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1.Introduction.

One of the important concepts in dynamical systems is the study of concepts such as
proximal, distal, minimal, regionally proximal, and uniformly equicontinuous. In 1970, W. A.
Veech, [9] introduce definition of a point-distal flows. In 1976, E. Glasner [5] provided a definition
of proximal flows. [1] J. Auslander discusses the concept of "minimal flows and their extensions in
1988.In 1991, A. Ludwig,[7] introduce “Random Dynamical Systems™ and in 1998, A. Ludwig and
others [8] discusses the Order-Preserving Random Dynamical Systems: Equilibria, attractor,
applications, Dynamics and Stability of System.[6] In 2002, C. Igor, present a new study on
"Monotone Random Systems Theory and Applications™. [3] In 2009, J. Auslander and N. Markley
submitted the almost periodic minimal flows". And many researchers see, for example, [2] and [4].

In our work, we will generalize these concepts from deterministic dynamical systems to randomness.
In particular, we will discuss the concepts of minimality, distal, point-distal, and proximal in linear
random dynamical systems where the phase space is considered a Banach space.

The classification of sets is one of the goals of random dynamics. We will be concerned with three
types of minimal sets: equicontinuous, distal, and point-distal. Point-distal is necessarily minimal [1].

That is, "if is point-distal, then it contains no proper" a closed and invariant subset.
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2. Some concepts on RDSs:
Here, we collected definitions and notions from the theory of RDSs that we needing our work, (see
L. Arnold [7,8] and Igore [6]).
Definition 2.1 [6]:
The (T, Q,F,P,0) is said to be metric dynamical system (MDS) if (Q,F, P) is a probability space
and the function 6: T x Q — Q satisfy

(i) 8 is measurable,

(i) 8(0,w) = w, forevery w € Q,

(iii) Oy g(w) = (O; © B5)(w) forevery w € Q, t,s € T and
(iv) P(6,F)=P(F),VFEFandVteT.

Definition 2.2 [7]:

Let X be a topological space and 8 be a MDS. A topological random dynamical system on X over 6 isa

function ¢: T X Q X X — X, admit the following properties:
(i) ¢(,w,”): T x X — X is continuous for every w € Q.

(if) The mapping ¢(t, w) = @(t, w,"): X = X form a cocycle on 6(-), that is satisfy

9(0,w)x =x, Vw € Q and forevrey x € X,
p(t+s,w)=¢(t0,w)eop(s,w),V s,teT,w € Q.

Definition 2.3 [7] ( Linear RDSs):
A linear random dynamical system LRDS is an RDS (6, ¢) on the Banach space X such that ¢(t,w) is

linear operators of X, Vw € Q, t € T.

Definition 2.4 [6]:

Suppose that (X, d) be a metric space which is a measurable space with Borel

o —field B(X) and (Q, F) be a measurable space. The set-valued function A: Q - B(X),

w — A(w), is a random set if the mapping w — d(x, A(w)) is measurable for each x € X. The random

set A(w) is called a random closed(compact) set, if it is closed (compact) for all w € Q.
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Definition 2.5 (Equivalence of RDS) [ 7, 8 ]: Let(6, ¢,) and (6, ¢,) be two RDS over the same MDS

6 with phase spaces X; and X, resp. These RDS;s are said to be (topologically) equivalent (or
conjugate) if there exists a mapping T:Q x X; — X, with the properties:

(i) The mapping x — T'(w, x) isa homeomorphism from X; onto X,, V w € Q;

(i) The mappings w — T(w, x;) and w — T~ 1(w, x,) are measurable, v x; € X; and x, € X;;
(iii) The cocycles ¢, and ¢, are cohomologous, i. e.

@5(t, 0, T(w,x)) =T(6; w,9;1(t, w,x)) forany x € X; .

(iv) T,: X; — X, is linear map, V w € Q.

Definition 2.6 [7, 81:
Let (T, Q,F,P,0) be a MDS. A random variable 8: 0 — R™ is said to be tempered random variable

(t.r.v.), if there exists a full measurable subset { of Q such that lim Llog* 8(8,w) =0,V w € Q,
n—+oo

where log* := max{0, log}.
Definition 2.7:
Let (¢, 0) be an LRDS, and y{: w — D(w) be a multifunction defined by

Yi(w)=U{p(t,0_,w)x:t € T} the set y{ is called a trajectory .
3. Proximal of RDSs.

In this section, the concepts of proximal, distal, minimal, regionally proximal, and uniformly
equicontinuous in the LRDSs are studied and mentioning some of their characteristics.

