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Abstract. This work aims to study the concepts of proximal, distal, minimal, distil point, regionally 

proximal, equicontinuous and uniformly equicontinuous in the linear random dynamical systems with 

the study of some their properties. 
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1.Introduction.  

               One of the important concepts in dynamical systems is the study of concepts such as 

proximal, distal, minimal, regionally proximal, and uniformly equicontinuous. In 1970, W. A. 

Veech, [9] introduce definition of a point-distal flows. In 1976, E. Glasner [5] provided a definition 

of proximal flows. [1] J. Auslander discusses the concept of "minimal flows and their extensions in 

1988.In 1991, A. Ludwig,[7] introduce “Random Dynamical Systems" and in 1998, A. Ludwig and 

others [8] discusses the Order-Preserving Random Dynamical Systems: Equilibria, attractor, 

applications, Dynamics and Stability of System.[6] In 2002, C. Igor, present a new study on 

"Monotone Random Systems Theory and Applications". [3] In 2009, J. Auslander and N. Markley 

submitted the almost periodic minimal flows''. And many researchers see, for example, [2] and [4]. 

In our work, we will generalize these concepts from deterministic dynamical systems to randomness. 

In particular, we will discuss the concepts of minimality, distal, point-distal, and proximal in linear 

random dynamical systems where the phase space is considered a Banach space. 

The classification of sets is one of the goals of random dynamics. We will be concerned with three 

types of minimal sets: equicontinuous, distal, and point-distal. Point-distal is necessarily minimal [1]. 

That is, "if is point-distal, then it contains no proper" a closed and invariant subset. 
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2. Some concepts on RDSS:  

Here, we collected definitions and notions from the theory of RDSS that we needing our work, (see 

L. Arnold [7,8] and Igore [6]). 

Definition 2.1 [6]: 

 The (𝕋, Ω, ℱ, ℙ, 𝜃) is said to be 𝐦𝐞𝐭𝐫𝐢𝐜 𝐝𝐲𝐧𝐚𝐦𝐢𝐜𝐚𝐥 𝐬𝐲𝐬𝐭𝐞𝐦 (MDS) if  (Ω, ℱ, ℙ) is a probability space 

and the function  𝜃: 𝕋 × Ω → Ω satisfy  

(i) 𝜃 is measurable, 

(ii) 𝜃(0, 𝜔) = 𝜔, for every  𝜔 ∈ Ω,  

(iii) 𝜃𝑡+𝑠(𝜔) = (𝜃𝑡 ∘ 𝜃𝑠)(𝜔) for every  𝜔 ∈ Ω ,  𝑡, 𝑠 ∈ 𝕋 and 

(iv) ℙ(𝜃𝑡𝐹) = ℙ(𝐹) , ∀ 𝐹 ∈ ℱ and ∀ 𝑡 ∈ 𝕋 . 

Definition 2.2 [7]: 

Let 𝑋 be a topological space and 𝜃 be a MDS. A topological random dynamical system on 𝑋 over 𝜃  is a 

function  𝜑: 𝕋 × Ω × 𝑋 → 𝑋, admit the following properties:  

 (i)  𝜑(∙, 𝜔,∙): 𝕋 × 𝑋 → 𝑋 is continuous for every 𝜔 ∈ Ω. 

(ii) The mapping  𝜑(𝑡, 𝜔) ≔ 𝜑(𝑡, 𝜔,⋅): 𝑋 → 𝑋  form a cocycle on 𝜃(⋅), that is satisfy  

      𝜑(0, 𝜔)𝑥 = 𝑥,  ∀ ω ∈ Ω  and for evrey   𝑥 ∈ 𝑋,                                           

      𝜑(𝑡 + 𝑠, 𝜔) = 𝜑(𝑡, 𝜃𝑠𝜔) ∘ 𝜑(𝑠, 𝜔) , ∀  𝑠, 𝑡 ∈ 𝕋, ω ∈ Ω.                               

 Definition 2.3 [7] ( Linear RDSS):  

A linear random dynamical system LRDS is an RDS (𝜃, 𝜑) on  the Banach space 𝑋  such that 𝜑(𝑡, 𝜔)  is 

linear operators of 𝑋, ∀ ω ∈ Ω, 𝑡 ∈ 𝕋. 

 Definition 2.4 [6]: 

Suppose that (𝑋, 𝑑) be a metric space which is a measurable space with Borel 

𝜎 −field ℬ(𝑋) and (Ω, ℱ) be a measurable space. The set-valued function 𝐴: Ω → ℬ(𝑋), 

𝜔 ⟼ 𝐴(𝜔), is a 𝐫𝐚𝐧𝐝𝐨𝐦 𝐬𝐞𝐭 if the mapping 𝜔 ⟼ 𝑑(𝑥, 𝐴(𝜔)) is measurable for each 𝑥 ∈ X. The random 

set 𝐴(𝜔) is called a random  closed(compact) set, if it is closed (compact) for all 𝜔 ∈ Ω. 
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Definition 2.5 (Equivalence of RDS) [ 7, 8 ]: Let(𝜃, 𝜑1) and (𝜃, 𝜑2)  be two RDS over the same MDS 

𝜃 with phase spaces 𝑋1 and 𝑋2 resp. These RDSs are said to be (topologically) equivalent (or 

conjugate) if  there exists a mapping  𝑇: Ω × 𝑋1 ⟶ 𝑋2  with the properties”: 

 (i) The mapping  𝑥 ⟼ 𝑇(𝜔, 𝑥)  is a homeomorphism from 𝑋1 onto 𝑋2,  ∀ 𝜔 ∈ Ω;  

(ii) The mappings ω ⟼ 𝑇(𝜔, 𝑥1) and ω ⟼ 𝑇−1(𝜔, 𝑥2) are measurable, ∀ 𝑥1 ∈ 𝑋1 and  𝑥2 ∈ X2;  

(iii) The cocycles 𝜑1 and 𝜑2 are cohomologous, i. e. 

                𝜑2(𝑡, ω, 𝑇(ω, 𝑥 )) = 𝑇(𝜃𝑡  ω, 𝜑1(𝑡, ω, 𝑥))  for any 𝑥 ∈ 𝑋1 .  

(iv) 𝑇𝜔: 𝑋1 ⟶ 𝑋2 is linear map, ∀ 𝜔 ∈ Ω.  

