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1-INTRODUCTION 
     Modeling and forecasting exchange rate volatility has become an increasingly critical area of research and analysis 

for developing countries that depend heavily on oil export revenues. Fluctuations in exchange rates can have major 

impacts on the economy and international trade competitiveness. For oil-exporting developing economies, exchange rate 

volatility stems predominantly from the large exposure to global oil price swings, as oil export earnings typically 

constitute a sizable portion of overall export revenues and government budgets (Reboredo et al., 2014). Several 

probability distributions have been used in the academic literature to capture the salient features of exchange rate return 

time series such as leptokurtosis, volatility clustering, heteroscedasticity and fat tails. The normal distribution is the most 

commonly implemented model but relies on restrictive assumptions of homoscedasticity and normally distributed errors 

that are inconsistent with the time-varying volatility exhibited by exchange rates. The Student's t distribution provides 

more flexibility through its additional degrees of freedom parameter that allows for leptokurtosis and fat tails. The 

lognormal distribution can account for asymmetry in exchange rate returns (Mensi et al., 2014) . 

  Recent empirical studies have conducted head-to-head comparisons of the normal, Student's t and lognormal 

distributions for modeling exchange rate volatility in major oil-exporting developing economies. Narayan et al. (2014) 

found that exchange rates of OPEC member countries are better characterized by the Student's t distribution compared to 

normal based on Kolmogorov-Smirnov specification tests. Aloui and Mabrouk (2010) showed that incorporating the 

lognormal distribution improved value-at-risk modeling over the normal for Gulf Cooperation Council (GCC) countries. 

Hammoudeh and Yuan (2008) found the normal distribution provided the best in-sample fit for Saudi Arabia's exchange 
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rate versus alternatives. However, Hammoudeh et al. (2009) demonstrated the Student's t generated more accurate value-

at-risk estimates for UAE and Kuwait. 

  While these studies have focused their analysis on GCC nations, the evidence for other leading oil-exporting developing 

economies is more limited. The underlying distributional properties of exchange rate returns and appropriate model 

selection may differ across countries and regions based on economy-specific structural factors, trade patterns, institutions 

and macroeconomic policies. This study is to close this gap in the literature by carrying out a comprehensive comparison 

of the normal, Student's t and lognormal distribution models in terms of in-sample fit and out-of-sample forecasting 

performance for monthly exchange rate volatility across major oil-exporting developing economies over the lengthy 

1990-2022 period   . 

  The findings will provide insights into the distributional characteristics of exchange rate returns in these countries, which 

can help guide appropriate model selection for volatility modeling and forecasting based on in-sample distribution fit. 

The results can also inform risk-modeling approaches relying on accurate volatility forecasts, such as value-at-risk 

estimations for currency exposures and external debt obligations. 

 

2. FRÉCHET DISTRIBUTION 
       In statistical analysis, extreme value theory is crucial. The generalized extreme value (GEV) distribution is the most 

widely used distribution to characterize extreme data. (Jenkinson. A ,1995, P165). Its cumulative density function (CDF) 

is given by 

𝐹( 𝑥 ∣∣ 𝜎, 𝜇, 𝜉 ) = {
exp⁡ (−[1 + 𝜉(𝑥 − 𝜇)/𝜎]+

−
1
𝑠} ,      for     𝜉 ≠ 0

exp⁡(−exp⁡[−(𝑥 − 𝜇)/𝜎]},      for     𝜉 = 0

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡… (1) 

 

  where σ>0, and μ,ξ∈R. Special instances of the so-called generalized extreme value (GEV) distribution are the Gumbel, 

Weibull, and this distributions.,Kotz and Nadarajah (Kotz.S and Nadarajah .S ,2000,P125)  explain this distribution and 

talk about how it can be used in a variety of contexts, including pressing life tests, natural disasters, horse racing, rainfall, 

grocery store lines, sea currents, wind speeds, track race records and so on. 

Let X r.v. as Fréchet distribution then its (Pdf) and (cdf) are given by 

𝑓(𝑥 ∣ 𝜆, 𝛼) = 𝜆𝛼𝑥−(𝛼+1)𝑒−𝜆𝑥−𝛼
  and    𝐹(𝑥 ∣ 𝜆, 𝛼) = 𝑒−𝜆𝑥−𝛼

,                    …(2) 

for all 𝑥 > 0 and the quantities 𝛼 and 𝜆 > 0 are the shape and the scale parameters respectively.  

3- NORMAL DISTRIBUTION 
  Of all the distributions, the normal distribution is the most commonly utilized. It characterizes of continuous 

distributions. Because many natural occurrences are so closely approximated by the normal distribution, which differs in 

their position  and scale parameters while sharing the same general form (that is, the standard deviation). it has developed 

into a standard of reference for many probability problems. (Ahsanullah, M & Kibria,B. M. G& Shakil. M, p7-8) 

 For X have a normal distribution with mean μ (shape parameter) and variance σ2 (scale parameter), then (pdf) given by: 

𝑓(𝑋; 𝜇, 𝜎2) =
1

√(2𝜋𝜎2)
exp [−

(𝑥 − 𝜇)2

2𝜎2
]⁡
, −∞ < 𝜇, x < ∞, 𝜎 > 0⁡⁡⁡⁡⁡ … (3) 

then the cdf as: 

𝐹𝑋(𝑥) =
1

𝜎√2𝜋
∫  

𝑥

−∞

  𝑒−(𝑦−𝜇)2/2𝜎2
𝑑𝑦

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡=
1

2
[1 + erf⁡ (

𝑥 − 𝜇

𝜎√2
)] ,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡− ∞ < 𝑥 < ∞,−∞ < 𝜇 < ∞, 𝜎 > 0,

⁡ 

erf: It means giving an approximate probability related to the difference between x and μ. 