Definition 3.1 : Let (6, ) be an LRDS. The pair of random variables x,y € X is called
proximal if there exists a divergent net {t;} in G and a full measure invariant subset Q of Q
such that, vV w € 0 we have

liin”(p(tl’ H—tzw)x(e—tzw) - (p(t/l' H—taw)y(g—taw)” =0,

distal otherwise. A random variable x is called distal if x,y € X® is proximal only for x = y.
Definition 3.2: An LRDS (6, @) is said to be proximal if every pairs of random variables are proximal,
distal if all pairs of random variables are distal.
The set of all pairs of random variable proximal denoted by
P(X) = {(x, y) € X x XY 3net {t;} in R: li/{n”(p(t,l, 0_r,w)x(0_¢, @) — @(t1, 0_¢,0)y(0_,0)|| = O}
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In particular, if the LRDS is proximal and distal , then X® x X® = A, , A= {(x,x):x € X%}, hence
(@, 0) is the trivial on a one-point space.

Example 3.3 Let (6, ¢) be an LRDS defined as follows: X = T = R and (Q, B, P) be a probability
space with Q = [0,1], B be a Borel o —algebra and P is a Lebsegue measure. Define
P:RXQOXR—R,by ¢(t,w,x) =txand 8:Rx Q — Qby6(t,w) = w.Then (6, ) is proximal.
Lemma 3.4: The LRDS (6, ¢) is distal if and only if P(X) = A.
Proof. Let(8, @) be distal then all x,y € X are distal, thus
1i/{n||<p(t,1, O_r,w)x(0_¢, ) — (t2, 0_¢,@)y(6_,w)| > 0, (i.e. the isno x # y € X°
Such that
li}Ln||<p(tA, 0_r,w)x(0_,®) — @(t2, 0_¢,)y(6_, )| = 0, then x =y, thus P(X)contain only A
Now
Let P(X) = Atherefor for all x # y then lim[|¢ (3, 0—,@)x(6-¢,0) — @(t2, 0-¢, @)y (0-¢,0)| # 0
Thus, li/{n”go(tl, 0_r,w)x(0_r,w) — (2, 0_,w)y(6_,w)|| > 0 forall x,y € X then all pairs of

random variables are distal.

Definition3.5 : Let (6, ¢) be a LRDS . Then

(@) x € X% is called a distal point of (0, @) if there exists no point other than itself in m to be
proximal to it under (8, ).

(b) (6, ) is called point-distal if there exists a random variable x € X such that

(1) x is distal, and

@) v(w) =X.

Lemma3.6: If (8, p,) and (8, ¢,) be two LRDS's then so is (6, ¢; X ¢,), where

@1 X 92 (t, w, (%,¥)) = (91(t, 0, %), P2 (t, w, )

Proof
PUt(p = q)l Xq)z'RXQX (Xl XXZ) d ((X1 XXZ)
Defined by

(p(t, w)(x, .V)) = Q1 X §02(t’ w, (xr }’)) = (q)l (tr w)x' q)Z(t' (U)}’)a VxE€ Xl and y € XZ
i) (0,0)(x,)) = (91 (0, w)x, 92(0, w)y)
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=)

i) (¢, w)(x,y)) is ameasurable

i) p(t +5,0)(x%,¥)) = (@1 (£ + 5, W)X, P5(t + 5, 0)Y)
= (91 (&, 050) ° (@1 (5, w)x, P2 (t, Osw) © (@2 (s, w)y)
= @(t, 05s0) (91 (s, w)x, 92 (s, w)y)

= @(t, 050) (¢ (s, w)(x,¥))
Theorem 3.7: Let (0, p1) =1 (6, @,) with T is linear. If (6, ¢,) is proximal LRDS, then so is

(6, 92).

Proof: Assume that (6, ¢,) is proximal LRDS. Let x2,x2 € X5. Then there exists xi,x} € X{ such
that x}:= T 1(x?) and x1 := T~1(x2). By hypothesis there exists a divergent net {t;} in G and
P{w: x{ (®) # yj(w),i,j = 1,2} = 1 and a full measure invariant subset & of Q such that, v w € Q)
we have
li/{n”fﬂl(tz' 0_¢,0)x1 (-, ) — @1(tr, 0—r, ) x5 (0_¢,w)|| = 0.

Now,

lim|| 2 (£2, 60—, )xF (6-¢, @) — @1 (t2, 0-¢, )23 (6, ).