 

Definition 2.6 [7, 8 ]: 

 Let (𝕋, Ω, ℱ, ℙ, θ) be a MDS. A random variable δ: Ω ⟶ ℝ+ is said to be tempered random variable 

(t.r.v.), if there exists a full measurable subset Ω̃ of Ω such that  lim
n⟶±∞

1
|n|

log+ δ(θnω) = 0, ∀ ω ∈ Ω̃, 

where log+ ≔ max{0, log}. 

Definition 2.7:  

Let (𝜑, 𝜃) be an LRDS, and  𝛾𝑥
𝑡: 𝜔 → 𝐷(𝜔) be a multifunction defined by  

 𝛾𝑥
𝑡(𝜔)= ∪ {𝜑(𝑡, 𝜃−𝑡𝜔)𝑥: 𝑡 ∈ 𝑇} the set 𝛾𝑥

𝑡 is called a trajectory . 

3. Proximal of RDSs.  

In this section, the concepts of proximal, distal, minimal, regionally proximal, and uniformly 

equicontinuous in the LRDSs are studied and mentioning some of their characteristics.   

 

Definition 3.1 : Let (𝜃, 𝜑) be an LRDS. The pair of random variables 𝑥, 𝑦 ∈ 𝑋Ω is called 

𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒍 if there exists a divergent net {𝑡𝜆} in 𝐺 and a full measure invariant subset Ω̃  of Ω 

such that,  ∀ 𝜔 ∈ 𝛺̃ we have 

lim
𝜆

‖𝜑(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑥(𝜃−𝑡𝜆

𝜔) − 𝜑(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑦(𝜃−𝑡𝜆

𝜔)‖ = 0, 

distal otherwise. A random variable  𝑥 is called distal if  𝑥, 𝑦 ∈ 𝑋Ω is proximal only for  𝑥 = 𝑦.  

Definition 3.2: An LRDS (𝜃, 𝜑) is said to be 𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒍 if every pairs of random variables  are proximal, 

distal if all pairs of random variables are distal.  

The set of all pairs of random variable proximal denoted by 

𝓟(𝑋) ≔ {(𝑥, 𝑦) ∈ 𝑋Ω × 𝑋Ω: ∃𝑛𝑒𝑡 {𝑡𝜆} 𝑖𝑛 ℝ: lim
𝜆

‖𝜑(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑥(𝜃−𝑡𝜆

𝜔) − 𝜑(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑦(𝜃−𝑡𝜆

𝜔)‖ = 0} 
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 In particular, if the LRDS is proximal and distal , then 𝑋Ω × 𝑋Ω = ∆𝑥 ,  ∆= {(𝑥, 𝑥): 𝑥 ∈ 𝑋Ω}, hence 

(𝜑, 𝜃) is the trivial on a one-point space.  

Example 3.3 Let (𝜃, 𝜑) be an LRDS defined as follows: 𝑋 = 𝑇 = ℝ and (Ω, ℬ, ℙ) be a probability 

space with Ω = [0,1] , ℬ  be a Borel 𝜎 −algebra and  ℙ is a Lebsegue measure. Define  

    𝜑: ℝ × Ω × ℝ ⟶ ℝ , by  𝜑(𝑡, 𝜔, 𝑥) = 𝑡𝑥 and  𝜃: ℝ × Ω ⟶ Ω by 𝜃(𝑡, 𝜔) = 𝜔 .Then (𝜃, 𝜑) is proximal. 

 Lemma 3.4: The LRDS (𝜃, 𝜑)  is distal if and only if 𝑃(𝑋) = ∆. 

Proof. Let(𝜃, 𝜑) be distal then all 𝑥, 𝑦 ∈ 𝑋Ω are distal, thus 

 lim
𝜆

‖𝜑(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑥(𝜃−𝑡𝜆

𝜔) − 𝜑(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑦(𝜃−𝑡𝜆

𝜔)‖ > 0, (i.e. the is no 𝑥 ≠ 𝑦 ∈ 𝑋Ω 

Such that  

               lim
𝜆

‖𝜑(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑥(𝜃−𝑡𝜆

𝜔) − 𝜑(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑦(𝜃−𝑡𝜆

𝜔)‖ = 0, then 𝑥 = 𝑦, thus 𝑃(𝑋)contain only ∆  

               Now 

               Let 𝑃(𝑋) = ∆,therefor for all 𝑥 ≠ 𝑦 then   lim
𝜆

‖𝜑(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑥(𝜃−𝑡𝜆

𝜔) − 𝜑(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑦(𝜃−𝑡𝜆

𝜔)‖ ≠ 0   

               Thus, lim
𝜆

‖𝜑(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑥(𝜃−𝑡𝜆

𝜔) − 𝜑(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑦(𝜃−𝑡𝜆

𝜔)‖ > 0  for all 𝑥, 𝑦 ∈ 𝑋Ω then all pairs of  

               random variables  are distal.  

Definition3.5 : Let (𝜃, 𝜑) be a LRDS . Then  

(a) 𝑥 ∈ 𝑋Ω is called a 𝒅𝒊𝒔𝒕𝒂𝒍 𝒑𝒐𝒊𝒏𝒕 of (𝜃, 𝜑) if there exists no point other than itself in 𝛾𝑥
𝑡(𝜔)̅̅ ̅̅ ̅̅ ̅̅  to be 

proximal to it under (𝜃, 𝜑).  

(b) (𝜃, 𝜑)  is called point-distal if there exists a random variable 𝑥 ∈ 𝑋Ω such that 

 (1) 𝑥 is distal, and  

 (2)  𝛾𝑥
𝑡(𝜔)̅̅ ̅̅ ̅̅ ̅̅ = 𝑋. 

