraction: let 𝑥 ∈ 𝑓(𝑡𝜀(𝑈), 𝑡𝜀(𝑉)), we get 𝑥 ∈
𝑓(𝑖𝑛𝑓 𝑇1∈𝑈 |𝑇1(𝑠)|, 𝑖𝑛𝑓 𝑇2∈𝑉|𝑇2(𝑠)|). Hence 𝑥 ∈ {𝑖𝑛𝑓 𝑇1∈𝑈 |𝑇1(𝑠)| +

  𝑖𝑛𝑓 𝑇2∈𝑉|𝑇2(𝑠)|} from this we have 𝑥 ∈ {𝑖𝑛𝑓 𝑇1∈𝑈 𝑖𝑛𝑓 𝑇2∈𝑉|𝑇1(𝑠) + 𝑇2(𝑠)|} implies 

𝑥 ∈ {𝑖𝑛𝑓 𝑇1∈𝑈 𝑖𝑛𝑓 𝑇2∈𝑉|(𝑇1 + 𝑇2)(𝑠)|}. Thus 𝑥 ∈ 𝑡𝜀(𝑈 + 𝑉), we obtain 𝑥 ∈

𝑡𝜀(𝑓(𝑈, 𝑉)) 
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c) we prove the function 𝑓: 𝐿(𝑋, 𝑌) ⟶ 𝐿(𝑋, 𝑌) defined as 𝑇1 ⟼ −𝑇1 is Dh-

contraction: let 𝑥 ∈ 𝑓(𝑡𝜀(𝑈)), we get 𝑥 ∈ (−𝑖𝑛𝑓 𝑇1∈𝑈 |𝑇1(𝑠)|). Hence 𝑥 ∈

𝑖𝑛𝑓 −𝑇1∈𝑈 |𝑇1(𝑠)| from this we have 𝑥 ∈ 𝑡𝜀(−𝑈) implies 𝑥 ∈ 𝑡𝜀(𝑓(𝑈)). d) It is 

reminder of proximit group conditions are satisfied. 

((𝛼𝑇1)𝑇2)(𝑠) = 𝛼𝑇1(𝑇2(𝑠)) = 𝛼(𝑇1𝑇2)(𝑠) = (𝛼(𝑇1𝑇2))(𝑠) = ((𝛼𝑇1𝑇2))(𝑠)

= (𝑇1(𝛼𝑇2))(𝑠)  ∀𝛼 ∈ 𝐹, ∀𝑇1𝑇2 ∈ 𝐿(𝑋, 𝑌) 

2)  a) 𝜁(𝑇1(𝑇2(𝑠))) = 𝜁(𝑇1𝑇2)(𝑠)) = (𝑇1𝜁𝑇2)(𝑠)) = 𝑇1(𝜁(𝑇2)(𝑠))   

 b) (𝑇1(𝑇2))(𝑇3))(𝑠) = (𝑇1(𝑇2)(𝑠))(𝑇3)(𝑠)) = (𝑇1𝑇2)(𝑠))(𝑇3)(𝑠) =
𝑇1(𝑇2(𝑇3(𝑠))) = (𝑇1(𝑇2(𝑇3)))(𝑠) 

c) ((𝑇1 + 𝑇2)𝑇3)(𝑠) = (𝑇1(𝑠) + 𝑇2(𝑠))𝑇3(𝑠) = 𝑇1(𝑠)𝑇3(𝑠) + 𝑇2(𝑠)𝑇3(𝑠) =

(𝑇1𝑇3 + 𝑇2𝑇3)(𝑠))  𝑎𝑛𝑑   (𝑇1(𝑇2 + 𝑇3))(𝑠) = 𝑇1(𝑠)(𝑇2(𝑠) + 𝑇3(𝑠)) = 𝑇1(𝑠)𝑇2(𝑠) +

𝑇1(𝑠)𝑇3(𝑠) = (𝑇1𝑇2 + 𝑇1𝑇3)(𝑠))    
3) We prove the mapping 𝑓: 𝐿(𝑋, 𝑌) × 𝐿(𝑋, 𝑌) → 𝐿(𝑋, 𝑌) defined by (𝑇1, 𝑇2)(𝑠) ⟼
(𝑇1𝑇2)(𝑠) = 𝑇1(𝑇2(𝑠)) is Dh-contraction.  

Let 𝑎 ∈ 𝑓(𝑡𝜀(𝑈), 𝑡𝜀(𝑉)), we get 𝑎 ∈ 𝑓(𝑖𝑛𝑓 𝑇1∈𝑈 |𝑇1(𝑠)|, 𝑖𝑛𝑓 𝑇2∈𝑉|𝑇2(𝑠)|). Hence 𝑎 ∈

{𝑖𝑛𝑓 𝑇1∈𝑈 |𝑇1(𝑠)|.  𝑖𝑛𝑓 𝑇2∈𝑉|𝑇2(𝑠)|} from this we have 𝑥 ∈

{𝑖𝑛𝑓 𝑇1∈𝑈 𝑖𝑛𝑓 𝑇2∈𝑉|𝑇1(𝑠). 𝑇2(𝑠)|} implies 𝑥 ∈ {𝑖𝑛𝑓 𝑇1∈𝑈 𝑖𝑛𝑓 𝑇2∈𝑉|(𝑇1𝑇2)(𝑠)|} and so 

that 𝑥 ∈ {𝑖𝑛𝑓 𝑇1∈𝑈 𝑖𝑛𝑓 𝑇2∈𝑉|(𝑇1(𝑇2(𝑠))|}. Thus 𝑥 ∈ 𝑡𝜀(𝑈. 𝑉), we obtain 𝑥 ∈

𝑡𝜀(𝑓(𝑈, 𝑉)) Then its Dh-contraction,  𝐿(𝑋, 𝑌) is proximit algebra.  

Definition 2.3 

   An proximit algebra 𝐵 is said to be 

(1) real proximit algebra if 𝐹 = 𝑅 and if, and complex  proximit algebra if 𝐹 = 𝐶. 

(2) commutative if (𝐵, +, . ) is commutative, that is 𝑡𝜀(𝑈. 𝑉) = 𝑡𝜀(𝑉. 𝑈)  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  
𝑈. 𝑉 = {𝑛. 𝑚: 𝑛 ∈ 𝑈 , 𝑚 ∈ 𝑉}  ∀ 𝑈. 𝑉 ⊆ 𝐵 

Definition 2.4  

   A proximit algebra 𝐵 is said to be unital if (𝐵, +, . ) has a unit denoted by 𝐼, that is 

𝑡𝜀(𝑈. 𝐼) = 𝑡𝜀(𝐼. 𝑈) = 𝑡𝜀(𝑈)  ∀ 𝑈 ⊆ 𝐵 where 𝑈. 𝐼 = {𝑛. 𝑒: 𝑛 ∈ 𝑈 , 𝑒 ∈ 𝐼}. 

Proposition 2.5 

   A proximit algebra can only have one unit element. 

Proof. Let 𝑈, 𝑈∗ be unit sets in 𝐵, we get 

𝑡𝜀(𝑈. 𝑈∗) = 𝑡𝜀(𝑈∗. 𝑈) = 𝑡𝜀(𝑈) 
𝑡𝜀(𝑈∗. 𝑈) = 𝑡𝜀(𝑈. 𝑈∗) = 𝑡𝜀(𝑈∗) 

𝑡𝜀(𝑈) = 𝑡𝜀(𝑈∗). Then 𝑈 = 𝑈∗, so the unity is unique. 

Definition 2.6 

    A set of 𝐵 that has both left 𝑡𝜀(𝑉𝑈) = 𝐼 and right inverse 𝑡𝜀(𝑈. 𝑉) = 𝐼 is known 

as an inverse. A set is said to be invertible if an inverse exists for it. The representation 

of the collection of invertible sets of 𝐵 is 𝐺(𝐵).  

Proposition 2.7 

     If 𝑈 has a right 𝑉 and a left inverse 𝑊, then 𝑉 = 𝑊 , so that 𝑈 is invertible. 

