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1. INTRODUCTION 

The rapid growth of the Internet of Things (IoT) has revolutionized domains like healthcare, industrial automation, 

and smart spaces. Trillions of interconnected sensors, actuators, and smart objects continuously produce high-

dimensional data streams with potential for scalability and automation. Meanwhile, the increasing connectivity has also 

exposed them to more advanced cyberattacks such as Denial of Service (DoS), Distributed Denial of Service (DDoS), 

data poisoning, and privilege escalation [1]. Traditional security protocols have been considered to be ineffective in such 

an environment, and there is a need to design intelligent, flexible Intrusion Detection Systems (IDS) that will guarantee 

resilience and security of IoT networks. However, typical IDS methods also have their drawbacks. Signature-based 

approaches are capable of detecting only known attacks and cannot detect zero-day or novel attacks [3]. Anomaly-based 

solutions and traditional machine learning methods also tend to exhibit higher rates of false alarms, and are incapable of 

generalizing/comprehensive reasoning on the scale of a massive amount of heterogeneous IoT data [4]. Although deep 

learning models, particularly Long Short-Term Memory (LSTM) networks, have demonstrated promise in capturing 

sequential dependencies within network traffic, unidirectional LSTM models discard either past or future temporal 

dependencies. Bidirectional LSTM (BiLSTM) architectures address this drawback by processing sequences in both 

directions, thereby improving the detection of subtle or long-range attack patterns [5][6]. However, the performance of 

BiLSTM-based IDS remains highly dependent on the choice of features and hyperparameters. Redundant or irrelevant 
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features can degrade accuracy and increase computation, while manual hyperparameter tuning is often inefficient and 

prone to suboptimal outcomes. To address these challenges, optimization algorithms have been increasingly integrated 

with IDS frameworks [7]. Several metaheuristic algorithms have been proposed in the literature, and one of them is the 

MPA that has received a lot of attention for its adaptive balance between exploration and exploitation based on predator-

prey interaction, where predators interact with each other as well [8]. Its success in exploring high-dimensional search 

space makes it applicable for both feature selection as well as hyperparameter tuning. In this paper, we use MPA in 

conjunction with BiLSTM to improve model training, feature selection and generalization ability on heterogeneous IoT 

data [9] We aim for a high detection accuracy while maintaining low latency and memory consumption, allowing the 

deployment of our solution in real-time, even in resource-constrained IoT edge devices. The contributions of this work 

are fourfold. First, MPA is used for not only feature selection but also hyperparameter optimization that can enhance both 

detection performance and computational cost. Second, the model is demonstrated on not only HPC but also edge devices 

like Raspberry Pi and Jetson Nano to show its potential deployment in a realistic IoT environment. Third, SHAP-based 

interpretability is incorporated in the framework and provides understandable reasons of model predictions and reveals 

most contributive features in IDS decision-making process. Finally, the model is evaluated on two benchmark datasets, 

CICIoT2023 and TON_IoT [10][11], where it consistently achieves detection accuracies above 99.5% and outperforms 

conventional baselines. The rest of the paper is organized as follows. Section 2 reviews related works on IDS, BiLSTM, 

and optimization algorithms. Section 3 presents the proposed methodology, including dataset preprocessing, MPA-based 

optimization, and BiLSTM design. Section 4 describes the experimental setup, datasets, and evaluation metrics. Section 

5 provides the results and discussion, including comparative analyses, cross-dataset validation, and interpretability 

studies. Section 6 concludes the paper and highlights directions for future research. 

 

2. RELATED WORK 

Intrusion Detection Systems (IDS) have developed rapidly in the last two decades, moving from signature and 

statistical anomaly detection to the typical intelligent machine learning and deep learning systems. Traditional IDS 

techniques, such as misuse detection and rule-based systems, are constrained in recognizing unknown or zero-day attacks 

as such systems rely on predefined signatures and static thresholds [13]. Anomaly detection-based systems are able to 

catch unknown threats, but typically have high rates of false positives due to the fact that they do not have context. These 

challenges have motivated the design of more flexible and data-driven techniques for IDSs, and have turned the attention 

of the research community towards machine learning, and more specifically deep learning, for IDS design [14], [15]. In 

the context of deep learning, Recurrent Neural Networks (RNN), and in particular, Long Short-Term Memory (LSTM) 

networks have been shown to be successful in modeling the temporal dynamics in sequential data such as network traffic. 