 Lemma3.6: If (𝜃, 𝜑1) and (𝜃, 𝜑2) be two LRDS's then so is  (𝜃, 𝜑1 × 𝜑2), where  

𝜑1 × 𝜑2(𝑡, 𝜔, (𝑥, 𝑦)) = (𝜑1(𝑡, 𝜔, 𝑥), 𝜑2(𝑡, 𝜔, 𝑦)) 

Proof 

Put 𝜑 ≔ 𝜑1 × 𝜑2: ℝ × Ω × (𝑋1 × 𝑋2) → ((𝑋1 × 𝑋2) 

Defined by 

 𝜑(𝑡, 𝜔)(𝑥, 𝑦)) ≔ 𝜑1 × 𝜑2(𝑡, 𝜔, (𝑥, 𝑦)) = (𝜑1 (𝑡, 𝜔)𝑥, 𝜑2(𝑡, 𝜔)𝑦), ∀ 𝑥 ∈ 𝑋1 and  𝑦 ∈ 𝑋2  

i) 𝜑(0, 𝜔)(𝑥, 𝑦)) = (𝜑1 (0, 𝜔)𝑥, 𝜑2(0, 𝜔)𝑦) 
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                               = (𝑥, 𝑦) 

ii) 𝜑(𝑡, 𝜔)(𝑥, 𝑦))  is a measurable  

iii) 𝜑(𝑡 + 𝑠, 𝜔)(𝑥, 𝑦)) = (𝜑1 (𝑡 + 𝑠, 𝜔)𝑥, 𝜑2(𝑡 + 𝑠, 𝜔)𝑦) 

                                = (𝜑1 (𝑡, 𝜃𝑠𝜔) ∘ (𝜑1 (𝑠, 𝜔)𝑥, 𝜑2(𝑡, 𝜃𝑠𝜔) ∘ (𝜑2(𝑠, 𝜔)𝑦) 

                                = 𝜑(𝑡, 𝜃𝑠𝜔)(𝜑1 (𝑠, 𝜔)𝑥, 𝜑2(𝑠, 𝜔)𝑦) 

                                = 𝜑(𝑡, 𝜃𝑠𝜔)(𝜑(𝑠, 𝜔)(𝑥, 𝑦)) 

Theorem 3.7: Let (𝜃, 𝜑1) ≅𝑇 (𝜃, 𝜑2)  with  𝑇 is linear. If  (𝜃, 𝜑1) is proximal LRDS, then so is 

(𝜃, 𝜑2). 

Proof: Assume that  (𝜃, 𝜑1) is proximal LRDS. Let 𝑥1
2, 𝑥2

2 ∈ 𝑋2
Ω. Then there exists  𝑥1

1, 𝑥2
1 ∈ 𝑋1

Ω such 

that  𝑥1
1 ≔ 𝑇−1(𝑥1

2) and 𝑥2
1 ≔ T−1(𝑥2

2). By hypothesis there exists a divergent net {𝑡𝜆} in 𝐺 and 

ℙ{𝜔: 𝑥𝑗
𝑖(𝜔) ≠ 𝑦𝑗

𝑖(𝜔), 𝑖, 𝑗 = 1,2} = 1 and a full measure invariant subset Ω̂  of  Ω such that, ∀ 𝜔 ∈ Ω̂ 

we have 

        lim
𝜆

‖𝜑1(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑥1

1(𝜃−𝑡𝜆
𝜔) − 𝜑1(𝑡𝜆, 𝜃−𝑡𝜆

𝜔)𝑥2
1(𝜃−𝑡𝜆

𝜔)‖ = 0. 

Now,    

      lim
𝜆

‖𝜑2(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑥1

2(𝜃−𝑡𝜆
𝜔) − 𝜑1(𝑡𝜆, 𝜃−𝑡𝜆

𝜔)𝑥2
2(𝜃−𝑡𝜆

𝜔)‖. 

     = lim
𝜆

‖𝜑2(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑥1

2(𝜃−𝑡𝜆
𝜔) − 𝜑1(𝑡𝜆, 𝜃−𝑡𝜆

𝜔)𝑥2
2(𝜃−𝑡𝜆

𝜔)‖ 

= lim𝜆 ‖𝜑2(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑇𝜃−𝑡𝜆

𝜔 (𝑥1
1(𝜃−𝑡𝜆

𝜔)) − 𝜑1(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑇𝜃−𝑡𝜆

𝜔(𝑥2
1(𝜃−𝑡𝜆

𝜔))‖ 

   = lim
𝜆

‖𝑇𝜔𝜑2(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑥1

1(𝜃−𝑡𝜆
𝜔) − 𝑇𝜔𝜑1(𝑡𝜆, 𝜃−𝑡𝜆

𝜔)𝑥2
1(𝜃−𝑡𝜆

𝜔)‖ 

   = lim
𝜆

‖𝑇𝜔 (𝜑2(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑥1

1(𝜃−𝑡𝜆
𝜔) − 𝜑1(𝑡𝜆, 𝜃−𝑡𝜆

𝜔)𝑥2
1(𝜃−𝑡𝜆

𝜔))‖ 

   ≤ 𝑐 lim
𝑡𝜆⟶+∞

‖𝜑2(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑥1

1(𝜃−𝑡𝜆
𝜔) − 𝜑1(𝑡𝜆, 𝜃−𝑡𝜆

𝜔)𝑥2
1(𝜃−𝑡𝜆

𝜔)‖ = 0 

where 𝑐 be constant then (𝜃, 𝜑2) is proximal LRDS. ■ 

Theorem 3.8: Let (𝜃, 𝜑1) and (𝜃, 𝜑2) be two RDS's. Then(𝜃, 𝜑1)and (𝜃, 𝜑2) are “proximal if and only 

if” (𝜃, 𝜑1 × 𝜑2) is proximal. 

Proof: 

Assume that (𝜃, 𝜑1)  and (𝜃, 𝜑2) are proximal, 
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 Let  𝑧1, 𝑧2 ∈ (𝑋Ω × 𝑌Ω). Then 𝑧1 = (𝑥1, 𝑦1) and 𝑧2 = (𝑥2, 𝑦2). 

 we will use the fact (𝑋Ω × 𝑌Ω) × (𝑋Ω × 𝑌Ω) ≅ (𝑋Ω × 𝑋Ω) × (𝑌Ω × 𝑌Ω),and  

 φ ≔ 𝜑1 × 𝜑2 (𝑡, 𝜔, (𝑥(𝜃−𝑡𝜆
𝜔), 𝑦(𝜃−𝑡𝜆

𝜔))) = (𝜑1 (𝑡, 𝜔, 𝑥(𝜃−𝑡𝜆
𝜔)) , 𝜑2 (𝑡, 𝜔, 𝑦(𝜃−𝑡𝜆

𝜔))) 