Proof. Let 𝑈. 𝑉, 𝑊 ⊆ 𝐵,  

𝑡𝜀(𝑉) = 𝑡𝜀(𝑉. 𝐼) = 𝑡𝜀(𝑉. 𝑈. 𝑊) = 𝑡𝜀(𝐼. 𝑊) = 𝑡𝜀(𝑊)  
Then 𝑉 = 𝑊.  

Definition 2.8  

    Let 𝐵 be a proximit algebra and 𝑁 ⊆ 𝐵. We say 𝑁 is a subproximit algebra if 𝑁 

itself is proximit algebra under the operations of 𝐵. 
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Definition 2.9 

   If 𝐵 is proximit algebra and ‖. ‖𝑝 is proximit norm on 𝐵 satisfying 

‖𝑈𝑉‖ ≤ 𝑠𝑢𝑝𝐴,𝑆⊆𝐵  {‖𝑈‖. ‖𝑉‖} 

‖. ‖𝑃 is called proximit algebra norm and (𝐵;  𝜌, 𝑡𝜀 , ‖. ‖𝑃) is called a normed proximit 

algebra.  

        A complete normed proximit algebra is called a Banach proximit algebra. 

Proposition 2.10 

       𝐵 = 𝐶(𝐾) with the pointwise multiplication (𝐹𝐻)(𝑥) = 𝐹(𝑥)𝐻(𝑥) is a normed 

proximit algebra with proximit norm ‖𝐹‖𝑝 = 𝑚𝑎𝑥
𝑥∈𝐾

|𝐹(𝑥)|. 

Proof 

     we prove 𝐶(𝐾)  is proximit algebra.  

1) We prove (𝐶(𝐾), 𝜌, 𝑡𝜀, +, . ) is proximit vector space that is we show that 

𝑎) (𝐶(𝐾), 𝜌, 𝑡𝜀 , +) is proximit group. Define   

𝜌(𝑈, 𝑉) = {  ∞                        ,       𝑈 = ∅   𝑜𝑟     𝑉 = ∅ |𝐹(𝑥) − 𝐻(𝑥)| ,     𝑈
≠ ∅   𝑎𝑛𝑑  𝑉 ≠ ∅  

(h1) If 𝑈 ≠ ∅ 𝑎𝑛𝑑 𝑉 ≠ ∅, then 𝜌(𝑈, 𝑉) = 𝑚𝑎𝑥
𝑥∈𝐾,𝐹∈𝑈,𝐻∈𝑉 

|𝐹(𝑥) − 𝐻(𝑥)|}  =

𝑚𝑎𝑥
𝑥∈𝐾,𝐹∈𝑈,𝐻∈𝑉 

|𝐹(𝑥) − 𝐻(𝑥)| = 𝜌(𝑈, 𝑉). 

(h2) If 𝑈 = ∅ , then 𝜌(𝑈, 𝑉) = ∞ and if 𝑉 = ∅, then 𝜌(𝑈, 𝑉) = ∞. 

(h3) Let 𝜌(𝑈, 𝑉) = 0, then 𝑚𝑎𝑥
𝑥∈𝐾,𝐹∈𝑈,𝐻∈𝑉 

|𝐹(𝑥) − 𝐻(𝑥)| = 0. Hence 𝐹(𝑥) = 𝐻(𝑥) 

implies that 𝐹(𝑥) ∈ 𝑈 ∩ 𝑉, then 𝑈 ∩ 𝑉 ≠ ∅ 

(h4) 𝜌(𝑈, 𝑉 ∪ 𝑊) = 𝑚𝑎𝑥
𝑥∈𝐾,𝐹∈𝑈,𝐻∈𝑉∪𝑊 

|𝐹(𝑥) − 𝐻(𝑥)| = { 𝑚𝑎𝑥
𝑥∈𝐾,𝐹∈𝑈,𝐻∈𝑉 

|𝐹(𝑥) −

𝐻(𝑥)|, 𝑚𝑎𝑥
𝑥∈𝐾,𝐹∈𝑈,𝐻∈𝑊 

|𝐹(𝑥) − 𝐻(𝑥)|}  = {𝜌(𝑈, 𝑉), 𝜌(𝑈, 𝑊)}                                                               

(h5)  If 𝜀, 𝜂 ∈ [0, ∞], then  

𝜌(𝑈, 𝑉) = 𝑚𝑎𝑥
𝑥∈𝐾,𝐹∈𝑈,𝐻∈𝑉 

|𝐹(𝑥) − 𝐻(𝑥)| ≤ 𝑚𝑎𝑥
𝑥∈𝐾,𝐹∈𝑈𝜀,𝐻∈𝑉𝜂 

|𝐹(𝑥) − 𝐻(𝑥)| + 𝜀 + 𝜂 =

𝜌(𝑈𝜀 , 𝑉𝜂) + 𝜀 + 𝜂. 

b) we prove the function 𝑓: 𝐶(𝐾) × 𝐶(𝐾)  ⟶ 𝐶(𝐾) defined as (𝐹, 𝐻) ⟼ 𝐹 + 𝐻 is Dh-

contraction: let 𝑥 ∈ 𝑓(𝑡𝜀(𝑈), 𝑡𝜀(𝑉)), we get 𝑥 ∈
𝑓(𝑚𝑎𝑥 𝑥∈𝐾𝐹∈𝑈 |𝐹(𝑥)|, 𝑚𝑎𝑥 𝑥∈𝐾,𝐻∈𝑉|𝐻(𝑥)|). Hence 𝑥 ∈ {𝑚𝑎𝑥 𝑥∈𝐾𝐹∈𝑈 |𝐹(𝑥)| +

𝑚𝑎𝑥 𝑥∈𝐾,𝐻∈𝑉|𝐻(𝑥)|} it follows 𝑥 ∈ {𝑚𝑎𝑥 𝑥∈𝐾𝐹∈𝑈 𝑚𝑎𝑥 𝑥∈𝐾,𝐻∈𝑉|𝐹(𝑥) + 𝐻(𝑥)|}. So 

that 𝑥 ∈ {𝑚𝑎𝑥 𝑥∈𝐾𝐹∈𝑈 𝑚𝑎𝑥 𝑥∈𝐾,𝐻∈𝑉 |(𝐹 + 𝐻)(𝑥)|}. Thus 𝑥 ∈ 𝑡𝜀(𝑈 + 𝑉), we obtain 

𝑥 ∈ 𝑡𝜀(𝑓(𝑈, 𝑉)).  

c) we prove the function 𝑓: 𝐶(𝐾) ⟶ 𝐶(𝐾) defined as 𝐹 ⟼ −𝐹 is Dh-contraction: let 

𝑥 ∈ 𝑓(𝑡𝜀(𝑈)), we get 𝑥 ∈ {− 𝑚𝑎𝑥
𝑥∈𝐾,𝐹∈𝑈 

  |𝐹(𝑥)|}. Hence 𝑥 ∈ 𝑚𝑎𝑥
𝑥∈𝐾,−𝐹∈𝑈 

 |𝐹(𝑥)| from this 

we have 𝑥 ∈ 𝑡𝜀(𝑈) implies 𝑥 ∈ 𝑡𝜀(𝑓(𝑈)).  

d) It is reminder of proximit group conditions are satisfied. 