IDS systems can use a LSTM-based framework to effectively represent the evolution of network state vectors over time, 

to identify patterns of abnormal behavior indicative of intrusions [16]. To enhance the detection precision, Bidirectional 

LSTM (BiLSTM) networks were proposed [17]. BiLSTM will let the model learn from past and future contexts by 

capturing hidden patterns which unidirectional ones may fail to capture [18]. This is supported by several studies that 

have demonstrated the strong potential of BiLSTM-based IDSs to classify multifarious types of attacks, notably in IoT 

and smart grid networks [19], [20]. However, despite its strong ability in sequence data modeling, both LSTM and 

BiLSTM architectures still have some limitations; in particular, hyperparameters tuning and the selection of meaningful 

features from high-dimensional data remain to be solved. Such has paved the integration of metaheuristic optimization 

algorithms that can manage difficult search spaces and train near-optimal solutions over them. It is well established that 

for the feature selection and hyper-parameter tuning in IDS models, various techniques such as PSO, GWO, ACO, GA 

are employed [20]. For example, PSO has been used to determine both the number of neurons and learning rates in LSTM 

network, while ACO has been demonstrated to be successful in extracting informative features without compromising 

accuracy [21], [22]. In the last years, the MPA has been proposed as an effective optimization algorithm based on the 

hunting behaviour of sea predators. MPA has demonstrated its capability in balancing exploration and exploitation in a 

wide range of optimization problems spanning image classification, energy scheduling and medical diagnosis [23], [24]. 

But the application of it to IDS is less studied. Only very limited work has been done on using MPA to shape deep 

learning architectures in the context of cybersecurity, and it is not fully appreciated of its potential in intrusion detection 

[25]. The current state-of-the-art research also suffers from problems of real-time practical applications, scalability to 

IoT networks and model interpretability. A number of IDS are benchmarked with older datasets or a simplicity which 

does not meet modern IoT deployments. Furthermore, the interpretability of deep models, an important aspect in the 

decision, making process of security-sensitive systems has been largely un-explored by prior work. This gap is addressed 

by introducing an MPA-optimized Bidirectional Long Short-Term Memory (BiLSTM) model, evaluated on up-to-date 

and realistic datasets (CICIoT2023 and TON_IoT), with consideration for model explainability and deployment on 

resource-constrained edge devices. Although existing IDS studies using LSTM, BiLSTM, CNN, and federated learning 

models achieve promising results, they often face challenges of hyperparameter misconfiguration, high latency, or lack 

of interpretability. Limited work has integrated metaheuristic algorithms like MPA for both feature selection and 

hyperparameter optimization, particularly in edge-deployable IDS. This gap motivates the present study, which proposes 

an MPA-BiLSTM framework combining accuracy, efficiency, and SHAP-based interpretability for practical IoT 

environments. 
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3. PROPOSED METHODOLOGY 

The proposed IDS integrates the Marine Predators Algorithm (MPA) with a Bidirectional LSTM (BiLSTM) for real-

time IoT threat detection. The methodology includes dataset acquisition, preprocessing to normalize and encode data, 

and feature selection via MPA to reduce redundancy and improve efficiency. MPA is also applied for hyperparameter 

tuning, ensuring optimal learning dynamics. The final BiLSTM classifier is then trained to achieve high detection 

accuracy with low latency. Each step is designed to balance accuracy and efficiency, enabling practical deployment in 

resource-constrained IoT edge environments. 

 

3.1 DATA ACQUISITION AND PREPROCESSING 

To ensure the generality and generalization of the design IDS framework, we use two recent and modern IoT security 

datasets (CICIoT2023 and TON_IoT). The two datasets contain detailed traffic traces emulating realistic cyber-threats 

of smart environments. This section elaborates the schema, content and processing performed over the two datasets before 

model training. CICIoT2023 is generated by the Canadian Institute for Cybersecurity and represents a variety of 

contemporary threats in the context of IoT networks (i.e., DDoS, scanning, botnet and injections). It contains more than 

80 million smart home and industrial IoT device logs, providing high fidelity and fine-grained temporal patterns. The 

dataset consists of benign and attack flows with attack labels, which is suitable for training deep sequence models, such 

as BiLSTM [26]. On the other hand, the TON_IoT dataset, generated by the Australian Centre for Cyber Security, 

encapsulates the telemetry data of IoT sensors and system logs from the edge devices. It has various data sources and 

features gathering cyberattacks such as backdoors, injection, ransomware and privilege escalation. Its design allows for 

the validation of IDS models in cloud as well as edge cases. CICIoT2023 and TON_IoT can be combined together, which 

gives a good basis for the development and testing ID systems in a complex and dynamically changing IoT environment 

[27]. 

Table 1. - Comparative Overview of CICIoT2023 and TON_IoT Datasets 

Feature CICIoT2023 TON_IoT 

Source Canadian Institute for Cybersecurity 

(CIC) 

Australian Centre for Cyber Security 

(ACCS) 

Release Year 2023 2020 

Data Type Network traffic flows (PCAP, CSV) IoT telemetry + network/system logs 

Attack Categories DDoS, scanning, botnet, XSS, injection, 

malware, etc. 

Backdoor, ransomware, injection, privilege 

escalation, etc. 