Then  (𝑥1, 𝑥2) ∈ 𝑋Ω × 𝑋Ω, (𝑦1, 𝑦2) ∈ 𝑌Ω × 𝑌Ω. By hypothesis there exists a divergent net {𝑡𝜆} in 𝐺 

and ℙ{𝜔: 𝑧1(𝜔) ≠ 𝑧2(𝜔)} = 1, and a full measure invariant subset Ω̃  of Ω such that, ∀ 𝜔 ∈ Ω̃ we 

get, 

lim
𝜆

‖𝜑1(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑥1(𝜃−𝑡𝜆

𝜔) − 𝜑1(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑦1(𝜃−𝑡𝜆

𝜔)‖ = 0.    And 

lim
𝜆

‖𝜑2(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑥2(𝜃−𝑡𝜆

𝜔) − 𝜑2(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑦2(𝜃−𝑡𝜆

𝜔)‖ = 0 

Then  

lim
𝜆

‖𝜑(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑧1(𝜃−𝑡𝜆

𝜔) − 𝜑(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑧2(𝜃−𝑡𝜆

𝜔)‖ 

= lim
𝜆

‖𝜑1 × 𝜑2(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)(𝑥1(𝜃−𝑡𝜆

𝜔), 𝑦1(𝜃−𝑡𝜆
𝜔)) − 𝜑1 × 𝜑2(𝑡𝜆, 𝜃−𝑡𝜆

𝜔)(𝑥2(𝜃−𝑡𝜆
𝜔), 𝑦2(𝜃−𝑡𝜆

𝜔))‖ 

= lim
𝜆

‖𝜑1(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑥1(𝜃−𝑡𝜆

𝜔) − 𝜑1(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑦1(𝜃−𝑡𝜆

𝜔)‖ 
1
 

+ lim
𝜆

‖𝜑2(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑥2(𝜃−𝑡𝜆

𝜔) − 𝜑2(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑦2(𝜃−𝑡𝜆

𝜔)‖
2

= 0 . 

Thus (𝜃, 𝜑1 × 𝜑2) is proximal. 

On the other hand, suppose that (𝜃, 𝜑1 × 𝜑2) is proximal. Let 𝑧1, 𝑧2 ∈ 𝑋Ω × 𝑌Ω. Such that 𝑧1 =

(𝑥1, 𝑦1) and 𝑧2 = (𝑥2, 𝑦2). By hypothesis there exist a divergent net {𝑡𝜆} in 𝐺 and a full measure 

invariant subset Ω̃  of Ω  such that, ∀ 𝜔 ∈ Ω̃ we get, 

lim
𝜆

‖𝜑(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑧1(𝜃−𝑡𝜆

𝜔) − 𝜑(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑧2(𝜃−𝑡𝜆

𝜔)‖ = 0. 

Since  

lim
𝜆

‖𝜑(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑧1(𝜃−𝑡𝜆

𝜔) − 𝜑(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑧2(𝜃−𝑡𝜆

𝜔)‖ = 0  

 = lim
𝜆

‖𝜑1(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑥1(𝜃−𝑡𝜆

𝜔), 𝜑2(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑦1(𝜃−𝑡𝜆

𝜔)]− [𝜑1(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑥2(𝜃−𝑡𝜆

𝜔), 𝜑2(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑦2(𝜃−𝑡𝜆

𝜔))‖
 
 

= lim𝜆‖𝜑1(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑥1(𝜃−𝑡𝜆

𝜔)−𝜑1(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑥2(𝜃−𝑡𝜆

𝜔) ‖
1

    

+lim𝜆 ∥ 𝜑2(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑦1(𝜃−𝑡𝜆

𝜔) − 𝜑2(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑦2(𝜃−𝑡𝜆

𝜔) ∥2= 0 

Since ‖𝜑𝑖(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑥𝑖, 𝜑𝑖(𝑡𝜆, 𝜃−𝑡𝜆

𝜔)𝑦𝑖‖𝑖
≥ 0, for 𝑖 = 1,2, then 

lim
𝜆

‖𝜑1(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑥1 − 𝜑1(𝑡𝜆, 𝜃−𝑡𝜆

𝜔)𝑥2‖
1

= 0, and 
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 lim
𝜆

‖𝜑1(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑦1 − 𝜑1(𝑡𝜆, 𝜃−𝑡𝜆

𝜔)𝑦2‖
2

= 0 

This means that (𝜃, 𝜑1) and (𝜃, 𝜑2) are proximal. ■ 

Theorem 3.9:  

Let (𝜃, 𝜑1) and (𝜃, 𝜑2)be two RDS's. Then (𝜃, 𝜑1 × 𝜑2) is distal if and only if either (𝜃, 𝜑1) or  

(𝜃, 𝜑2) is distal.   

 Proof: 

Suppose that either  (𝜃, 𝜑1) or  (𝜃, 𝜑2) is distal. Let  𝑧1, 𝑧2 ∈ (𝑋Ω × 𝑌Ω). Then 𝑧1 = (𝑥1, 𝑥2) and 𝑧2 =

(𝑦1, 𝑦2).  

We will use the fact   (𝑋Ω × 𝑌Ω) × (𝑋Ω × 𝑌Ω) ≅ (𝑋Ω × 𝑋Ω) × (𝑌Ω × 𝑌Ω), and 

φ ≔ 𝜑1 × 𝜑2 (𝑡, 𝜔, (𝑥(𝜃−𝑡𝜆
𝜔), 𝑦(𝜃−𝑡𝜆

𝜔))) = (𝜑1 (𝑡, 𝜔, 𝑥(𝜃−𝑡𝜆
𝜔)) , 𝜑2 (𝑡, 𝜔, 𝑦(𝜃−𝑡𝜆

𝜔))) 

Then (𝑥1, 𝑥2) ∈ 𝑋Ω × 𝑋Ω, (𝑦1, 𝑦2) ∈ 𝑌Ω × 𝑌Ω. By hypothesis there exists a divergent net {𝑡𝜆} in 𝐺 

and a full measure invariant subset Ω̃  of Ω such that,  ∀ 𝜔 ∈ Ω̃ and ℙ{𝜔: 𝑧1(𝜔) ≠ 𝑧2(𝜔)} = 1 we 

have 

lim
𝜆

‖𝜑1(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑥1(𝜃−𝑡𝜆

𝜔) − 𝜑1(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑥2(𝜃−𝑡𝜆

𝜔)‖ > 0 , 

 or 

lim
𝜆

‖𝜑2(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑦1(𝜃−𝑡𝜆

𝜔) − 𝜑2(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑦2(𝜃−𝑡𝜆

𝜔)‖ > 0. 

Then  

lim
𝜆

‖𝜑(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑧1 − 𝜑(𝑡𝜆, 𝜃−𝑡𝜆

𝜔)𝑧2‖  

= lim
𝜆

‖𝜑1(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑥1(𝜃−𝑡𝜆

𝜔) − 𝜑1(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑥2(𝜃−𝑡𝜆

𝜔)‖
1
  

+ lim
𝜆

‖𝜑2(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑦1(𝜃−𝑡𝜆

𝜔) − 𝜑2(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑦2(𝜃−𝑡𝜆

𝜔)‖
2

> 0 . 