(𝛼𝐹𝐻)(𝑥) = 𝛼𝐹(𝑥)𝐻(𝑥) = 𝐹(𝑥)𝛼𝐻(𝑥) = (𝐹(𝛼𝐻))(𝑥)∀𝛼 ∈ 𝐹, ∀𝐹, 𝐻 ∈ 𝐶(𝐾) 

2)  a) 𝜁(𝐹. 𝐻)(𝑥)) = 𝜁(𝐹(𝑥)𝐻(𝑥)) = 𝐹(𝑥)𝜁𝐻(𝑥)) = (𝐹(𝜁(𝐻)(𝑥))   

b) ((𝐹. 𝐻)𝐺)(𝑥) = (𝐹(𝑥). 𝐻(𝑥))𝐺(𝑥) = 𝐹(𝑥)(𝐻(𝑥)𝐺(𝑥)) = (𝐹(𝐻. 𝐺))(𝑥) 

c) (𝐹 + 𝐻)𝐺)(𝑥) = (𝐹(𝑥) + 𝐻(𝑥))𝐺(𝑥) = 𝐹(𝑥)𝐻(𝑥) + 𝐹(𝑥)𝐺(𝑥) = (𝐹. 𝐻 +

𝐹. 𝐺)(𝑥) 𝑎𝑛𝑑   (𝐹(𝐻 + 𝐺))(𝑥) = 𝐹(𝑥)(𝐻(𝑥) + 𝐺(𝑥)) = 𝐹(𝑥)𝐻(𝑥) + 𝐹(𝑥)𝐺(𝑥) =

(𝐹𝐻 + 𝐹𝐻)(𝑥)    
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3) We prove the mapping 𝑓: 𝐶(𝐾) × 𝐶(𝐾) → 𝐶(𝐾) defined by (𝐹, 𝐻)(𝑥) ⟼
(𝐹. ℎ)(𝑥) = 𝐹(𝑥). 𝐻(𝑥) is Dh-contraction.  

Let 𝑎 ∈ 𝑓(𝑡𝜀(𝑈), 𝑡𝜀(𝑉)), we get 𝑎 ∈ 𝑓( 𝑚𝑎𝑥
𝑥∈𝐾,𝐹∈𝑈 

 |𝐹(𝑥)|, 𝑚𝑎𝑥
𝑥∈𝐾,𝐻∈𝑉 

|𝐻(𝑥)|). Hence 𝑎 ∈

{ 𝑚𝑎𝑥
𝑥∈𝐾,𝐹∈𝑈 

 |𝐹(𝑥)|. 𝑚𝑎𝑥
𝑥∈𝐾,𝐻∈𝑉 

|𝐻(𝑥)|} from this we get 𝑥 ∈

{ 𝑚𝑎𝑥
𝑥∈𝐾,𝐹∈𝑈 

𝑚𝑎𝑥
𝑥∈𝐾,𝐻∈𝑉 

 |𝐹(𝑥)|. |𝐻(𝑥)|} implies 𝑥 ∈ { 𝑚𝑎𝑥
𝑥∈𝐾,𝐹∈𝑈,𝐻∈𝑉 

 |𝐹(𝑥)𝐻(𝑥)|} and so that 

𝑥 ∈ { 𝑚𝑎𝑥
𝑥∈𝐾,𝐹∈𝑈,𝐻∈𝑉 

 |(𝐹. 𝐻)(𝑥)|}. Thus 𝑥 ∈ 𝑡𝜀(𝑈. 𝑉), we obtain 𝑥 ∈ 𝑡𝜀(𝑓(𝑈, 𝑉)) Then its 

Dh-contraction. Then its Dh-contraction,  𝐶(𝐾) is proximit algebra.  

 Now, we show that its normed algebra.  

  ‖𝑈. 𝑉‖𝑃 = 𝑚𝑎𝑥
𝑥∈𝐾,𝐹∈𝑈,𝐻∈𝑉 

|𝐹(𝑥)𝐻(𝑥)| ≤ 𝑚𝑎𝑥
𝑥∈𝐾,𝐹∈𝑈,𝐻∈𝑉 

{{|𝐹(𝑥)|. |𝐻(𝑥)|} } 

= { 𝑚𝑎𝑥
𝑥∈𝐾,𝐹∈𝑈,𝐻∈𝑉 

|𝐹(𝑥)|. 𝑚𝑎𝑥
𝑥∈𝐾,𝐹∈𝑈,𝐻∈𝑉 

|𝐻(𝑥)|}  = 𝑠𝑢𝑝𝑈,𝑉∈𝐶(𝐾)  {‖𝑈‖𝑝‖𝑉‖𝑝} 

Then 𝐶(𝐾) is normed algebra. 

3 New Properties of  Banach proximit algebra  

In this part, we introduce proximit homomorphism, proximit isometry, and a joint 

proximit topological divisor of zero. We also examine new homomorphism features 

that are invertible with regard to Banach algebra via proximit structure. 

Proposition 3.1 

   The space 𝐶′[𝑎, 𝑏] of continuously differentiable functions 𝐹: [𝑎, 𝑏] → 𝑅 is  

proximit Banach space and define ‖𝐹‖𝑝 = ‖𝐹‖ + ‖𝐹′‖ 

Then (𝐶′[𝑎, 𝑏], 𝜌, 𝑡𝜀, ‖. ‖𝑝) is a Banach proximit algebra. 

Proof 

1) (𝐶′[𝑎, 𝑏], 𝜌, 𝑡𝜀, +,∙)  is proximit vector space. 

a) To prove is proximit algebra 

Define  𝜌(𝑈. 𝑉) = {      ∞             ,       𝑈 = ∅   𝑜𝑟    𝑉 = ∅ 𝑠𝑢𝑝𝑥∈𝐾,𝐹∈𝑈,𝐻∈𝑉 ‖𝐹 −

𝐺‖𝑝       ,       𝑈 ≠ ∅   𝑎𝑛𝑑  𝑉 ≠ ∅  

(h1) If  𝑈 ≠ ∅ 𝑎𝑛𝑑 𝑉 ≠ ∅, then 𝜌(𝑈, 𝑉) = 𝑠𝑢𝑝𝐹∈𝑈,𝐺∈𝑉 ‖𝐹 − 𝐺‖𝑝 = 𝑠𝑢𝑝 𝐹∈𝑈,𝐺∈𝑉 ‖𝐺 −

𝐹‖𝑝 = 𝜌(𝑉, 𝑈). 

(h2) If 𝑈 = ∅ , then 𝜌(𝑈, 𝑉) = ∞ and if 𝑉 = ∅, then 𝜌(𝑈, 𝑉) = ∞. 

(h3) Let 𝜌(𝑈, 𝑉) = 0, then 𝑠𝑢𝑝 𝐹∈𝑈,𝐺∈𝑉 ‖𝐹 − 𝐺‖𝑝 = 0. Hence ‖𝐹 − 𝐺‖𝑝 = 0 implies 

that 𝐹 = 𝐺  𝑓𝑜𝑟 𝑎𝑙𝑙 𝐹 ∈ 𝑈, 𝐺 ∈ 𝑉, then 𝑈 ∩ 𝑉 ≠ ∅ 

(h4) 𝜌(𝑈, 𝑉 ∪ 𝑊) = 𝑠𝑢𝑝 𝐹∈𝑈,𝐺∈𝑉∪𝑊 ‖𝐹 − 𝐺‖𝑝 = {𝑠𝑢𝑝𝐹∈𝑈,𝐺∈𝑉 ‖𝐹 −

𝐺‖𝑝, 𝑠𝑢𝑝 𝐹∈𝑈,𝐺∈𝑊 ‖𝐹 − 𝐺‖𝑝}  = {𝜌(𝑈, 𝑉), 𝜌(𝑈, 𝑊)}                                                               

(h5)  If 𝜀, 𝜂 ∈ [0, ∞], then 𝜌(𝑈, 𝑉) = 𝑠𝑢𝑝 𝐹∈𝑈,𝐺∈𝑉 ‖𝐹 − 𝐺‖𝑝 ≤ 𝑠𝑢𝑝 𝐹∈𝑈,𝐺∈𝑉 ‖𝐹 −

𝐺‖𝑝 + 𝜀 + 𝜂 = 𝜌(𝑈𝜀 , 𝑉𝜂) + 𝜀 + 𝜂. 

Then (𝐶′[𝑎, 𝑏], 𝜌, 𝑡𝜀) is proximit space. The remaining conditions of definition  a 

proximit vector space are similar to the above Proposition.  

2) Define 𝑓: 𝐶′[𝑎, 𝑏] × 𝐶′[𝑎, 𝑏] → 𝐶′[𝑎, 𝑏] by  

(𝐹, 𝐺)(𝑥) = (𝐹. 𝐺)(𝑥) = 𝐹(𝑥). 𝐺(𝑥) ∀𝐹, 𝐺 ∈ 𝐶′[𝑎, 𝑏] is Dh-contraction. 