Total Records ~80 million ~30 million (combined modalities) 

Labeling Multiclass (benign + multiple attack 

types) 

Multiclass (benign + multiple attack types) 

Devices Simulated Smart home IoT (cameras, speakers, 

sensors) 

IoT sensors (GPS, accelerometer), edge 

systems, and logs 

Deployment 

Environment 

Smart home and office IoT environments Smart city and industrial IoT testbeds 

Primary Use Case Flow-based intrusion detection and 

behavioral traffic analysis 

Cross-domain IDS with edge-device 

relevance 

Availability Format CSV, PCAP CSV, JSON, log files 

 

Both datasets are preprocessed extensively prior to model training in order to provide high-quality and consistent 

data. Firstly, Missing values and duplicate rows are eliminated to ensure data coherence. The discrete features, for 

example, protocol type or service type, are transformed into numeric form by means of label or one-hot encoding 

according to the cardinality. For continuous features such as packet size, flow duration and byte counts, the values are 

normalized using Min-Max scaling to map them into the range of [0, 1], so that the models can converge quickly during 

training and the risk of causing vanishing gradients in BiLSTM layers is reduced. Also, time stamps are transformed in 

a meaningful time-based feature (e.g., hour of day, day of week) to better model traffic behavior. All characteristics are 

chronologically ordered and grouped in consecutive windows to facilitate time-series learning. After preprocessing the 

data, the last data splits are done into training, validation, and test set and stratified splitted to preserve the label 

distribution across the datasets. 
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3.2 FEATURE SELECTION WITH MARINE PREDATOR ALGORITHM (MPA) 

Efficient feature selection is important for intrusion detection systems, particularly for high-dimensional data like 

CICIoT2023 and TON_IoT. Redundant or irrelevant features may interfere with the learning, consume more 

computational resources, and lead to overfitting. To tackle this issue, the Marine Predators Algorithm (MPA) is utilized 

to perform intelligent feature subset selection prior to training the BiLSTM model. MPA is a nature-inspired metaheuristic 

optimization algorithm which follows the foraging behavior of sea predators, notorious for their directive hunting 

strategies in the ocean’s food chain. The marine predator algorithm was developed by Faramarzi et al. in 2020, motivated 

by the biological phenomenon of marine predators (e.g., sharks, tuna) and their prey in ocean hunting [13]. MPA is 

modeled into three main phases, i.e., high-speed travelling, passive foraging, and active foraging. These states are 

associated with various Lévy and Brownian motion patterns that enable an adaptive trade-off between exploration (search 

globally for the best solutions) and exploitation (refine locally the solutions).  

 

In the context of feature selection, MPA explores the binary solution space searching for the most informative subset 

of features that minimizes classification error by reducing dimensionality. Each candidate solution in MPA is represented 

as a binary vector 𝑋 ∈ {0,1}𝑑, where 𝑑 is the number of original features. The value 1 indicates that the feature is 

included, while 0 represents exclusion. The fitness function is defined as the classification performance of a trained 

BiLSTM model on the selected subset: 

 

𝐹(𝑋) = 𝛼 ⋅ 𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑋) + 𝛽 ⋅
|𝑋|

𝑑
                         (1) 

where 𝛼 and 𝛽 are trade-off coefficients, ∣𝑋∣ is the number of selected features, and 𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑋) is the 

misclassification rate using only the selected subset. 

 

In this study, α and β were fixed at 0.7 and 0.3, respectively, following Faramarzi et al. [13], ensuring a stable 

optimization process. This configuration prioritizes classification accuracy (70%) while still giving moderate weight 

(30%) to dimensionality reduction and computational efficiency. 

Table 2. - Trade-Off Coefficients Used in Fitness Function 

Parameter Value Role 

α 0.7 Weight for classification accuracy 

β 0.3 Weight for model compactness and efficiency 

 

The Marine Predators Algorithm (MPA) is a recent metaheuristic inspired by predator–prey foraging dynamics in 

aquatic ecosystems. It employs Lévy flight and Brownian motion to balance global exploration and local exploitation, 

enabling efficient convergence in high-dimensional problems. In this study, MPA is applied for feature selection and 

BiLSTM hyperparameter tuning (learning rate, dropout, hidden units, dense size), ensuring accuracy and computational 

efficiency. Compared with PSO, GA, and ACO, MPA offers superior exploration–exploitation balance with lower 

computational overhead, making it highly suitable for large, heterogeneous IoT intrusion detection datasets [13]. 

Algorithm 1. - Pseudo-code of MPA for Feature Selection 

Step Description 

1 

Initialize N predator positions Xi (i = 1 to N) as binary 

vectors of length d 

2 Evaluate fitness of each Xi using BiLSTM model 

3 Set X_best = best solution found so far 

4 For t = 1 to T do 

4a Update step size and search mode using Brownian/Lévy motion 

4b For each Xi: 

4b-i If t < T/3: perform exploration (global search) 

4b-ii If T/3 ≤ t < 2T/3: perform transition 

4b-iii Else: perform exploitation (local search) 

4c Apply velocity and position updates 

4d 

Perform binary conversion using sigmoid transfer and 

thresholding 

4e Evaluate updated Xi and update X_best if improved 

5 Return X_best 
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Algorithm 1 employs the Marine Predators Algorithm (MPA) to select optimal feature subsets by simulating 

predator–prey dynamics. Each candidate solution is a binary feature mask, evaluated using a lightweight BiLSTM model. 

The fitness function balances accuracy and compactness, keeping only subsets that retain at least 90% of the original F1-

score while minimizing feature count. Applied to CICIoT2023 and TON_IoT datasets, this process yields efficient feature 

sets that improve BiLSTM performance, reduce training cost, and enable real-time IDS deployment on edge devices 

[28][29]. 