Thus (𝜃, 𝜑1 × 𝜑2) is distal. 

Conversely, suppose that (𝜃, 𝜑1 × 𝜑2) is distal. Let 𝑧1, 𝑧2 ∈ 𝑋Ω × 𝑌Ω, 𝑧1 = (𝑥1, 𝑦1) 

𝑧2 = (𝑥2, 𝑦2). By hypothesis there exist a divergent net {𝑡𝜆} in 𝐺 and a “full measure subset” Ω̃ of  Ω 

such that  

lim
𝜆

‖𝜑(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑧1 − 𝜑(𝑡𝜆, 𝜃−𝑡𝜆

𝜔)𝑧2‖ > 0. 

Since  
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lim
𝜆

‖𝜑(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑧1 − 𝜑(𝑡𝜆, 𝜃−𝑡𝜆

𝜔)𝑧2‖  

= lim
𝜆

‖𝜑1(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑥1(𝜃−𝑡𝜆

𝜔) − 𝜑1(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑥2(𝜃−𝑡𝜆

𝜔)‖
1
  

+ limλ‖𝜑2(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑦1(𝜃−𝑡𝜆

𝜔) − 𝜑2(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑦2(𝜃−𝑡𝜆

𝜔)‖
2

> 0 

Then either  

lim
𝜆

‖𝜑1(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑥1(𝜃−𝑡𝜆

𝜔) − 𝜑1(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑥2(𝜃−𝑡𝜆

𝜔)‖
1

> 0, 

 or  

lim
𝜆

‖𝜑2(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑦1(𝜃−𝑡𝜆

𝜔) − 𝜑2(𝑡𝜆, 𝜃−𝑡𝜆
𝜔)𝑦2(𝜃−𝑡𝜆

𝜔)‖
2

> 0 

This means that either  (𝜃, 𝜑1) or  (𝜃, 𝜑2) is distal.                       ■ 

Proposition 3.10: If (𝜃, 𝜑) is a point − distal with 𝑥 ∈ 𝑋Ω  a distal point, then each of 𝛾𝑥
𝑡(𝜔) is a 

distal point. 

 Proof: since 𝛾𝑦
𝑡(𝜔) ⊂  𝛾𝑥

𝑡(𝜔)̅̅ ̅̅ ̅̅ ̅̅ , then for all 𝑦 ∈ 𝛾𝑥
𝑡(𝜔) imply that 𝑦 ∈ 𝛾𝑥

𝑡(𝜔)̅̅ ̅̅ ̅̅ ̅̅ , since 𝑦 is a distal point 

(i.e. there exists no point other than itself in 𝛾𝑥
𝑡(𝜔)̅̅ ̅̅ ̅̅ ̅̅  to be proximal to it under (𝜃, 𝜑)) there for  each 

𝑥 of 𝛾𝑥
𝑡(𝜔) is a distal point.                           ■  

Definition 3.11: 

If (𝜃, 𝜑) an RDS. The pair (𝑥, 𝑦) ∈ 𝑋Ω × 𝑋Ω is called regionally proximal if there exist 𝑥𝑛 → 𝑥, 𝑦𝑛 →

𝑦 , and a full measure invariant subset 𝛺̃  of 𝛺 such that, ∀ 𝜔 ∈ 𝛺̃ and ℙ{𝜔: 𝑥(𝜔) ≠ 𝑦(𝜔)} = 1 we 

obtain   

lim
𝑛⟶+∞

║ (𝜑(𝑡𝑛, 𝜃−𝑡𝑛
𝜔)𝑥𝑛(𝜃−𝑡𝑛

𝜔) − 𝜑(𝑡𝑛, 𝜃−𝑛𝜔)𝑦𝑛(𝜃−𝑡𝑛
𝜔))║ = 0, 

Otherwise, is called 𝒓𝒆𝒈𝒊𝒐𝒏𝒂𝒍𝒍𝒚  𝒅𝒊𝒔𝒕𝒂𝒍. 

Definition 3.12: 

An RDS (𝜃, 𝜑) is called regionally proximal if all pairs of points are regionally proximal, and It is 

called” regionally distal if all pairs of points are regionally distal”. 

Proposition 3.13: 

“Every proximal LRDS is regionally proximal”. 

Proof: 

Assume (𝜃, 𝜑) is proximal LRDS and Let (𝑥, 𝑦) ∈ 𝑋 × 𝑋.  

Define a sequences {𝑥𝑛} and {𝑦𝑛} in 𝑋 by  𝑥𝑛 = 𝑥 and 𝑦𝑛 = 𝑦, then 𝑥𝑛 → 𝑥 and 𝑦𝑛 → 𝑦. Now 
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lim
𝑛⟶+∞

║(𝜑(𝑛, 𝜃−𝑛𝜔)𝑥𝑛 − 𝜑(𝑛, 𝜃−𝑛𝜔)𝑦𝑛)║. 

= lim
𝑛⟶+∞

║(𝜑(𝑛, 𝜃−𝑛𝜔)𝑥 − 𝜑(𝑛, 𝜃−𝑛𝜔)𝑦)║ = 0 

That is (𝜃, 𝜑) is regionally proximal. ■ 

Not: By proposition (3.12) thus example (3.3) satisfies the definition (3.11).  

Proposition 3.14 : Put (𝜃, 𝜑1) ≅𝑇 (𝜃, 𝜑2)  with  𝑇 is linear. If  (𝜃, 𝜑1) is regionally proximal RDS, 

then (𝜃, 𝜑2) also. 

Proof: Assume that (𝜃, 𝜑1) is regionally proximal LRDS and let 𝑦1, 𝑦2 ∈ 𝑋2. Then there exists  

𝑥1, 𝑥2 ∈ 𝑋1 such that  𝑥1 ≔ 𝑇𝜔
−1(𝑦1) and 𝑥2 ≔ 𝑇𝜔

−1(𝑦2). By hypothesis there exists 𝑥𝑛
1 ⟶ 𝑥1, 𝑥𝑛

2 ⟶

𝑥2 and a full measure invariant subset Ω̂ of Ω, ∀ 𝜔 ∈ Ω̂ and ℙ{𝜔: 𝑥𝑖(𝜔) ≠ 𝑦𝑖(𝜔), 𝑖 = 1,2} = 1 such 

that 

lim
𝑛⟶+∞

‖𝜑1(𝑛, 𝜃−𝑛𝜔)𝑥𝑛
1 − 𝜑1(𝑛, 𝜃−𝑛𝜔)𝑥𝑛

2‖ = 0. 