Let 𝑎 ∈ 𝑓(𝑡𝜀(𝑈), 𝑡𝜀(𝑉)), we get 𝑎 ∈ 𝑓(𝑠𝑢𝑝𝐹∈𝑈   ‖𝐹‖𝑝, 𝑠𝑢𝑝  𝐺∈𝑉 ‖𝐺‖𝑝 ). Hence 𝑎 ∈

{𝑠𝑢𝑝 𝐹∈𝑈 ‖𝐹‖𝑝. 𝑠𝑢𝑝𝐺∈𝑉 ‖𝐺‖𝑝} from this we get 𝑥 ∈ {𝑠𝑢𝑝𝑥∈𝐾,𝐹∈𝑈,𝐻∈𝑉 ‖𝐹. 𝐺‖𝑝} implies 
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𝑥 ∈ {𝑠𝑢𝑝𝑥∈𝐾,𝐹∈𝑈,𝐺∈𝑉 ‖𝐹(𝑥)𝐺(𝑥)‖𝑝 } and so that 𝑥 ∈ {𝑠𝑢𝑝𝑥∈𝐾,𝐹∈𝑈,𝐻∈𝑉 ‖(𝐹. 𝐺)(𝑥)‖𝑝}. 

Thus 𝑥 ∈ 𝑡𝜀(𝑈. 𝑉), we obtain 𝑥 ∈ 𝑡𝜀(𝑓(𝑈, 𝑉)) Then its Dh-contraction. Then its Dh-

contraction, so that  𝐶′[𝑎, 𝑏] is proximit algebra. 

    We show that 𝐶′[𝑎, 𝑏] is Dh-complete. Let {𝐹𝑛} be an Dh-Cauchy sequence in 

𝐶′[𝑎, 𝑏], then 𝑙𝑖𝑚 𝑛→∞𝑖𝑛𝑓 𝑖𝑛𝑓 𝜌( 𝐹𝑛, 𝐹) = 0 𝑎𝑛𝑑 𝑙𝑖𝑚 𝑛→∞𝑖𝑛𝑓 𝑖𝑛𝑓 𝑡𝜀( 𝐹𝑛) ⊆ 𝐹, 

implies ∀ 𝐹𝑛, 𝐹 ∈ 𝐶′[𝑎, 𝑏] such that 𝑙𝑖𝑚 𝑛→∞ ‖𝐹𝑛 − 𝐹‖𝑝 = 0  and 𝑙𝑖𝑚 𝑛→∞

𝑖𝑛𝑓 𝑖𝑛𝑓 𝜌( 𝐹𝑛, {𝑥}) ≤ 𝜀  𝑡ℎ𝑎𝑡 𝑖𝑠 𝑙𝑖𝑚 𝑛→∞ 𝑖𝑛𝑓 {𝑥}⊆𝐹‖𝐹𝑛 − {𝑥}‖𝑝 ≤ 𝜀. We obtain 

‖𝐹𝑛 − 𝐹‖𝑝 = 0, hence {𝐹𝑛} is Dh-convergent. So that 𝐶′[𝑎, 𝑏] is Dh-complete. 

Now , its proximit norm . Let 𝐹, 𝐺 ∈ 𝐶′[𝑎, 𝑏] 
     ‖𝐹. 𝐺‖𝑝 = ‖𝐹𝐺‖ + ‖(𝐹𝐺)′‖ 

                    = ‖𝐹𝐺‖ + ‖𝐹𝐺′ + 𝐺𝐹′‖ 

                   ≤𝑠𝑢𝑝 𝑠𝑢𝑝 {‖𝐹𝐺‖ + ‖𝐹𝐺′‖ + ‖𝐺𝐹′‖ + ‖𝐹′𝐺′‖}  
                   ≤𝑠𝑢𝑝 𝑠𝑢𝑝 {‖𝐹‖. ‖𝐺‖ + ‖𝐹‖. ‖𝐺′‖ + ‖𝐺‖. ‖𝐹′‖ + ‖𝐹′‖, ‖𝐺′‖}  

                  =𝑠𝑢𝑝 𝑠𝑢𝑝 {‖𝐹‖(‖𝐺‖ + ‖𝐺′‖) + ‖𝐹′‖(‖𝐺‖. +‖𝐺′‖)}  

                  =𝑠𝑢𝑝 𝑠𝑢𝑝 {‖𝐹‖𝑝. ‖𝐺‖𝑝}  

Thus, 𝐶′[𝑎, 𝑏] is Banach proximit algebra. 

Proposition 3.2 

      Let 𝑆 ≠ ∅ ; and 𝐵(𝑆) = { 𝑓: 𝑆 → 𝑅 ∶  𝑓 𝑖𝑠 𝑏𝑜𝑢𝑛𝑑𝑒𝑑}. For {𝑓}, {𝑔} ∈ 2𝐵(𝑆), define 

({𝑓} + {𝑔})(𝑠) = {𝑓(𝑠)} + {𝑔(𝑠)} 
{𝛼𝑓}(𝑠) = 𝛼{𝑓(𝑠)}  𝑓𝑜𝑟 𝑎𝑙𝑙 {𝑓}, {𝑔} ∈ 2𝐵(𝑆), 𝛼 ∈ 𝑅 

{𝑓𝑔}(𝑠) = {𝑓(𝑠)}{𝑔(𝑠)} 
Then 𝐵(𝑆) is proximit algebra with unit {𝑓(𝑠)} = 1 for all 𝑠 ∈ 𝑆 with proximit norm  

‖𝑈‖∞ = {|𝑓(𝑠)|: 𝑠 ∈ 𝑆}  
B(S) is a commutative Banach proximit algebra. We define the function as  

Proof  

     𝐵(𝑆) is proximit algebra Its similar of above Proposition   
𝜌(𝑈, 𝑉) = {      ∞                         ,       𝑈 = ∅   𝑜𝑟    𝑉 = ∅ |𝑓(𝑠) − 𝑔(𝑠)|        ,       𝑈

≠ ∅   𝑎𝑛𝑑  𝑉 ≠ ∅  
4) We prove is proximit normed space, define 𝑗: 𝐵(𝑆) → 𝐵(𝑆)  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝑗(𝑈) =
𝑈  , 𝑈 ⊆ 𝐵(𝑆)  

1) 𝑡𝜀(𝑈) = {∅         ,          𝑥 ∉ 𝑈 |𝑓(𝑠)| , 𝑥 ∈ 𝑈  
a)   ‖𝑈‖∞ ≥ 0 

b) 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑐 ≥ 1, 𝑡ℎ𝑒𝑛  
2) ‖𝑈 + 𝑉‖∞ = {|𝑓(𝑠) + 𝑔(𝑠)|: 𝑠 ∈ 𝑆}  
3)                             ≤ {|𝑓(𝑠)| + |𝑔(𝑠)|: 𝑠 ∈ 𝑆}  

4) ≤ 𝑐{{|𝑓(𝑠)|: 𝑠 ∈ 𝑆}  + {|𝑔(𝑠)|: 𝑠 ∈ 𝑆} } 

5)         = 𝑐{‖𝑈‖∞ + ‖𝑉‖∞} 

c) 𝑙𝑖𝑚 𝛼→0 ‖𝛼𝑈‖∞ = 𝑙𝑖𝑚 𝛼→0{|(𝛼𝑓)(𝑠)|: 𝑠 ∈ 𝑆} = 𝑙𝑖𝑚 𝛼→0{|𝛼||𝑓(𝑠)|: 𝑠 ∈
𝑆} =   0. 

d) If 𝑈 = ∅ 𝑡ℎ𝑒𝑛 𝜌(𝑈, 𝑉) = ∞, if 𝑈 ≠ 𝑉, we have 

e) 𝜌(𝑈, 𝑉) = 𝑠𝑢𝑝 𝑠∈𝑆,𝑓∈ 𝑈,   𝑔∈𝑉|𝑓(𝑠) − 𝑔(𝑠)| = ‖𝑈 − 𝑉‖𝑝 

f) Since 𝑗(𝑈) = 𝑈 ∀𝑈 ⊆ 𝐵(𝑆) and if 𝑥 ∉ 𝑈, 𝑡ℎ𝑒𝑛 𝑡𝜀(𝑈) = ∅ and so 

6) ‖(𝑗 ∘ 𝑡𝜀)(𝑈)‖∞ = ‖𝑗(𝑡𝜀(𝑈))‖∞ = ‖𝑗(∅)‖∞ = ∅. 