= lim||g2(t2, 0-¢,0)xf (0-¢,0) — @1(t2, 0-¢, @) %7 (-, )

= 1im; [|@2(t2,0-1,0)To_, o (3 (0-,0)) = 0182, 0-¢,0) o, 0 (3 (6, ) |

= “}Ln”Tw‘PZ(tA' 01, w)x1 (0-1,0) = T 1 (ta, 01, )x3 (6, 0) ||
= li)ILn ”Tw ((pz (t, 0-,0)x1(6-r,0) — @1 (t2, H_tla))x%(e_tla))) ”
sc tlli)rgooll‘pZ(tl' 9_tla))x11 (H—t/l(‘)) - ¢1(tl' B—taw)x%(e—taw)” =0

where ¢ be constant then (8, ¢,) is proximal LRDS. =

Theorem 3.8: Let (0, ¢,) and (0, ¢,) be two RDS's. Then(8, ¢,)and (8, ¢,) are proximal if and only
if (6,9, X ¢,) is proximal.
Proof:

Assume that (6, ¢,) and (6, ¢,) are proximal,
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Let Zl’ZZ € (XQ X YQ) Then Zl = (xl,yl) and Zz = (xZ,yz).

we will use the fact (X? x Y?) x (X2 x YD) = (X2 x X)) x (Y x Y?),and

9 =@, X @, (t, w, (x(e_tla)),y(e_tla)))) = (¢, (t, w,x(G_tAw)) , 07 (t, w,y(e_tlw)))

Then (x1,x,) € X? x X9, (y1,y,) € Y? x Y, By hypothesis there exists a divergent net {t,} in G

and P{w: z,(w) # z,(w)} = 1,and a full measure invariant subset O of Q such that, V w € { we

get,
s (61,0050 (00) — 91(61,0_,0)31(6,0)[| = 0. Anc
liml|g2(t, 0, @)z (6-¢;0) — @2(t2, 0, 0)y2 (6, 0)|| = 0
Then
il (6 6-00)72(0y0) — 960022010
= }fm”‘/’l X 92(t1, 01, 0) (X1(6_1,0), ¥1(0-,)) = 91 X @2(t1, 0-1,0) (%2 (0, @), ¥2 (6, @) |
= lim||g (£, 0, 0)x1 (0-¢, ) = @1(t2, 0-¢, @)1 (6,0 )
+lim|[pz (£, 6,0 )02 (0-,0) — @2 (ta, 9—taw)3’2(9—u“’)”2 =0.

Thus (8, ¢, X ¢,) is proximal.
On the other hand, suppose that (6, ¢, X @,) is proximal. Let z;, z, € X* x Y, Such that z; =
(x1,y1) and z, = (x4, y,). By hypothesis there exist a divergent net {t;} in G and a full measure

invariant subset . of Q such that, V w € {0 we get,
li/{n”‘l’(% 0_1,0)z1(0-1,0) — p(ts, 01, 0) 2, (6, )| = 0.
Since
lim(|o(t2, 0-¢,0) 21 (-, @) — @(ts, 01, 0) 22 (6 0)|| = 0
= lim||g (£, 0, 0)2: (60—, ), @2 (t2, 01, )y1 (-, )1 = [91 (2, 01, )22 (0, ), @2 (83, 01, ) y2 (0, )
= limy |1 (€2, 0-¢,0)%1 (6, 0) =01 (82, 0, 0)x2 (6, 0) ||,
+imy 1| @5(t2, 60—, @)1 (0-¢,0) — 92(t2, 0_¢,@)y2(0_t,w) ll,= 0
since [|; (ta, 6, @)xi, 9i(ta, 8-, @)yil|, = 0, for i = 1,2, then

li/{n”(pl(tl, H_t/lw)xl — (pl(tl, H_taa))xznl =0, and
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lim||¢y (62,6, )y1 = @1(t2,0-,@)2|, = 0

This means that (8, ¢,) and (6, ¢,) are proximal. m

Theorem 3.9:

Let (6,¢,) and (6, ,)be two RDS's. Then (6, ¢, X @,) is distal if and only if either (6, ¢,) or
(6, @,) is distal.