Set  𝑦𝑛
1 = 𝑇𝜔(𝑥𝑛

1) and 𝑦𝑛
2 = 𝑇𝜔(𝑥𝑛

2). Since  𝑥𝑛
1 ⟶ 𝑥1 and 𝑥𝑛

2 ⟶ 𝑥2 and  𝑇𝜔 is continuous foe every 

𝜔 ∈ Ω, then  𝑦𝑛
1 ⟶ 𝑦1, 𝑦𝑛

2 ⟶ 𝑦2 

Now,    

    lim
𝑛⟶+∞

‖𝜑2(𝑛, 𝜃−𝑛𝜔)𝑦𝑛
1 − 𝜑2(𝑛, 𝜃−𝑛𝜔)𝑦𝑛

2‖ 

                      = lim
𝑛⟶+∞

‖𝜑2(𝑛, 𝜃−𝑛𝜔)𝑇𝜔(𝑥𝑛
1) − 𝜑2(𝑛, 𝜃−𝑛𝜔)𝑇𝜔(𝑥𝑛

2)‖ 

 = lim
𝑛⟶+∞

‖𝑇(𝜃𝑛 𝜃−𝑛𝜔, 𝜑1(𝑛, 𝜃−𝑛𝜔, 𝑥𝑛
1))   − 𝑇(𝜃𝑛 𝜃−𝑛𝜔, 𝜑1(𝑛, 𝜃−𝑛𝜔, 𝑥𝑛

2))  ‖ 

                      = lim
𝑛⟶+∞

‖𝑇(𝜔, 𝜑1(𝑛, 𝜃−𝑛𝜔, 𝑥𝑛
1))   − 𝑇(𝜔, 𝜑1(𝑛, 𝜃−𝑛𝜔, 𝑥𝑛

2))  ‖ 

                      = lim
𝑛⟶+∞

‖𝑇𝜔(𝜑1(𝑛, 𝜃−𝑛𝜔, 𝑥𝑛
1))   − 𝑇𝜔(𝜑1(𝑛, 𝜃−𝑛𝜔, 𝑥𝑛

2))  ‖ 

                         = lim
𝑛⟶+∞

‖𝑇𝜔(𝜑1(𝑛, 𝜃−𝑛𝜔, 𝑥𝑛
1)   − 𝜑1(𝑛, 𝜃−𝑛𝜔, 𝑥𝑛

2))  ‖ 

                        ≤ lim
𝑛⟶+∞

𝑐‖𝜑1(𝑛, 𝜃−𝑛𝜔, 𝑥𝑛
1)   − 𝜑1(𝑛, 𝜃−𝑛𝜔, 𝑥𝑛

2) ‖ = 0,  

where 𝑐 be constant. Thus  

lim
𝑛⟶+∞

‖𝜑2(𝑛, 𝜃−𝑛𝜔)𝑦𝑛
1 − 𝜑2(𝑛, 𝜃−𝑛𝜔)𝑦𝑛

2‖ = 0 

hence (𝜃, 𝜑2)“is regionally proximal RDS”.      ■ 

Theorem 3.15 :  
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Let (𝜃, 𝜑1) and (𝜃, 𝜑2) be two LRDSs. Then (𝜃, 𝜑1) and (𝜃, 𝜑2) are regionally proximal “if and only 

if”(𝜃, 𝜑1 × 𝜑2) is regionall proximal”. 

 Proof: Assume that (𝜃, 𝜑1) and (𝜃, 𝜑2) are regionally proximal.                

 Let (𝑧1, 𝑧2) ∈ (𝑋 × 𝑌) × (𝑋 × 𝑌).  

Then 𝑧1 = (𝑥1, 𝑦1) and 𝑧2 = (𝑥2, 𝑦2).  

In fact,  (𝑋 × 𝑌) × (𝑋 × 𝑌) ≅ (X × X) × (Y × Y). 

Such that  (𝑦1, 𝑦2) ∈ Y × Y, and  (𝑥1, 𝑥2) ∈ X × X and by hypothesis there exists 𝑥𝑛
1 ⟶ 𝑥1, 

𝑥𝑛
2 ⟶ 𝑥2 and 𝑦𝑛

1 ⟶ 𝑦1, 𝑦𝑛
2 ⟶ 𝑦2 and ℙ{𝜔: 𝑧1(𝜔) ≠ 𝑧2(𝜔)} = 1, and a full measure invariant subset 

Ω̂  of Ω such that, ∀ 𝜔 ∈ Ω̂ lim
𝑛⟶+∞

‖𝜑1(𝑛, 𝜃−𝑛𝜔)𝑥𝑛
1 − 𝜑1(𝑛, 𝜃−𝑛𝜔)𝑥𝑛

2‖ = 0                             

and         lim
𝑛⟶+∞

‖𝜑1(𝑛, 𝜃−𝑛𝜔)𝑦𝑛
1 − 𝜑1(𝑛, 𝜃−𝑛𝜔)𝑦𝑛

2‖ = 0 

Set  𝑧𝑛
1 = (𝑥𝑛

1, 𝑦𝑛
1), and 𝑧𝑛

2 = (𝑥𝑛
2, 𝑦𝑛

2), such that  𝑧𝑛
1 ⟶ (𝑥1, 𝑦1), 𝑧𝑛

2 ⟶ (𝑥2, 𝑦2)  

Now,    

lim
𝑛⟶+∞

‖(𝜑1 × 𝜑2)(𝑛, 𝜃−𝑛𝜔)𝑧𝑛
1 − (𝜑1 × 𝜑2)(𝑛, 𝜃−𝑛𝜔)𝑧𝑛

2‖ 

= lim
𝑛⟶+∞

‖(𝜑1(𝑛, 𝜃−𝑛𝜔)𝑥𝑛
1, 𝜑2(𝑛, 𝜃−𝑛𝜔)𝑦𝑛

1) − (𝜑1(𝑛, 𝜃−𝑛𝜔)𝑥𝑛
2, 𝜑2(𝑛, 𝜃−𝑛𝜔)𝑦𝑛

2)‖ 

= lim
𝑛⟶+∞

[‖(𝜑1(𝑛, 𝜃−𝑛𝜔)𝑥𝑛
1 − 𝜑1(𝑛, 𝜃−𝑛𝜔)𝑥𝑛

2 ∥1 +∥ 𝜑2(𝑛, 𝜃−𝑛𝜔)𝑦𝑛
1 − 𝜑2(𝑛, 𝜃−𝑛𝜔)𝑦𝑛

2)‖2] 