If 𝑥 ∈ 𝑈, 𝑡ℎ𝑒𝑛 𝑡𝜀(𝑈) = |{𝑓(𝑠)}|  and so 

7) ‖(𝑗 ∘ 𝑡𝜀)(𝑈)‖∞ = ‖𝑗(𝑡𝜀(𝑈))‖∞ = ‖𝑗(|𝑓(𝑠)| )‖∞ = ‖|𝑓(𝑠)| ‖∞ = ‖𝑈‖∞. 
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g) Let 𝑈, 𝑉 ∈ 2𝐵(𝑆) 

   ‖𝑈. 𝑉‖∞ = {|(𝑓𝑔)(𝑠)|: 𝑠 ∈ 𝑆}  
                             ≤𝑠𝑢𝑝 𝑠𝑢𝑝𝑠𝑢𝑝 𝑓∈ 𝑈,𝑔∈𝑉 {|𝑓(𝑠)||𝑔(𝑠)|: 𝑠 ∈ 𝑆}  

                                                   ≤𝑠𝑢𝑝 𝑠𝑢𝑝 {{|𝑓(𝑠)|: 𝑠 ∈ 𝑆}. {|𝑔(𝑠)|: 𝑠 ∈ 𝑆} }  

     ≤𝑠𝑢𝑝 𝑠𝑢𝑝 {‖𝑈. ‖∞. ‖𝑉‖∞}  
Then 𝐵(𝑆) is proximit algebra norm. 

Now, we show that 𝐵(𝑆) is Dh-complete. Let 〈𝑈𝑛〉 be an Dh-Cauchy sequence in 

2𝐵(𝑆), then 𝑙𝑖𝑚 𝑛→∞𝑖𝑛𝑓 𝑖𝑛𝑓 𝜌( 𝑈𝑛, 𝑈) = 0 𝑎𝑛𝑑 𝑙𝑖𝑚 𝑛→∞𝑖𝑛𝑓 𝑖𝑛𝑓 𝑡𝜀( 𝑈𝑛) ⊆ 𝑈𝑛, 

implies ∀ 𝑈𝑛 , 𝑈 ∈ 2𝐶′[𝑎,𝑏] such that 𝑙𝑖𝑚 𝑛→∞ ‖𝑈𝑛 − 𝑈‖∞ = 0  and 

𝑙𝑖𝑚 𝑛→∞𝑖𝑛𝑓 𝑖𝑛𝑓 𝜌( 𝑈𝑛 , 𝑈) ≤ 𝜀 (𝑡ℎ𝑎𝑡 𝑖𝑠  𝑙𝑖𝑚 𝑛→∞ 𝑖𝑛𝑓 {𝑥}⊆𝑈‖𝑈𝑛 − {𝑥}‖𝑝 ≤ 𝜀. 

We obtain 𝑙𝑖𝑚 𝑛→∞{|𝑓𝑛(𝑠) − 𝑓(𝑠)|: 𝑠 ∈ 𝑆}  = 0 , so |𝑓𝑛(𝑠) − 𝑓(𝑠)| = 0 

for all 𝑓𝑛 ∈ 𝑈𝑛 , 𝑓 ∈ 𝑈. Hence 𝑈𝑛 is Dh-Cauchy in field 𝑅, but 𝑅 is complete. So that 

𝑈𝑛 is Dh-convergent in 𝑅, hence 𝜌(𝑈𝑛 , 𝑈) = 0. So that 𝐵(𝑆) is Dh-complete. 

Therefore, 𝐵(𝑠) is Banach proximit algebra. 

Definition 3.3 

      Let 𝐺, 𝐻 be proximit algebras over the same scalar field 𝐹. A mapping 𝛺: 𝐺 → 𝐻 is 

called proximit homomorphism if  

1) 𝛺(𝑉𝑊) = 𝛺(𝑉)𝛺(𝑊)       ∀𝑉, 𝑊 ∈ 𝐺. 

2) 𝛺 𝑖𝑠 𝐷ℎ − 𝑐𝑜𝑛𝑡𝑎𝑟𝑐𝑡𝑖𝑜𝑛 

   A bijective proximit homomorphism of 𝐺 into 𝐻 is said to be proximit 

isomorphism of 𝐺  onto 𝐻 is, and an injective proximit homomorphism of 𝐺 into H is 

called a proximit monomorphism of 𝐺 into 𝐻 is. Proximit algebras 𝐺 and 𝐻 are proximit 

isomorphic if a proximit isomorphism of 𝐺 onto 𝐻 exists.  

   A subset 𝑈 is said to be subproximit semi-group of 𝐺 if 𝑉, 𝑊 ⊆ 𝑈 such that 𝑉𝑊 ∈
𝑈. A subproximit algebra of 𝐺 is  proximit vector subspace of 𝐺 that is also sub proximit 

semi-group of 𝐺.  

      It is obvious that a sub proximit algebra 𝐷 of proximit algebra 𝐵 is itself proximit 

algebra with the same scalar field and the product in 𝐷 the restriction to 𝐷 × 𝐷 of the 

product in 𝐵.  

Definition 3.4  

      Suppose that 𝐵1, 𝐵2 are normed proximit algebras. A topological proximit 

isomorphism of 𝐵1 onto 𝐵2 is proximit isomorphism of 𝐵1 onto 𝐵2 is also proximit 

homeomorphism of topological proximit space 𝐵1 onto topological proximit space 𝐵2. 

A proximit isometric isomorphism of 𝐵1 onto 𝐵2 is proximit isomorphism 𝑇 of proximit 

algebra 𝐵1 onto proximit algebra 𝐵2 in other words, also proximit isometric mapping 

of the metric space 𝐵1 onto the metric space 𝐵2. According to the final condition,  

𝑡𝜀(𝑇(𝑉) − 𝑇(𝑊)) = 𝑡𝜀(𝑉 − 𝑊)   ∀𝑉, 𝑊 ⊆ 𝐵1. 

However, by the linearity of 𝑇, this is equivalent to 

𝑡𝜀(𝑇(𝑉)) = 𝑡𝜀(𝑉)          (𝑉 ⊆ 𝐵1) 
Similarly, for normed proximit vector spaces 𝑋, 𝑌 proximit isometric linear 

isomorphism of 𝑋 onto 𝑌 is a linear mapping 𝑇 from 𝑋 to 𝑌 such that  𝑡𝜀(𝑇(𝑉)) =
𝑡𝜀(𝑉)   (𝑉 ∈ 𝑋). 

Notation  

   Given two normed proximit vector spaces 𝑋 and 𝑌 over a single scalar field 𝐹, we 

describe 𝐵𝐿(𝑋, 𝑌) as the vector proximit subspace of 𝐿(𝑋, 𝑌), which contains all 

bounded and continuous linear mappings from 𝑋 to 𝑌. 
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𝐵𝐿(𝑋, 𝑌) is commonly considered to be a normed proximit vector space with a 

proximit norm defined by 

‖𝑇‖𝑝 =𝑠𝑢𝑝 𝑠𝑢𝑝 {‖𝑇(𝑉)‖: 𝑉 ∈ 𝑋  &‖𝑉‖ ≤ 1}  

Proposition 3.5 

      Assume that 𝐵 is a normed proximit algebra. A dense sub proximit algebra of a 

Banach proximit algebra 𝐴, then has proximit isometric isomorphism of 𝐵 onto it. 𝐴 

cannot be compared up to isometric isomorphism. 

Proof.  