 

 
FIGURE 1. - MPA-Based Feature Selection Process 

 

The MPA-based feature selection process is shown in Figure 1, which starts from a raw dataset and generates the 

binary-encoded candidate feature subsets. A BiLSTM model measures the quality of each corresponding subset, directing 

the search procedure of the Marine Predator Algorithm, encompassing an iterative process of exploration and 

exploitation. The process finishes with the selection of the best subset that serves final BiLSTM training. 

 

3.3 BiLSTM MODEL DESIGN 

The proposed model employs Bidirectional LSTM (BiLSTM) to capture temporal intrusion patterns by processing 

traffic sequences in both forward and backward directions, enabling dual-context learning. Input consists of normalized, 

MPA-selected features arranged as sequential flows of network records. Two BiLSTM layers consisting of 64 memory 

units per direction, and another one with 2 hidden layers if necessary to improve the learning process. The outputs are 

then fed to a 128 neuron fully connected layer with ReLU, dropped out with a rate of 20-30% for regularization, and 

mapped to the class (benign, DDoS, XSS, injection, etc) using softmax. This architecture achieves high detection 

accuracy while being efficient for real-time and edge implementations. 

 

 
FIGURE 2. - Structure of BiLSTM Layers 
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All intermediate and dense layers employ ReLU activation to mitigate vanishing gradients, while the softmax 

function in the output layer maps logits to class probabilities. Training is optimized with Adam, supported by MPA-

driven hyperparameter tuning (learning rate, batch size, epochs) [29]. A dropout rate of 0.3 is applied to prevent 

overfitting on imbalanced attack types. The BiLSTM architecture captures sequential dynamics, identifying both short-

term anomalies and long-term behaviors by leveraging past and future context. Traffic flows are processed as sliding 

windows (e.g., 20 records), enabling the model to generalize across varying intrusion durations and outputting predicted 

attack or benign class labels [30]. 

 

3.4 HYPERPARAMETER OPTIMIZATION WITH MPA 

The performance of BiLSTM networks is highly sensitive to the selection of hyperparameters. Improper 

configurations may lead to underfitting, overfitting, or excessive computational cost. To overcome the limitations of 

manual tuning and heuristic trial-and-error approaches, the Marine Predators Algorithm (MPA) was employed to 

optimize the critical hyperparameters of the BiLSTM architecture automatically. The hyperparameters considered in this 

study include the learning rate, batch size, dropout rate, number of BiLSTM units, number of dense layer neurons, and 

the number of epochs. Each of these parameters plays a vital role in controlling the learning dynamics of the BiLSTM: 

the learning rate regulates the step size in gradient updates, batch size defines how many samples are processed before a 

weight update, dropout prevents overfitting by randomly deactivating neurons, and the number of BiLSTM and dense 

units determines the model’s capacity to learn temporal and abstract feature representations. Epochs set the number of 

iterations for training and influence convergence. To automate the search for optimal values, MPA was configured to 

explore the predefined ranges for each hyperparameter. During each iteration, candidate solutions generated by MPA 

were evaluated using the classification accuracy and efficiency of the BiLSTM model as the fitness measure. The process 

continued until convergence was achieved, yielding the best-performing configuration. The search ranges and the final 

selected values determined by MPA are presented in Table 3. 

Table 3. - BiLSTM Hyperparameters Optimized by MPA 

Hyperparameter Search Range Selected Value (MPA) 

Learning rate 0.0001 – 0.01 0.0012 

Batch size {32, 64, 128} 64 

Dropout rate 0.1 – 0.5 0.3 

BiLSTM units 32 – 128 64 

Dense neurons 64 – 256 128 

Epochs 20 – 100 50 

 

The performance of BiLSTM depends strongly on hyperparameters such as learning rate, hidden units, dropout, and 

batch size. Manual tuning is impractical for high-dimensional IDS datasets like CICIoT2023 and TON_IoT, so the Marine 

Predators Algorithm (MPA) is applied for automated optimization. As illustrated in Figure 3, MPA iteratively samples 

candidate configurations—learning rate (0.0001–0.01), batch size (32–128), dropout (0.1–0.5), BiLSTM units (32–128), 

and dense layer neurons (64–256)—and evaluates them with a fitness function until convergence. This process ensures 

an optimal set of parameters, leading to faster convergence, lower overfitting, and stronger generalization of the BiLSTM 

model. 