Proof:

Suppose that either (8, ;) or (6, @,) is distal. Let z;,z, € (X® x Y™). Then z; = (x4, x,) and z, =

V1, ¥2)-
We will use the fact (X2 x Y?) x (X x V) = (X2 x XY x (Y x YD), and

@ =91 %0 (1,0, (x(6-,0). ¥(0,0)) ) = (@1 (£.0,%(6-,0)). 02 (.0,3(6,)))
Then (xq,x;) € X2 x X%, (y,,y,) € Y? x Y&, By hypothesis there exists a divergent net {t;} in G

and a full measure invariant subset O of Q such that, v w € § and P{w: z;(w) # z,(w)} = 1 we

have

li/{n”(pl(t,l, 0_¢,)x1(0_¢,0) = @1(tr, 0-,0)x2(6_,)|| >0,
or

li/{n”(pz(t,l, 0_¢,0)y1(0_,0) = @2(t3,0_¢, )y, (6_,w)|| > 0.
Then

limlle(t, 0-,)z1 — @(t2,0-¢,0) 2|

= “,{n”‘l’l(t/‘t» 0_t,w)x1(0-,0) = @1(ta, -, )22 (0, 0) ||,

+ “}J‘”‘PZ(% 0_1,0)y1(0-1,0) = 92(ts, 0-¢,)y2(0-,0)||, > 0.

Thus (8, ¢, X ¢,) is distal.

Conversely, suppose that (8, ¢, X ¢,) is distal. Let z;,z, € X x Y%, z; = (x1,v1)

z, = (x,,y,). By hypothesis there exist a divergent net {t;} in G and a full measure subset Q of Q
such that

li/{n”go(tl, H_tlw)zl - (p(t,b 9—t,1w)22|| > 0.

Since
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li/{n”(p(tl, B_tla))zl — go(t,l, 9—t,10))22||
= limll g1 (82, 0-1,0)1(0-,0) — 91 (2, 0_,0) (6,0,

+ limxllfpz(tﬂ» 9—t,1w)3’1(9—t,1w) - ‘PZ(t/b H—tzw)YZ(g—tAw)Hz >0

Then either
li/_rln”(pl(tl, 01, 0)x1(0-1,0) = 91 (t2, 61, @)% (6, 0)||, > 0,
or
li){n”‘PZ(t/b 0-,)y1(0-1,0) = @2(ts, 0-¢,)y2(6-,0)||, > 0
This means that either (8, ;) or (6, ¢,) is distal. [

Proposition 3.10: If (6, ¢) is a point — distal with x € X a distal point, then each of £ (w) is a

distal point.
Proof: since ) (w) c Yi(w), then for all y € y£(w) imply that y € y£(w), since y is a distal point
(i.e. there exists no point other than itself in m to be proximal to it under (6, ¢)) there for each
x of y{(w) is a distal point. n
Definition 3.11:

If (8, ) an RDS. The pair (x,y) € X® x X% is called regionally proximal if there exist x,, = x, y,, =
y , and a full measure invariant subset 2 of 2 such that, V w € 2 and P{w: x(w) # y(w)} = 1 we
obtain

nl_i)rfoo ” (‘P(tn' H—tn“))xn(g—tnw) —@(ty, H—nw)yn(e—tnw)) ” =0,
Otherwise, is called regionally distal.
Definition 3.12:

An RDS (6, ¢) is called regionally proximal if all pairs of points are regionally proximal, and It is

called regionally distal if all pairs of points are regionally distal .

Proposition 3.13:

Every proximal LRDS is regionally proximal .
Proof:
Assume (8, @) is proximal LRDS and Let (x,y) € X X X.

Define a sequences {x,,} and {y,, } in X by x,, = x and y,, = y, then x,, = x and y,, —» y. Now
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nl—i>r-|r-loo ” ((P (n» Q—n(‘))xn - (,D(TL, g—n(‘))yn) " :

= lim_[[(p(n,6_p@)x = p(n, 6_n)y) || =0

That is (8, @) is regionally proximal. m
Not: By proposition (3.12) thus example (3.3) satisfies the definition (3.11).

Proposition 3.14 : Put (0, ¢1) =1 (6, @,) with T is linear. If (8, ¢,) is regionally proximal RDS,

then (6, ¢,) also.
Proof: Assume that (6, ¢,) is regionally proximal LRDS and let y;, y, € X,. Then there exists
X,,%, € X; such that x; := T;1(y;) and x, := T,;1(y,). By hypothesis there exists x1 — x;, x2 —
x, and a full measure invariant subset O of Q, V w € O and P{w: x;(w) # y;(w),i = 1,2} = 1 such
that
nl_i)n:oo||§01(n: O_nw)xy — 91(n, 0_pw)xi|l = 0.
Set y!=T,(x}) and y? = T, (x2). Since x1 — x; and x2 — x, and T, is continuous foe every
w € Q, then y; — 1, ¥7 — ¥,
Now,
im gz (1, 6_n@)yn = @2(n, 0_nw)yzl
= nl_i)r}rloollfﬂz (n, 0_p )T, (x7) — P2(n, 0_p )T, (XA
= nl_i)rgrloollT(Qn 0_nw, 91(n, 0_pw,%3)) = T(6n 0_nw, p1(n,0_,,x7)) |l