  There is an isometric linear proximit isomorphism 𝑇 of 𝐵 onto a dense proximit 

vector subspace of a proximit Banach space 𝐴. Given 𝑉, 𝑊 ∈ 𝐴, there exist 𝑉𝑛 , 𝑊𝑛 ∈ 𝐴 

such that 𝑉 = 𝑙𝑖𝑚 𝑛→∞ 𝑇(𝑉𝑛), 𝑊 = 𝑙𝑖𝑚 𝑛→∞ 𝑇(𝑊𝑛). Since 𝑇 is proximit isometry, {𝑉𝑛} 

and {𝑊𝑛} are Dh-Cauchy sequences in 𝐵. Since 

‖𝑉𝑝𝑊𝑝 − 𝑉𝑞𝑊𝑞‖𝑝 ≤𝑠𝑢𝑝 𝑠𝑢𝑝 {‖𝑉𝑝‖𝑝. ‖𝑊𝑝 − 𝑊𝑞‖𝑝}  +𝑠𝑢𝑝 𝑠𝑢𝑝 {‖𝑉𝑝 − 𝑉𝑞‖𝑝. ‖𝑊𝑞‖𝑝}  

{𝑉𝑛𝑊𝑛} is Dh-Cauchy sequence in 𝐵, {𝑇(𝑉𝑛𝑊𝑛)} is Dh-Cauchy sequence in 𝐴, also 

𝑉 = 𝑙𝑖𝑚 𝑛→∞ 𝑇(𝑉𝑛𝑊𝑛) = 𝑈 ∈ 𝐴. 

Moreover, 𝑈 U can be used to define a product in 𝐴 by choosing 𝑉𝑊 = 𝑈 because it is 

independent of the sequences {𝑉𝑛} and {𝑊𝑛} that are chosen.  

Theorem 3.6 

  If {𝑉𝑛} and {𝑊𝑛} are an Dh-convergence of Banach proximit algebra 𝐵, then the 

multiplication is Dh-convergence. 

Proof.  

Let 𝑉, 𝑊 ∈ 2𝐵and ‖𝑉𝑛 − 𝑉‖𝑝 = 0, ‖𝑊𝑛 − 𝑊‖𝑝 = 0 and 𝑐 ≥ 1 

‖𝑉𝑛𝑊𝑛 − 𝑉𝑊‖𝑝 ≤ 𝑐{‖(𝑉𝑛 − 𝑉)𝑊‖𝑝 + ‖𝑉(𝑊𝑛 − 𝑊)‖𝑝}

≤ 𝑐{𝑠𝑢𝑝 𝑠𝑢𝑝 {‖𝑉𝑛 − 𝑉‖𝑝‖𝑊‖𝑝} +𝑠𝑢𝑝 𝑠𝑢𝑝 {‖𝑉‖𝑝. ‖𝑊𝑛 − 𝑊‖𝑝}  }

= 𝑐 𝑠𝑢𝑝 𝑠𝑢𝑝 {‖𝑉𝑛 − 𝑉‖𝑝‖𝑊‖𝑝 + ‖𝑉‖𝑝. ‖𝑊𝑛 − 𝑊‖𝑝}  = 0 

Lemma 3.7 

  Let 𝐵 be a normed proximit algebra with unit. If 𝑉, 𝑊 ⊆ 𝐺(𝐵) and 

‖𝑡𝜀(𝑊) − 𝑡𝜀(𝑉)‖𝑝 ≤
1

2
‖𝑡𝜀(𝑉−1)‖𝑝

−1, then 

‖𝑡𝜀(𝑊) − 𝑡𝜀(𝑉)‖𝑝 ≤ {‖𝑡𝜀(𝑉)‖𝑝
2‖𝑊 − 𝑉‖𝑝}  

Proof. 

      For such 𝑉, 𝑊 we have 

|‖𝑡𝜀(𝑊−1)‖𝑝 − ‖𝑡𝜀(𝑉−1)‖𝑝| ≤ ‖𝑡𝜀(𝑊−1) − 𝑡𝜀(𝑉−1)‖𝑝

= ‖𝑡𝜀(𝑊−1)[𝑡𝜀(𝑉) − 𝑡𝜀(𝑊)]𝑡𝜀(𝑉−1)‖𝑝 ≤
1

2
𝑠𝑢𝑝 𝑠𝑢𝑝 ‖𝑡𝜀(𝑊−1)‖𝑝  

Thus, 

‖𝑡𝜀(𝑊−1)‖𝑝 ≤ 2 𝑠𝑢𝑝 𝑠𝑢𝑝 ‖𝑡𝜀(𝑉−1)‖𝑝  

and so 

‖𝑡𝜀(𝑊−1) − 𝑡𝜀(𝑉−1)‖𝑝 ≤𝑠𝑢𝑝 𝑠𝑢𝑝 {‖𝑡𝜀(𝑊−1)‖𝑝‖𝑡𝜀(𝑉) − 𝑡𝜀(𝑊)‖𝑝‖𝑡𝜀(𝑉−1)‖𝑝}  

≤ 2 𝑠𝑢𝑝 𝑠𝑢𝑝 {‖𝑡𝜀(𝑉−1)‖𝑝
2‖𝑡𝜀(𝑉) − 𝑡𝜀(𝑊)‖𝑝}  

Definition 3.8 

   Suppose 𝑉 is a set of normed proximit algebra. The formula for the spectral radius 

of 𝑉 is 𝑟(𝑡𝜀(𝑉)) =𝑖𝑛𝑓 𝑖𝑛𝑓 {‖𝑡𝜀(𝑉𝑛)‖
1

𝑛 ∶} , where 𝑛 = 1,2, … .  

Proposition 3.9 

   Let 𝑉 be subset of normed proximit algebra. Then 
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𝑟(𝑡𝜀(𝑉)) = 𝑙𝑖𝑚
𝑛→∞

‖𝑡𝜀(𝑉𝑛)‖
1
𝑛 

Proof.  

      Let 𝜃 = 𝑟(𝑡𝜀(𝑉)) and 𝜀 > 0, and select 𝑘 such that ‖𝑡𝜀(𝑉𝑘)‖
1

𝑘 < 𝜃 + 𝜀. 

The formula 𝑛 = 𝑡(𝑛)𝑘 + 𝑞(𝑛) can be used to represent any positive integer 𝑛 in a 

unique way, where 𝑡(𝑛) and 𝑞(𝑛) are non-negative integers and 𝑞(𝑛) ≤ 𝑘 − 1.  

Because 
1

𝑛
𝑞(𝑛) → 0, we have 

1

𝑛
𝑡(𝑛)𝑘 → 1 as 𝑛 → ∞, and as a result, 

‖𝑡𝜀(𝑉𝑛)‖
1
𝑛 ≤𝑠𝑢𝑝 𝑠𝑢𝑝 {‖𝑡𝜀(𝑉𝑘)‖𝑝

𝑡(𝑛)
𝑛 . ‖𝑡𝜀(𝑉)‖𝑝

𝑞(𝑛)
𝑛 }  → ‖𝑡𝜀(𝑉𝑘)‖𝑝

1
𝑘 < 𝜃 + 𝜀. 

Thus ‖𝑡𝜀(𝑉𝑛)‖𝑝

1

𝑛 < 𝜃 + 𝜀 for each sufficiently large 𝑛. Also 𝜃 ≤ ‖𝑡𝜀(𝑉𝑛)‖𝑝

1

𝑛  for each 

𝑛 

 

 

Theorem 3.10 

   Consider 𝐵 is Banach proximit algebra with unit, if 𝑉 ⊆ 𝐵, and 𝑟(𝑡𝜀(𝑉)) < 1. 

Then 1 − 𝑡𝜀(𝑉) is invertible, and   

(1 − 𝑡𝜀(𝑉))−1 = 1 + ∑

∞

𝑛=1

𝑡𝜀(𝑉𝑛) 

Proof.  

       Choose 𝜂 with 𝑟(𝑡𝜀(𝑉)) < 𝜂 < 1. By Proposition 3.9, we have ‖𝑡𝜀(𝑉𝑛)‖𝑝 < 𝜂𝑛 

for every sufficiently large 𝑛, and hence  ‖1‖ + ∑𝑛=1
∞‖𝑡𝜀(𝑉𝑛)‖𝑝 is Dh-converges. 