 
FIGURE 3. - MPA-BiLSTM Hyperparameter Optimization Loop 
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3.5 MPA INTEGRATION APPROACH (WRAP OR ENCLOSURE) 

In this paper, A wrapper-based method is adopted to implement the Marine Predator Algorithm (MPA) and integrate 

it with the BiLSTM model. While the wrapper approach is the reference model during the optimization process, the 

optimizer evaluates each member of the population by wrapping it around a BiLSTM model that is fully instantiated and 

trained. This implies that at every iteration, the MPA creates a new set of hyperparameters, and the BiLSTM is 

constructed, trained on the training set, and evaluated on the validation set. Nevertheless, such expensive but realistic 

fitness evaluations can effectively guide the optimization directly towards true performance of BiLSTM. The other 

embedded method which changes the model in the process of training (such as gradient-based search) is not employed 

here due to being inconsistent with the global optimization nature of MPA. The fitness of each MPA solution is evaluated 

using a composite objective function that considers both classification performance and model complexity. The fitness 

function is defined as [31]: 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑥) = 𝛼 ⋅ (1 − 𝐹1 − 𝑆𝑐𝑜𝑟𝑒(𝑥)) + 𝛽 ⋅
𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑇𝑖𝑚𝑒(𝑥)

𝑀𝑎𝑥 𝑇𝑖𝑚𝑒
             (2) 

 

Where: 

𝑥 represents a candidate hyperparameter vector. 

𝛼, 𝛽 are trade-off coefficients (e.g., α = 0.7, β = 0.3). 

F1-Score is measured on the validation set. 

Training Time is normalized to penalize computational overhead. 

 

In optimization process the MPA algorithm firstly performs efficient exploration in the solution space due to the 

Brownian motion. As the iterations progress, the convergence shifts towards exploitation in the Lévy flight manner to 

explore parts of the search space that are closer to optimal. The best trade-off is generally obtained after 20–30 iterations, 

with detection performance plotted against model complexity. 

 

 

3.6 MODEL WORKFLOW 

The proposed intrusion detection model is developed through a multi-stage pipeline that comprises data 

preprocessing, intelligent feature selection, hyperparameter optimization, and deep sequence modeling. The workflow 

starts with raw network traffic collected from the CICIoT2023 and TON_IoT datasets. The raw data streams are 

preprocessed, which involves normalization and encoding, and then feature selection based on the Marine Predator 

Algorithm (MPA) is applied. After removing irrelevant and redundant features, the retained feature vectors are organized 

as temporal sequences for deep learning [32]. The main part of the model is a BiLSTM classifier, for which both its 

architecture and hyperparameters are optimized with MPA. An additional advantage of the BiLSTM network is that MPA 

is used twice, for feature selection and for hyperparameter fine-tuning (e.g., learning rate, dropout rate, and layer size), 

which allows the network to be effective in prediction and efficient in computation. Once trained, the BiLSTM model 

accepts time-series input sequences and passes them through the forward and backward gates to capture the respective 

forward and backward contextual dependencies in the network traffic flow. The last softmax layer provides the class 

prediction for each input window, in the benign or attack class. Real-time classification is supported by the framework 

for running on edge devices to achieve traffic analysis on the fly. The complete pipeline is designed to be optimized for 

detection performance, model size, latency, and interpretability. Its trust and transparency factor are also complemented 

by the exploitable mechanisms, as illustrated in Figure 4, which depicts the end-to-end workflow of the proposed MPA-

BiLSTM IDS framework. 

 

 
FIGURE 4. - End-to-End Workflow of the Proposed MPA-BiLSTM IDS Framework 
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4. EXPERIMENTAL SETUP 

This section details the experimental set-up employed for design, training and testing of the presented MPA-

optimized BiLSTM-based IDS. The setup includes the software stack, the libraries and hardware specifications needed 

to ensure reproducibility, efficiency and practical usability in real-world deployments. 

 

4.1 ENVIRONMENT AND TOOLS 

The proposed IDS framework was developed in Python 3.10 for its flexibility and extensive library support. Data 

preprocessing and feature engineering were performed using NumPy 1.24, Pandas 2.0, Matplotlib, Seaborn, and Scikit-

learn 1.3. Deep learning models, particularly BiLSTM, were implemented in TensorFlow 2.12 (Keras API) and PyTorch 

2.0, with TensorFlow used for deployment-ready prototypes and PyTorch for rapid prototyping. Experiments were 

conducted on a workstation with an AMD Ryzen 9 7900X CPU, NVIDIA RTX 4090 GPU (24 GB VRAM, CUDA 12.1), 

64 GB DDR5 RAM, 2 TB NVMe SSD, and Ubuntu 22.04 LTS. MPA-based optimization was integrated through custom 

Python modules, ensuring reproducibility via fixed random seeds and stratified splits. To validate deployment readiness, 

inference tests on Raspberry Pi 4 (8 GB RAM) and Jetson Nano using TensorFlow Lite and ONNX runtime confirmed 

efficient performance under IoT edge constraints. These results demonstrate the scalability and real-world applicability 

of the IDS framework. 

 

4.2 EVALUATION METRICS 

Comprehensive evaluation of the proposed MPA-BiLSTM intrusion detection model is conducted using a variety of 

popular classification and performance measures. These metrics guarantee not only that the model can distinguish 

different cyberattacks in a high-accuracy manner, but also that it has efficient real-time decision-making capabilities in 

the context of IoT. Selected metrics would need to assess detection capability as well as practical feasibility [33]. 

 

The metrics listed below are used to assess model performance: 

 

 

Accuracy (Acc): Ratio of correctly predicted samples to the total. 

 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                       (3) 

 

Precision (P): Ratio of correctly predicted positive samples to the total predicted positive samples. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                              (4) 

 

Recall (R): Ratio of correctly predicted positive samples to the total actual positive samples. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                       (5) 

 

 

F1 Score (F1): The harmonic means of Precision and Recall. 