= I [IT(@,01(n,6-30,20)) = T(@,p1(n, 6_0,3D) |

i 1T,y (1 (1, 0,50) = Ty (1 (n, 0, 59)) |

= nl_iH_lOOHTa)((pl (Tl, H—nwﬂxrll) - (pl(n' H—nw' xrzl)) ”

< IIIE C”(pl(nr H—nwﬁxrll) - (,01(77—, H—nw;x%) ” = 01
n—+oo

where ¢ be constant. Thus
nl—ig-loo”(pz (Tl, 9—n0))%% - (Pz(n' g—nw)yr%” =0

hence (0, ¢,) is regionally proximal RDS. =

Theorem 3.15 :
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Let (6, ¢,) and (6, ¢,) be two LRDSs. Then (6, ¢,) and (8, ¢,) are regionally proximal if and only
if (6, p; X ;) is regionall proximal .

Proof: Assume that (6, ¢,) and (8, ¢,) are regionally proximal.

Let (z,z,) E(X XY) X (X XY).

Then z; = (x1,y1) and z; = (xz, ¥2).

Infact, (X XY) X (X xY)=XxX) X ((YXxXY).

Such that (y;,v,) € Y XY, and (x;,x;) € X X X and by hypothesis there exists x; — x,

x2 — x, and yt — y;, y2 — y, and P{w: z; (w) # z,(w)} = 1, and a full measure invariant subset

Q of Qsuchthat, vw € Q lirE llo1(n, 6_pw)xi — @1(n, 0_,w)xz|| = 0
n—+oo

and lim [lg1(n,0_n@)yn — @1(1n, 6_n@)ynll = 0
Set z1 = (xl,v}), and z2 = (x2,y2), such that zl — (x1,v1), 22 — (x3,v2)
Now,
lim ||(§01 X 02) (1, 0_pw)zy — (91 X 92) (0, 0_ )74 |
=_lim_I(p1(1, 0_n@)xn, 92(n, 6_n)yn) = (@1(n, 0_nw)xz, @2(1, 6_n)ya)

= nlim [l (@1 (n, 6_pw)xy — @1 (0, O_pw)xi lly +1l @2(n, 0_pw)ys — @2 (n, 6_pw)y)ll2]

= lim_ || (01 (n, 0_n@)h = 91 (n, 0 @)d It Tim 1 92 (n, 6_p0)yi — 92(n, 6_n)yd)
=0+0=0
This means that (6, ¢, X ¢@,) is regionally proximal RDS.

Conversely, since (8, ¢ X @) is regionally proximal RDS.
Then nl_i)m (01 X 92)(, 6_pw)zz — (@1 X 92) (M, O_r )27 |
= _lim_[[(p1(, 0_n@)xy, 92(n, 6 )yn) = (@1(n, 6_n @)Xz, 92(1, 0_n0)y)
= _lim_[ll(¢1(n, 6_pw)xn = p1(n, 0_n@)xz Iy +1l 92 (1, 0_n@)yn = 92(1, 6_n@)yn)|l2]=0
thus
im || (@1, 0_p@)xk = 911, 0_p@)xZ 1= 0,and_lim 1| 95(n, 0_n@)yi = 92(n, 0_n)y3)
=0
Then (6, ¢1) and(8, ¢,) are regionally proximal
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4.Manimality of LRDSs:

Definition4.1: Let (6, ¢) be a LRDS, and A a nonempty random set in X .

(a) A is called minimal if satisfies the following:

1) A is an invariant.

2) A isa closed.

3) no proper subset of A has their properties.

(b) If X itself is a minimal set , then we call (6, ¢) a minimal RDS.

(c) x € X% is called a minimal point if y,(w) is a minimal random set. If every random variable x € X9 is

minimal point, then (6, ) is called pointwise minimal.

A is minimal random set if and only if yf(w) = A(w) , Vx € A(w).
Proof: Suppose that A is a minimal random set then

ot 0_tw)x € A(w),Vx€EALET
Therefore U {p(t,0_w)x:t € T} C A(w), ie., yi(w)c A(w).