Since 𝐵 is a proximit Banach space, implies that the series 1 + ∑𝑛=1
∞𝑡𝜀(𝑉𝑛)𝑝 is Dh-

converges, with sum 𝑆 ∈ 𝐵, say. Let 𝑆𝑛 = 1 + 𝑉 + ⋯ + 𝑉𝑛−1. Then 𝑆𝑛 → 𝑆 and 

‖𝑉𝑛‖𝑝 → 0 as 𝑛 → ∞, and we have 

𝑡𝜀((1 − 𝑉)𝑆𝑛) = 𝑡𝜀(𝑆𝑛(1 − 𝑉)) = 𝑡𝜀(1 − 𝑉𝑛)   

Therefore, by Dh-contraction of multiplication , we obtain 

𝑡𝜀((1 − 𝑉)𝑆) = 𝑡𝜀(𝑆(1 − 𝑉)) = 1 
Corollary 3.11 

    If 𝐵 is Banach proximit algebra with unit. Then ‖𝑡𝜀(1 − 𝑉)‖𝑝 < 1 is invertible 

for all 𝑉 of 𝐵. 

Proof 

       𝑡𝜀(𝑟(1 − 𝑉)𝑊) = ‖𝑡𝜀(𝑟(1 − 𝑉))𝑊‖𝑝 ≤𝑠𝑢𝑝 𝑠𝑢𝑝 {‖1‖𝑝‖𝑡𝜀(1 − 𝑉)‖𝑝 +

‖𝑊‖𝑝}  < 1 and so  

𝑡𝜀(𝑉) = 𝑡𝜀(1 − (1 − 𝑉)) is invertible. 

Theorem 3.12  

   If 𝐵 is Banach proximit algebra with unit. Then 𝐺(𝐵) is an open subset of 𝐵. 

Proof 

       Let 𝑉 ⊆ 𝐺(𝐵). Suppose that 𝐸 ∈ 𝐵 such that ‖𝑡𝜀(𝐸)‖𝑝 < ‖𝑡𝜀(𝑉−1)‖𝑝
−1, we have 

𝑡𝜀(𝑉) − 𝑡𝜀(𝐸) = 𝑡𝜀(𝑉(1 − 𝑉−1𝐸)), and ‖𝑡𝜀(𝑉−1𝐸)‖𝑝 ≤

𝑠𝑢𝑝 𝑠𝑢𝑝 {‖𝑡𝜀(𝑉−1)‖𝑝. ‖𝑡𝜀(𝐸)‖𝑝} . Therefore, by Theorem 3.10, 1 − 𝑡𝜀(𝑉−1𝐸) ∈

𝐺(𝐵), and 𝐺(𝐵) being a proximit group, 𝑡𝜀(𝑉 − 𝐸) ∈ 𝐺(𝐵). So that , the open ball with 
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a center 𝑉 and radius ‖𝑡𝜀(𝑉−1)‖−1 is contained in 𝐺(𝐵). Therefore 𝐺(𝐵) is an open 

set. 

Definition 3.13 

    If 𝐵 is  a normed proximit algebra, and 𝑆(𝐵) be unit sphere in 𝐵. 

𝑆(𝐵) = {𝑉 ∈ 𝐵: ‖𝑡𝜀(𝑉)‖𝑝 = 1}. 

An subset 𝑉 of 𝐵 is said to be  

(i) a left proximit topological divisor of zero if  𝑖𝑛𝑓 𝑖𝑛𝑓 {‖𝑡𝜀(𝑉𝐸)‖𝑝: 𝐸 ∈ 𝑆(𝐵)}  =

0 

(ii) a right proximit topological divisor of zero if 𝑖𝑛𝑓 𝑖𝑛𝑓 {‖𝑡𝜀(𝐸𝑉)‖𝑝: 𝐸 ∈ 𝑆(𝐵)}  =

0 

(iii) ajoint proximit topological divisor of zero if 𝑖𝑛𝑓 𝑖𝑛𝑓 {‖𝑡𝜀(𝑉𝐸)‖𝑝 +

‖𝑡𝜀(𝐸𝑉)‖𝑝: 𝐸 ∈ 𝑆(𝐵)}  = 0. 

   A subset 𝑉 of 𝐵 is proximit joint topological divisor of zero if and only if there 

exist a sequence {𝐸𝑛} of sets of 𝑆(𝐵) such that  

‖𝑡𝜀(𝑉𝐸𝑛)‖𝑝  = ‖𝑡𝜀(𝐸𝑛𝑉)‖𝑝  = 0 

A joint proximit topological divisor of zero is obviously one that has both a left and a 

right proximit topological divisor. 

Notation 

   We identify by 𝜕𝐻 the topological boundary of a proximit topological space given 

by a subset 𝐻 of that space ( that is , 𝜏 is  a proximit topological space and 𝐻 is a subset 

of 𝜏 then a boundary of 𝐻 is a set 𝜕𝐻 = 𝑐𝑙(𝐻) ∩ 𝑐𝑙(𝜏\𝐻))  

Theorem 3.14 

    Consider Banach proximit algebra 𝐵 with unit, and 𝑉 ∈ 𝐺(𝐵). Then 𝑉 is a joint 

proximit topological divisor of zero. 

Proof 

        Let 𝑉 ∈ 𝜕𝐺(𝐵), there is 𝑉𝑛 ∈ 𝐺(𝐵) with 𝑙𝑖𝑚
𝑛→∞

𝑡𝜀(𝑉𝑛) = 𝑡𝜀(𝑉). 

We prove first that {‖𝑡𝜀(𝑉𝑛
−1)‖𝑝} is unbounded. Suppose on the contrary that 

‖𝑡𝜀(𝑉𝑛
−1)‖𝑝 ≤ 𝑀. Then 

‖𝑡𝜀(𝑉𝑚
−1) − 𝑡𝜀(𝑉𝑛

−1)‖𝑝 = ‖𝑡𝜀(𝑉𝑚
−1)(𝑡𝜀(𝑉𝑛) − 𝑡𝜀(𝑉𝑚))𝑡𝜀(𝑉𝑛

−1)‖𝑝

≤ 𝑀2 𝑠𝑢𝑝 𝑠𝑢𝑝 ‖𝑡𝜀(𝑉𝑛) − 𝑡𝜀(𝑉𝑚)‖𝑝  

This shows that {𝑡𝜀(𝑉𝑛
−1)} is an Dh-Cauchy sequence.     

      Let 𝑊 = 𝑙𝑖𝑚
𝑛→∞

𝑡𝜀(𝑉𝑛
−1). Then, by Dh-contraction of multiplication, 𝑡𝜀(𝑉𝑊) =

𝑡𝜀(𝑊𝑉) = 1, 𝑉 ∈ 𝐺(𝐵). But since 𝐺(𝐵) is an open set, this contradicts with 

assumption that 𝑉 ∈ 𝜕𝐺(𝐵). We can now assume, by keeping only a suitable 

subsequence, that 

‖𝑡𝜀(𝑉𝑛
−1)‖𝑝 ≥ 𝑛  (𝑛 = 1,2, … ). Let 𝑡𝜀(𝑊𝑛) = ‖𝑡𝜀(𝑉𝑛

−1)‖𝑝
−1𝑡𝜀(𝑉𝑛

−1). Then 

𝑡𝜀(𝑊𝑛) ∈ 𝑆(𝐵), and 𝑡𝜀(𝑉𝑊𝑛) = 𝑡𝜀((𝑉 − 𝑉𝑛)𝑊𝑛 + 𝑉𝑛𝑊𝑛) = 𝑡𝜀((𝑉 − 𝑉𝑛)𝑊𝑛) +
‖𝑡𝜀(𝑉𝑛

−1)‖𝑝
−1 

Thus 𝑙𝑖𝑚
𝑛→∞

𝑡𝜀(𝑉𝑊𝑛
−1) = 0, and similarly 𝑙𝑖𝑚

𝑛→∞
𝑡𝜀(𝑊𝑛

−1𝑉) = 0. 