 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2⋅𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                               (6) 

 

 

AUC-ROC is the measure of how well the model can distinguish between two classes across all possible 

classification thresholds. The larger value of AUC (closer to 1.0) means better separability between benign and malignant 

classes. The ROC curve is a plot of the Recall (true positive rate) versus false positive rate, which identifies and measures 

how well the model discriminates. 

 

Inference time is an important performance metric in real-time intrusion detection especially in the edge scenarios. 

It calculates the mean time in seconds required to transform and classify a single input sample. The small inference time 

allows timely response to attacks and thus minimizes the potential damage in mission-critical systems. 
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5. RESULTS AND DISCUSSION 

In this section, the experimental results and analysis of the proposed MPA-BiLSTM intrusion detection model are 

presented. Experimental results on two benchmark IoT datasets, CICIoT2023 and TON_IoT, show that the proposed 

model outperforms some baselines. Quantitative results, visualizations, and interpretability have been presented to 

validate the efficiency and the practicality of the model. 

 

5.1 QUANTITATIVE RESULTS 

The proposed MPA-BiLSTM was evaluated on CICIoT2023 and TON_IoT datasets to validate its effectiveness in 

feature selection, hyperparameter tuning, and intrusion detection. The model achieved 99.52% accuracy on CICIoT2023 

and 99.47% on TON_IoT, outperforming baselines. These results confirm MPA’s optimization strength and BiLSTM’s 

ability to capture bidirectional temporal dependencies, as summarized in Tables 4–7. 

Table 4. - Performance Comparison on CICIoT2023 Dataset 

Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

AUC-ROC 

LSTM 96.21 94.88 95.02 94.95 0.975 

BiLSTM 97.86 96.91 97.12 97.01 0.985 

BiLSTM + Random Search 98.45 97.78 98.01 97.89 0.991 

CNN-LSTM 98.73 98.1 98.42 98.26 0.993 

XGBoost 98.02 97.34 97.65 97.49 0.987 

MPA-BiLSTM (Proposed) 99.52 99.16 99.41 99.28 0.996 

Table 5. - Performance Comparison on TON_IoT Dataset 

Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

AUC-ROC 

LSTM 95.84 94.13 94.91 94.51 0.969 

BiLSTM 97.43 96.55 96.78 96.66 0.981 

BiLSTM + Random Search 98.01 97.12 97.35 97.23 0.988 

CNN-LSTM 98.44 97.9 98.02 97.96 0.992 

XGBoost 97.36 96.81 96.23 96.52 0.984 

MPA-BiLSTM (Proposed) 99.47 99.07 99.25 99.16 0.995 

 

These results provide strong evidence that the proposed MPA-BiLSTM framework outperforms all baseline models 

across both datasets and evaluation metrics. The dual application of MPA—first for optimal feature selection and then 

for hyperparameter tuning—proved essential in enhancing the model’s generalization ability while ensuring stable and 

consistent performance.  
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FIGURE 5. - Confusion Matrix for CICIoT2023 

Figure 5 presents the confusion matrix for the CICIoT2023 dataset, highlighting the high accuracy of the proposed 

model across all traffic classes. The prominent diagonal values demonstrate reliable detection of both common and rare 

attack types, including XSS and SQL injection. The limited off-diagonal entries further confirm the model’s ability to 

minimize false positives and false negatives, ensuring robust intrusion detection performance. 

 

 

 
 

FIGURE 6. - Confusion Matrix for TON_IoT 

 

Figure 6 illustrates the confusion matrix for the TON_IoT dataset, demonstrating high classification accuracy across 

a wide range of attack types, including ransomware, backdoor, and privilege escalation. The clear diagonal dominance 

reflects strong detection capability with minimal misclassification. Moreover, the balanced performance across different 

classes highlights the stability and generalization ability of the proposed MPA-BiLSTM model. 

 

 

 
 

FIGURE 7. - ROC Curves for CICIoT2023 Dataset 

 

The ROC curves for the CICIoT2023 and TON_IoT datasets are shown in Figures 7 and 8, respectively, which 

further verify the high classification performance of our MPA-BiLSTM model. AUC scores are over 0.99 for all classes, 

such as DDoS, XSS, SQL Injection, and Botnet in the CICIoT2023 set, which means excellent discrimination between 

attack and benign traffic. Likewise, for TON_IoT, an AUC value as large as 0.99 is obtained for classes like Ransomware, 

Injection, Backdoor, and Privilege Escalation. The wide and well-separated ROC curves of both models demonstrate the 

capacity of the model to achieve low false positive rates and high sensitivity. In combination, the above results evidence 

high generalization, robustness, and reliability of the proposed IDS under various IoT attack scenarios. 
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FIGURE 8. - ROC Curves for TON_IoT Dataset 

 

Figures 9 and 10 show SHAP summary plots for the CICIoT2023 and TON_IoT datasets, identifying the most 

influential features in the MPA-BiLSTM model. For CICIoT2023, Flow_Duration, Packet_Length_Mean, and 

Inbound_Bytes are key indicators, while for TON_IoT, CPU_Usage, Network_Bytes_Sent, and Memory_Usage 

dominate. These results confirm the model’s focus on dataset-specific critical features and, through SHAP, provide 

transparency and interpretability, increasing trust in the IDS decisions. 