So  yi(w) c A(w) =A(w). Since y{(w) is a non-empty invariant set, then yf(w) # @ is an
invariant. Hence yt(w) # @ an invariant, closed set with y{(w) c A(w). Since A is minimal, then
yi(w) = A.
Conversely, suppose that
Yi(w) = A(w), Vx € A.

Then A is non-empty invariant, closed. Let B non-empty invariant, closed and B c A
Letx € Bthenx € A and y{(w) c B(w) thus

vi(w) € B(w) . (D
Since x € A then

¥x (@) = A(w) -(2)
from (1) and (2) we get A(w) < B(w)then A = B then A(w)is minimal.

Theorem 4.3: Let (6, @) be a RDS then y£(w) is minimal if and only if y € y{(w) imply to
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x € yy(w) forall x,y € X.

Proof:

Let £ (w)is minimal. If y € y£(w) , then by Theorem (2.3) yi(w) = ¥{ (), SO x € ¥ (w).
Conversely, suppose that Vy € X:y € yf(w) = x € y{(w). To prove, y{(w) is minimal. We
have y,ﬁ(—w)is non-empty, closed, and invariant random set. let M (w) # @, closed and invariant
subset of y£(w). If y € M(w), theny € y£(w) and by hypothesis, x € y£(w). Since M (w)

is closed and invariant, then )/Jf(_w) c M(w). Thenx € M(w).

In the same way, we prove that y£(w)= M(w). This means that y(w) is minimal. -
Lemmad4.4: If (6,¢) isan LRDSspoint- distal then (6, ¢) is minimal .In specific, a minimal and
distal is a point —distal

Proof: Since (6, ) is a point- distal, then y,ﬁ(_w) = X,V x € X and by Theorem (2.3) then X is
minimal itself, therefor (6, ¢) a minimal.

Now, let (8, ) a minimal then X itself is a minimal, therefor by Theorem (3.2) y{(w) = X ,Vx € X

Since (6, @) is a distal, therefore, every x € X is a distal. [

Definition 4.5: Let (6, ¢) be a LRDS is called to be equicontinuous ifforallt.r.v. € >0, 3
t.r.v. § > 0 such that:

||<p(t, O0_iw)x — (t, H_tw)y” <glw) Vx€EXVy€eBs(x)VteT.

If § = 6(¢) then is said to be uniformly equicontinuous.
Remark Every uniformly equicontinous is equicontinuous.

Definition 4.6: Let (6, ¢) be a LRDS, It is called uniformly distal if for eacht.r.v. € > o, 3
t.r.v. § > 0 such that

|| ‘P(t: H—ta))x - (P(t: H—tw)y” > S((A))
implies that, [lx —y|| > 8(w), Vx,y €X.

Theorem 4.7:
If (6, @) is uniformly equicontinuous then it is a distal.

Proof. Let (8, ¢) be an uniformly equicontinuous and x,, x, € X,
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X1 # x,. There is a random variable € > 0, 3t.r.v. § > 0 such that

ot 6_0)x — @(t,0_10)y| > e(w) , ¥V x € X,Vy € Bs(x),Vt EG. =

References:

[1] J. Auslander, Minimal Flows and Their Extensions, North-Holland Math. Studies Vol. 153.
North-Holland, Amsterdam, 1988.

[2] J. Auslander and X. Dai introduce, The minimality, distality and equicontinuity for semigroup
actions on compact hausdorff spaces, Discrete and continuous dynamical systems, Vol. 39, N. 8,
pp.4647- 4711, 2019.

[3] J. Auslander and N. Markley, locally almost periodic minimal flows, J. Difference Eq. Appl.,
97-109, 2009.

[4] X. Dai and E. Glasner, On universal minimal proximal flows of topological groups, Proc.
Amer. Math. Soc., 147, 1149-1164, 2019.

[5] E. Glasner, Proximal Flows, Lecture Notes in Math., 517, Springer-Verlag, 1976.

[6] C. Igor, Monotone Random Systems Theory and Applications, springer —verlag Berlin

Heidelberg New York, 2002.

[7] A. Ludwig, "Random Dynamical Systems" springer-verlag Berlin Heidelberg New York, 1991.

[8] A. Ludwig; 1., D., Chueshov, Order-Preserving Random Dynamical Systems: Equilibria, attractor,
applications, Dynamics and Stability of System, 265-280, 1998.

[9] W. A. Veech, Point-distal flows, Amer. J. Math., 205-242, 1970.

Acrticle submitted 1 March 2023. Accepted at 29 March.

Published at 30 Jun 2023.

50