Proposition 3.15 

       Let 𝐾 be a closed ideal in a Banach proximit algebra 𝐵. Then the quotient space 
𝐵

𝐾
 

is a Banach proximit algebra with respect to the quotient norm. 

Proof  

about:blank
http://planetmath.org/boundaryfrontier
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   That 
𝐵

𝐾
 is a proximit Banach space. Let 𝜋 denote the canonical map from 𝐵 to 

𝐵

𝐾
. 

We must show that 

‖𝜋(𝑉)𝜋(𝑊)‖ ≤𝑠𝑢𝑝 𝑠𝑢𝑝 {‖𝜋(𝑉)‖. ‖𝜋(𝑊)‖}  for all 𝑉, 𝑊 ⊆ 𝐵. By definition of the 

quotient norm, then 

‖𝜋(𝑉)𝜋(𝑊)‖𝑝 = ‖(𝑉 + 𝑀)(𝑊 + 𝑁)‖𝑝 = ‖𝑉. 𝑊 + 𝐾‖𝑝 = 𝑖𝑛𝑓𝑀⊆𝐾‖𝑉. 𝑊 + 𝑀‖𝑝

= 𝑖𝑛𝑓𝑀⊆𝐾‖(𝑉 + 𝑀)(𝑊 + 𝑀)‖𝑝

≤ 𝑠𝑢𝑝𝑉,𝑊⊆𝐵{𝑖𝑛𝑓𝑀⊆𝐾‖𝑉 + 𝑀‖𝑝. 𝑖𝑛𝑓𝑀⊆𝐾‖𝑊 + 𝑀‖𝑝}

= 𝑠𝑢𝑝𝑉,𝑊⊆𝐵{‖𝑉 + 𝐾‖𝑝. ‖𝑊 + 𝐾‖𝑝}

= 𝑠𝑢𝑝𝑉,𝑊⊆𝐵{‖𝜋(𝑉)‖𝑝. ‖𝜋(𝑊)‖𝑝} 

We obtain the desired result. 

Theorem 3.16 

      Let 𝐵 be a Banach proximit algebra without a unit. Then 𝐵 can be embedded into 

𝐵 unital Banach proximit algebra 𝐵1 as an ideal of co-dimension one. 

 

 

Proof.  

      Consider the proximit vector space 𝐵1 = 𝐵⨁𝑅, and define addition, scalar 

multiplication and product in 𝐵1by 

(𝑉, 𝜁1) + (𝑊, 𝜁2) = (𝑉 + 𝑊, 𝜁1 + 𝜁2) 
𝜁2(𝑉, 𝜁1) = (𝜁2𝑉, 𝜁2𝜁1) 

(𝑉, 𝜁1). (𝑊, 𝜁2) = (𝑉𝑊 + 𝑉𝜁2 + 𝑊𝜁1, 𝜁1𝜁2), 
respectively for all 𝑉, 𝑊 ⊆ 𝐵, 𝜁1, 𝜁2 ∈ 𝐹. It is easily checked that this is associative and 

distributive. 

Moreover, the element (0,1) is a unit for this multiplication. 
(𝑉, 𝜁). (0,1) = (𝑉0 + 𝑉. 1 + 0. 𝜁, 𝜁. 0) = (𝑉, 𝜁) = (0,1)(𝑉, 𝜁) 

We define a proximit norm, Dh-contraction and tower on 𝐵1 via ‖(𝑉, 𝜁1)‖𝑝 =

‖𝑉‖𝑝 + |𝜁1|  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑉 ⊆ 𝐵, 𝜁1 ∈ 𝑅 , 𝜌(𝑉, 𝜁1), (𝑊, 𝜁2)) = 𝑖𝑛𝑓𝑠∈𝑉 𝑖𝑛𝑓𝑡∈𝑊‖𝑠 − 𝑡‖𝑝 +

|𝜁1| + |𝜁2| and 𝑡𝜀(𝑉) = 𝑖𝑛𝑓𝑠∈𝑉‖𝑠‖𝑝 + |𝜁1|, respectively. Then 𝐵1 is a Banach proximit 

space when equipped with these functions. Furthermore, 

‖(𝑉, 𝜁1). (𝑊, 𝜁2)‖𝑝 = ‖𝑉𝑊 + 𝑉𝜁2 + 𝑊𝜁1‖𝑝 + |𝜁1𝜁2|

≤𝑠𝑢𝑝 𝑠𝑢𝑝 {‖𝑉‖𝑝‖𝑊‖𝑝 + ‖𝑉‖𝑝|𝜁2| + ‖𝑊‖𝑝|𝜁1| + |𝜁1||𝜁2|}  

=𝑠𝑢𝑝 𝑠𝑢𝑝 {(‖𝑉‖𝑝 + |𝜁1|)(‖𝑊‖𝑝 + |𝜁2|)}  =𝑠𝑢𝑝 𝑠𝑢𝑝 {(‖(𝑉, 𝜁1)‖𝑝)(‖(𝑊, 𝜁2)‖𝑝)}  

Hence 𝐵1is a Banach proximit algebra with unit. We may identify 𝐵 with the ideal 

{(𝑉, 0): 𝑉 ⊆  𝐵} in 𝐵1 via the isometric isomorphism 𝑉 ⟼ (𝑉, 0). Hence proved.  

Remark 3.17 

      Let 𝑋 and 𝑌 be Banach proximit spaces over the field 𝐹. Then the set of 

contraction proximit linear transformations 𝛲(𝑋, 𝑌) from 𝐵 into 𝐸 is a Banach proximit 

space under the operator proximit norm ‖𝑇‖𝑝 = 𝑠𝑢𝑝‖𝑉‖≤1‖𝑇(𝑉)‖𝑝. When 𝑋 = 𝑌, we 

also write 𝛲(𝑋) for 𝛲(𝑋, 𝑋). 

Proposition 3.18 

    Every Banach proximit algebra 𝐵 embeds proximit isometrically into 𝛲(𝑋) for 

some proximit Banach space 𝑋. Here, 𝐵 need not have a unit. 

Proof 

 Consider the map 
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𝜑: 𝐵 → 𝛲(𝐵1) 
𝑉 ⟼ 𝐿𝑉  

where 𝐿𝑉(𝑍, 𝛼) = (𝑉, 0)(𝑍, 𝛼) is the left regular representation of 𝐵. That 

𝜑(𝛼𝑉 + 𝑊) = 𝐿𝛼𝑉+𝑊 = 𝛼𝐿𝑉 + 𝐿𝑊 = 𝛼𝜑(𝑉) + 𝜑(𝑊)  

and that  

𝜑(𝑉𝑊) = 𝐿𝑉𝑊 = 𝐿𝑉𝐿𝑊 = 𝜑(𝑉)𝜑(𝑊) 
For every 𝑉, 𝑊 ⊆ 𝐵 and 𝛼 ∈ 𝐶 Then  

‖𝜑(𝑉)‖𝑝 = ‖𝐿𝑉‖𝑝 =
‖(𝑉, 0)(𝑍, 𝛼)‖𝑝

‖(𝑍, 𝛼)‖𝑝

 ≤ ‖(𝑉, 0)‖𝑝 = ‖𝑉‖𝑝 

and 

‖𝜑(𝑉)‖𝑝 = ‖𝐿𝑉‖𝑝 ≥ ‖(𝑉, 0)(0,1)‖𝑝 = ‖𝑉‖𝑝 

So that ‖𝜑(𝑉)‖𝑝 = ‖𝐿𝑉‖𝑝 = ‖𝑉‖𝑝. We show that  is Dh-contraction, define 

𝑡𝜀(𝑉) = 𝑉 and let 𝑥 ∈ 𝜑(𝑡𝜀(𝑉)), then 𝑥 ∈ 𝜑(𝑉) So that 𝑥 ∈ 𝐿𝑉(𝑍, 𝛼) = (𝑉, 0)(𝑍, 𝛼), 

𝑥 ∈ 𝑡𝜀(𝐿𝑉) = 𝑡𝜀(𝜑(𝑉)) this show that 𝜑 is Dh-contraction. In particular, the map is 

proximit isometric. 
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