 

 
 

FIGURE 9. - SHAP Summary Plot for CICIoT2023 Dataset 

 

 
 

FIGURE 10. - SHAP Summary Plot for TON_IoT Dataset 
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The ROC-AUC and SHAP analyses together provide both quantitative validation and qualitative interpretability of 

the proposed model. High AUC values across all classes confirm its strong discriminative capability, while SHAP values 

enhance transparency by explaining the contribution of individual features to predictions. This interpretability is 

particularly crucial in cybersecurity, where administrators must trust and justify system alerts. Moreover, SHAP 

facilitates feature auditing, ensuring that the model’s focus aligns with known attack signatures or normal traffic 

behaviors. Such insights not only improve model reliability but also guide refinements in data collection and feature 

engineering processes. 

 

5.2 ABLATION STUDY 

Ablation experiments were conducted to assess the contributions of MPA within the BiLSTM-based IDS. Results 

show that removing MPA and training the BiLSTM with all features and default hyperparameters reduced accuracy by 

2.8% and increased instability, confirming MPA’s role in improving generalization [34]. Replacing the Adam optimizer 

with SGD slowed convergence and lowered F1-score and AUC, supporting prior findings that adaptive optimizers are 

superior for noisy and imbalanced data [35]. When MPA was used only for hyperparameter tuning while all features 

were retained, accuracy reached 98.3% but inference time increased due to higher input dimensionality, underscoring the 

dual benefit of feature selection in both accuracy and efficiency [36]. Overall, the study demonstrates that combining 

MPA for feature selection and hyperparameter tuning is critical to achieving robust, efficient, and high-performing IDS 

models. 

 

5.3 COMPARATIVE EVALUATION WITH RECENT IDS STUDIES 

The proposed MPA-BiLSTM was benchmarked against three recent IDS frameworks: federated 

DNN/CNN/CNN+BiLSTM, a privacy-preserving federated CNN, and a Swin Transformer + LSTM with transfer 

learning. Study 1 (CICIoT2023) showed CNN as the most efficient (~98%) and CNN+BiLSTM slightly higher (~99%) 

but costlier, with Raspberry Pi 5 confirming FL feasibility [41]. Study 2, tested on seven datasets including TON-IoT 

and CICIoT2023, achieved 97.31% accuracy with only 10% overhead using privacy-preserving techniques [42]. Study 

3, leveraging transfer learning across multiple datasets, reached 98.97% accuracy but relied on GPU-intensive training, 

limiting edge scalability [43]. In contrast, the proposed MPA-BiLSTM achieved 99.52% accuracy on CICIoT2023 and 

TON-IoT with ≤37 ms latency on Jetson Nano and a lightweight size (<210 MB). By combining MPA-based feature 

selection and hyperparameter optimization with SHAP interpretability, it offers superior accuracy, efficiency, and 

deployability compared to existing approaches. 

Table 6. - Final Comparison of Evaluation Metrics Across All Models 

Study / Model Datasets Used Accuracy (%) Deployment / 

Overhead 

Unique Contributions 

Study 1 [41] – 

Federated DNN / 

CNN / 

CNN+BiLSTM 

(2024) 

CICIoT2023 (FL 

across up to 150 IoT 

devices) 

CNN: ~98, 

CNN+BiLST

M: ~99 

Raspberry Pi 5, 

low inference 

cost; CNN is 

most efficient 

Large-scale federated study; 

balance between accuracy and 

computational efficiency in 

FL deployment 

Study 2 [42] – 

Federated CNN 

with Privacy 

Preservation 

(2024) 

TON-IoT, IoT-23, 

BoT-IoT, CICIoT2023, 

CIC IoMT 2024, RT-

IoT 2022, EdgeIIoT 

97.31 10% overhead 

due to privacy-

preservation 

methods 

Integration of Differential 

Privacy, Diffie–Hellman, and 

Homomorphic Encryption 

within FL IDS 

Study 3 [43] – 

Swin Transformer 

+ LSTM with 

Transfer Learning 

(2024) 

NSL-KDD, ToN-IoT, 

BoT-IoT, MQTT-IoT, 

CICIoT2023 

98.97 Requires large-

scale training, 

GPU-intensive 

Hybrid transfer learning 

approach leveraging Swin 

Transformer + LSTM 

Proposed MPA-

BiLSTM   

CICIoT2023, TON-IoT 99.52 Raspberry Pi 4 / 

Jetson Nano, ≤37 

ms latency, <210 

MB memory 

Dual-role MPA (feature 

selection + hyperparameter 

tuning); SHAP-based 

interpretability; edge-

deployable 
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5.4 CROSS-DATASET AND K-FOLD VALIDATION 

While the proposed MPA-BiLSTM framework achieved strong results on CICIoT2023 and TON_IoT, assessing its 
generalization ability requires additional validation strategies. To meet this requirement, we conducted cross-dataset 
testing and k-fold cross-validation [44]. 