= lim
𝑛⟶+∞

‖(𝜑1(𝑛, 𝜃−𝑛𝜔)𝑥𝑛
1 − 𝜑1(𝑛, 𝜃−𝑛𝜔)𝑥𝑛

2 ∥1+ lim
𝑛⟶+∞

∥ 𝜑2(𝑛, 𝜃−𝑛𝜔)𝑦𝑛
1 − 𝜑2(𝑛, 𝜃−𝑛𝜔)𝑦𝑛

2)‖

= 0 + 0 = 0 

This means that (𝜃, 𝜑1 × 𝜑2) is regionally proximal RDS. 

Conversely, since (𝜃, 𝜑1 × 𝜑2) is regionally proximal RDS. 

Then  lim
𝑛⟶+∞

‖(𝜑1 × 𝜑2)(𝑛, 𝜃−𝑛𝜔)𝑧𝑛
1 − (𝜑1 × 𝜑2)(𝑛, 𝜃−𝑛𝜔)𝑧𝑛

2‖ 

= lim
𝑛⟶+∞

‖(𝜑1(𝑛, 𝜃−𝑛𝜔)𝑥𝑛
1, 𝜑2(𝑛, 𝜃−𝑛𝜔)𝑦𝑛

1) − (𝜑1(𝑛, 𝜃−𝑛𝜔)𝑥𝑛
2, 𝜑2(𝑛, 𝜃−𝑛𝜔)𝑦𝑛

2)‖ 

= lim
𝑛⟶+∞

[‖(𝜑1(𝑛, 𝜃−𝑛𝜔)𝑥𝑛
1 − 𝜑1(𝑛, 𝜃−𝑛𝜔)𝑥𝑛

2 ∥1 +∥ 𝜑2(𝑛, 𝜃−𝑛𝜔)𝑦𝑛
1 − 𝜑2(𝑛, 𝜃−𝑛𝜔)𝑦𝑛

2)‖2]=0  

thus  

lim
𝑛⟶+∞

‖(𝜑1(𝑛, 𝜃−𝑛𝜔)𝑥𝑛
1 − 𝜑1(𝑛, 𝜃−𝑛𝜔)𝑥𝑛

2 ∥1= 0, 𝑎𝑛𝑑 lim
𝑛⟶+∞

 ∥ 𝜑2(𝑛, 𝜃−𝑛𝜔)𝑦𝑛
1 − 𝜑2(𝑛, 𝜃−𝑛𝜔)𝑦𝑛

2)‖

= 0 

Then (𝜃, 𝜑1) and(𝜃, 𝜑2) are regionally proximal  
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4.Manimality of LRDSs:  

Definition4.1: Let (𝜃, 𝜑) be a LRDS, and 𝐴 a nonempty random set in 𝑋 .  

(a) 𝐴 is called minimal if satisfies the following: 

             1) 𝐴 is an invariant. 

             2) 𝐴  is a closed. 

             3) no proper subset of 𝐴 has their properties. 

             (b) If 𝑋 itself is a minimal set , then we call (𝜃, 𝜑) a 𝒎𝒊𝒏𝒊𝒎𝒂𝒍 RDS. 

 (c) 𝑥 ∈ 𝑋Ω is called a 𝒎𝒊𝒏𝒊𝒎𝒂𝒍 𝒑𝒐𝒊𝒏𝒕 if  𝛾𝑥(𝜔)̅̅ ̅̅ ̅̅ ̅̅  is a minimal random set. If every random variable  𝑥 ∈ 𝑋Ω  is 

minimal point, then (𝜃, 𝜑) is called pointwise minimal. 

 

  Theorem 4.2: 

𝐴 is minimal random set if and only if 𝛾𝑥
𝑡(𝜔)̅̅ ̅̅ ̅̅ ̅̅  = 𝐴(𝜔) , ∀𝑥 ∈ 𝐴(𝜔). 

Proof:  Suppose that 𝐴 is a minimal random set then  

𝜑(𝑡, 𝜃−𝑡𝜔)𝑥 ∈ 𝐴(𝜔), ∀ 𝑥 ∈ 𝐴, 𝑡 ∈ 𝑇 

Therefore  ∪ {𝜑(𝑡, 𝜃−𝑡𝜔)𝑥 ∶ 𝑡 ∈ 𝑇} ⊂ 𝐴(𝜔), i.e.,  𝛾𝑥
𝑡(𝜔) ⊂ 𝐴(𝜔). 

So      𝛾𝑥
𝑡(𝜔)̅̅ ̅̅ ̅̅ ̅̅ ⊂ 𝐴(𝜔) ̅̅ ̅̅ ̅̅ ̅̅ =𝐴(𝜔). Since  𝛾𝑥

𝑡(𝜔) is a non-empty invariant set, then 𝛾𝑥
𝑡(𝜔) ̅̅ ̅̅ ̅̅ ̅̅ ≠ ∅ is an 

invariant. Hence  𝛾𝑥
𝑡(𝜔)̅̅ ̅̅ ̅̅ ̅̅  ≠ ∅ an invariant, closed set with  𝛾𝑥

𝑡(𝜔)̅̅ ̅̅ ̅̅ ̅̅ ⊂ 𝐴(𝜔). Since 𝐴 is minimal, then 

𝛾𝑥
𝑡(𝜔)̅̅ ̅̅ ̅̅ ̅̅ = 𝐴. 

Conversely, suppose that   

𝛾𝑥
𝑡(𝜔)̅̅ ̅̅ ̅̅ ̅̅ = 𝐴(𝜔), ∀𝑥 ∈ 𝐴.  