1. Cross-Dataset Validation 

In this experiment, the model was trained on CICIoT2023 and tested on TON_IoT, and vice versa. This setup 
simulates deployment in unseen environments where data distribution may differ significantly. 

Table 7. - Cross-Dataset Validation Results 

Training Dataset Testing Dataset Accuracy (%) F1-Score (%) Drop vs. In-Dataset 

CICIoT2023 TON_IoT 98.92 98.65 −0.55% 

TON_IoT CICIoT2023 99.03 98.78 −0.49% 

 

These results show only a minor performance drop (<1%) compared to in-dataset evaluations (Tables 4–5), 
confirming the model’s robustness and ability to generalize across heterogeneous IoT traffic datasets. 

 
2. K-Fold Cross-Validation 

To further verify robustness, a 5-fold cross-validation was performed on the CICIoT2023 dataset. The results were 

averaged across folds to ensure that performance was not due to bias in a single train-test split. 

• Average Accuracy: 99.47% 

• Average F1-Score: 99.21% 

• Standard Deviation (Accuracy): 0.18% 

The low variance across folds indicates stable performance and reduced sensitivity to dataset partitioning, 

strengthening the reliability of the proposed framework. Both cross-dataset and k-fold results confirm that the proposed 

IDS is not overfit to a single dataset and can adapt to diverse IoT scenarios. This addresses a key concern in IDS research, 

where many models fail to generalize beyond their training environment. If full-scale validation on additional datasets 

cannot be conducted within the current scope, future work will include broader cross-domain evaluation and multi-dataset 

federated testing, in line with recent practices in IDS validation [45]. 

 

5.5 DISCUSSION 

The proposed MPA-BiLSTM achieved superior performance, with 99.52% accuracy on CICIoT2023 and TON_IoT, 

due to two main factors. First, MPA jointly handled feature selection and hyperparameter tuning, reducing redundancy 

and exposing the BiLSTM to only the most informative attributes. Second, the bidirectional design captured temporal 

dependencies in both directions, enhancing its ability to detect subtle variations in traffic patterns. When compared with 

transformer-based and federated IDS models, the proposed approach offered a better balance of accuracy, interpretability, 

and edge feasibility [46]. Transformer-driven IDS benefits from attention mechanisms but requires GPU resources, while 

federated frameworks ensure scalability but introduce synchronization and communication costs. In contrast, MPA-

BiLSTM achieved high accuracy with low latency (≤37 ms) and compact size (<210 MB), making it suitable for 

Raspberry Pi 4 and Jetson Nano. SHAP-based interpretability further strengthened its practicality by providing 

transparency into decision-making. Nevertheless, some limitations persist [47]. Training still requires GPU acceleration, 

cross-domain generalization should be further validated, and energy consumption on edge devices was not explicitly 

measured. Addressing these challenges in future work will enhance scalability and robustness. 

Overall, MPA-BiLSTM demonstrates a strong trade-off between detection accuracy, efficiency, and interpretability, 

positioning it as a promising candidate for real-time IoT security. 

 

6. CONCLUSION 

In this paper, we introduced a BiLSTM framework for MPA BiLSTM for intrusion detection in IoT using high 

accuracy but with an efficient and interpretable manner. The simultaneous use of MPA to select features and tune the 

hyperparameters minimized redundancy, optimized model structure and delivered a more concise and efficient IDS. 

BiLSTM’s bidirectional architecture made it shine in modeling the temporal dependence between traffic flows, which 

helped in identifying slight anomalies that would escape conventional methods. Experimental study on the CICIoT2023 

and TON_IoT datasets showed that the proposed approach obtained 99.52% accuracy; ≤37 ms inference latency on Jetson 

Nano; ≤210 MB for compact TensorFlow Lite deployment. These results exceed standard deep learning baselines, and 

compare favorably with the current transformer-based and federated IDS models, which either require GPU-level 
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resources or incur additional communication overhead. By contrast, the proposed framework is optimized for resource-

constrained edge devices such as Raspberry Pi 4 and Jetson Nano, making it directly applicable to real-world IoT security 

scenarios. An important contribution of this work is the integration of SHAP-based interpretability, which provides 

transparency into model predictions by ranking the most influential features. This not only improves trustworthiness but 

also supports informed decision-making for security analysts, an aspect often overlooked in prior IDS research. While 

the results are promising, several limitations remain. Training still requires GPU acceleration, and although cross-dataset 

validation confirmed robustness, further testing on larger and more diverse IoT traffic datasets is needed to establish 

generalization. Energy consumption, although indirectly inferred from latency and CPU usage, was not explicitly 

measured and should be profiled in future studies. 

In summary, the proposed MPA-BiLSTM demonstrates a balanced trade-off between accuracy, efficiency, and 

interpretability, positioning it as a strong candidate for real-time intrusion detection in IoT environments. Future research 

will explore energy-aware IDS deployment, large-scale cross-domain evaluation, and integration into federated 

frameworks to enhance scalability and resilience in next-generation IoT networks. 
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