Then 𝐴 is non-empty invariant, closed. Let 𝐵 non-empty invariant, closed and 𝐵 ⊂ 𝐴 

Let 𝑥 ∈ 𝐵 then 𝑥 ∈ 𝐴  and  𝛾𝑥
𝑡(𝜔) ⊂ 𝐵(𝜔) thus 

𝛾𝑥
𝑡(𝜔)̅̅ ̅̅ ̅̅ ̅̅ ⊂ 𝐵(𝜔) .                        …(1) 

Since 𝑥 ∈ 𝐴 then 

𝛾𝑥
𝑡(𝜔)̅̅ ̅̅ ̅̅ ̅̅ = 𝐴(𝜔)                          …(2) 

from (1) and (2) we get  𝐴(𝜔) ⊂ 𝐵(𝜔)then  𝐴 = 𝐵  then  𝐴(𝜔)is minimal. 

Theorem 4.3: Let (𝜃, 𝜑) be a RDS then 𝛾𝑥
𝑡(𝜔)̅̅ ̅̅ ̅̅ ̅̅  is minimal if and only if 𝑦 ∈ 𝛾𝑥

𝑡(𝜔)̅̅ ̅̅ ̅̅ ̅̅  imply to        
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 𝑥 ∈ 𝛾𝑦
𝑡(𝜔) for all 𝑥, 𝑦 ∈ 𝑋. 

Proof: 

Let 𝛾𝑥
𝑡(𝜔)̅̅ ̅̅ ̅̅ ̅̅ is minimal. If 𝑦 ∈ 𝛾𝑥

𝑡(𝜔)̅̅ ̅̅ ̅̅ ̅̅  , then by Theorem (2.3) 𝛾𝑥
𝑡(𝜔)̅̅ ̅̅ ̅̅ ̅̅ = 𝛾𝑦

𝑡(𝜔)̅̅ ̅̅ ̅̅ ̅̅ , so 𝑥 ∈ 𝛾𝑦
𝑡(𝜔)̅̅ ̅̅ ̅̅ ̅̅ . 

Conversely, suppose that ∀ y ∈ X: y ∈   𝛾𝑥
𝑡(𝜔)̅̅ ̅̅ ̅̅ ̅̅ ̅ ⟹ 𝑥 ∈ 𝛾𝑦

𝑡(𝜔)̅̅ ̅̅ ̅̅ ̅̅ . To prove,  𝛾𝑥
𝑡(𝜔)̅̅ ̅̅ ̅̅ ̅̅  is minimal. We 

have 𝛾𝑥
𝑡(𝜔) ̅̅ ̅̅ ̅̅ ̅̅ is non-empty, closed, and invariant random set. let 𝑀(𝜔) ≠ ∅ , closed and invariant 

subset of 𝛾𝑥
𝑡(𝜔)̅̅ ̅̅ ̅̅ ̅̅ . If 𝑦 ∈ 𝑀(𝜔), then 𝑦 ∈ 𝛾𝑥

𝑡(𝜔)̅̅ ̅̅ ̅̅ ̅̅  and by hypothesis, 𝑥 ∈ 𝛾𝑦
𝑡(𝜔)̅̅ ̅̅ ̅̅ ̅̅ . Since 𝑀(𝜔) 

is closed and invariant, then 𝛾𝑦
𝑡(𝜔)̅̅ ̅̅ ̅̅ ̅̅ ⊂  M(ω). Then 𝑥 ∈  𝑀(𝜔).  

In the same way, we prove that   𝛾𝑥
𝑡(𝜔)̅̅ ̅̅ ̅̅ ̅̅ = 𝑀(𝜔). This means that 𝛾𝑥

𝑡(𝜔)̅̅ ̅̅ ̅̅ ̅̅  is minimal.                ■  

Lemma 4.4: If (𝜃, 𝜑)  is an LRDSs point- distal then (𝜃, 𝜑) is  minimal .In specific, a minimal and 

distal is a point –distal  

Proof: Since (𝜃, 𝜑) is a point- distal, then 𝛾𝑥
𝑡(𝜔)̅̅ ̅̅ ̅̅ ̅̅ = 𝑋, ∀ 𝑥 ∈ 𝑋 and by Theorem (2.3) then 𝑋 is 

minimal itself, therefor (𝜃, 𝜑)  a minimal.  

Now, let (𝜃, 𝜑) a minimal then 𝑋 itself is a minimal, therefor by Theorem (3.2) 𝛾𝑥
𝑡(𝜔)̅̅ ̅̅ ̅̅ ̅̅  = 𝑋 , ∀𝑥 ∈ 𝑋 

Since (𝜃, 𝜑)  is a distal, therefore, every 𝑥 ∈ 𝑋 is a distal.                      ■   

Definition 4.5: Let (𝜃, 𝜑) be a LRDS is called to be  𝒆𝒒𝒖𝒊𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔 if for all t. r. v.  𝜀 > 0, ∃       

t. r. v.  𝛿 > 0 such that: 

║𝜑(𝑡, 𝜃−𝑡𝜔)𝑥 − 𝜑(𝑡, 𝜃−𝑡𝜔)𝑦║ < ε(ω)  ,∀ 𝑥 ∈ 𝑋, ∀𝑦 ∈ 𝐵𝛿(𝑥), ∀ 𝑡 ∈ 𝑇. 

If 𝛿 ≡ 𝛿(ε) then is said to be uniformly equicontinuous.  

Remark Every uniformly equicontinous is equicontinuous.   

Definition 4.6: Let (𝜃, 𝜑) be a LRDS, It is called uniformly distal if for each t. r. v.  𝜀 > 𝑜, ∃              

t. r. v.  𝛿 > 0 such that 

║𝜑(𝑡, 𝜃−𝑡𝜔)𝑥 − 𝜑(𝑡, 𝜃−𝑡𝜔)𝑦║ > ε(ω)                                                                                          

implies that,  ║𝑥 − 𝑦║ > δ(ω) ,  ∀ 𝑥, 𝑦 ∈ 𝑋. 

Theorem 4.7: 

 If (θ, φ) is uniformly equicontinuous then it is a distal. 

Proof.  Let (𝜃, 𝜑) be an uniformly equicontinuous and 𝑥1, 𝑥2 ∈ 𝑋,   
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𝑥1 ≠ 𝑥2. There is a random variable 𝜀 > 0, ∃ t. r. v.  𝛿 > 0 such that 

  ║𝜑(𝑡, 𝜃−𝑡𝜔)𝑥 − 𝜑(𝑡, 𝜃−𝑡𝜔)𝑦║ > ε(ω) , ∀ 𝑥 ∈ 𝑋, ∀𝑦 ∈ 𝐵𝛿(𝑥), ∀ 𝑡 ∈ 𝐺. ■ 
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