 

4-LOG NORMAL DISTRIBUTION  
The pdf of the two-parameters lognormal distribution is: 

𝑓(𝑋 ∣ 𝜇, 𝜎2) =
1

√(2𝜋𝜎2)𝑋
exp [−

(ln⁡(𝑋) − 𝜇)2

2𝜎2
] 𝑋 > 0,−∞ < 𝜇 < ∞, 𝜎 > 0⁡⁡⁡⁡⁡ … (4)
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The r.v  Y = ln X is normally distributed with μ and σ, which are the random variable's mean and standard deviation, if 

X is a random variable with a log-normal probability distribution. (Gions2009, p1), with moments (Aristizabal, 

Rodrigo,2012, p8) as: 

𝐸(𝑋) = 𝑒
(𝜇+

𝜎2

2
)
  and variance given by:  v(x)= = (𝑒𝜎2

− 1)𝑒2𝜇+𝜎2
 

and the cdf is: 

𝐹𝑋(𝑥; 𝜇, 𝜎): = Φ(
𝐿𝑛𝑥 − 𝜇

𝜎
)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5) 

5- METHODS OF ESTIMATION  

There are many methods for estimating statistical distributions, and this research will focus on the ML and moments 

estimation methods: 

5-1-Maximum Likelihood Estimation Method (MLE) 

The most likely method is the most frequently used technique selects the value of the distribution parameter that makes 

the data "more likely" than other values. This is done by showing the maximum possible performance of the given 

parameters. Some of the attractive features of the probability estimator include its unbiasedness, as the bias tends towards 

zero as the value of n increases: 

 

5-1-1 MLE of Normal distribution 

The two-parameter Normal distribution is (𝜇 and  𝜎2), can be estimated using maximum likelihood estimation (MLE) 

upon on a sample of data is given by: 

L = (2𝜋)
−n
2 ∗ (𝜎2)

−n
2 ∗ e

−
∑ ⁡(Xi−𝜇)2

2𝜎2

Ln⁡ L =
−n

2
Ln⁡(2𝜋) −

n

2
Ln⁡(𝜎2) −

1

2

∑ ⁡ (Xi − 𝜇)2

𝜎2

∂Ln⁡ L

∂𝜇
= 0 − 0 −

1

2

∑ ⁡ (Xi − 𝜇)

𝜎2
(−2) =

∑ ⁡ (Xi − 𝜇)

𝜎2

⁡⁡𝜇̂𝑀𝐿 = X̅⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(6)

 

and  

∂Ln⁡ 𝐿

∂𝜎2
= 0 −

𝑛

2
(
1

𝜎2
) −

∑ ⁡ (𝑋𝑖 − 𝜇)2

2
(
−1

𝜎4
) =

−𝑛

2𝜎2
+

∑ ⁡ (𝑋𝑖 − 𝜇)2

2𝜎4

∂Ln⁡ 𝐿

∂𝜎2
=

−𝑛𝜎̂2 + ∑ ⁡ (Xi − X̅)2

2𝜎̂4
= 0

⁡𝜎̂2
𝑀𝐿 =

∑ ⁡ (Xi − X̅)2

n
= S2⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(7)⁡

 

5-1-2 MLE of Fréchet distribution 

  Let 𝑋1, … , 𝑋𝑛 be a r.s. as 𝑋 ∼ Fr (𝜆, 𝛼). Then, the likelihood function from PDF is given by 

𝐿( 𝜆, 𝛼 ∣ 𝑥 ) = ∏  

𝑛

𝑖=1

𝑓(𝑥𝑖 , 𝜆, 𝛼) = 𝜆𝑛𝛼𝑛 (∏  

𝑛

𝑖=1

  𝑥𝑖
−(𝛼+1)

) exp (−𝜆 ∑  

𝑛

𝑖=1

  𝑥𝑖
−𝛼)⁡⁡⁡⁡⁡(8) 

Then:   𝑙(𝜆, 𝛼 ∣ 𝑥) = 𝑛log⁡(𝜆) + 𝑛log⁡(𝛼) − (𝛼 + 1) ∑  𝑛
𝑖=1 log⁡(𝑥𝑓) − 𝜆 ∑  𝑛

𝑖=1 𝑥𝑖
−𝛼 . 

From ∂𝑙(𝜆, 𝛼 ∣ 𝑥)/ ∂𝜆 = 0 and ∂𝑙(𝜆, 𝛼 ∣ 𝑥)/ ∂𝛼 = 0, we get the likelihood equations 

𝑛

𝜆
− ∑  𝑛

𝑖=1 𝑥𝑖
−𝛼 = 0 , and 
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The estimate 𝛼̂MLE  can be obtained by solving the following non-linear equation 

𝑛

𝛼
− ∑  

𝑛

𝑖=1

log⁡(𝑥𝑖) +
𝑛 ∑  𝑛

𝑖=1   𝑥𝑖
−𝛼log⁡(𝑥𝑖)

∑  𝑛
𝑖=1   𝑥𝑖

−𝛼 = 0. 

The estimate 𝜆̂MIE  can be obtained by substituting 𝛼̂MLE  in 𝜆̂MIE =
𝑛

∑  𝑛
𝑖=1  𝑥𝑓

−𝛼 . 

 
The ML estimates that were obtained have a combined bivariate normal distribution that is symptotically normally 

distributed, as shown by: 

 (𝜆̂MIE , 𝛼̂MLE ) ∼ 𝑁2[(𝜆, 𝛼), 𝐼−1(𝜆, 𝛼))]    

where 𝐼(𝜆, 𝛼) is the matrix Fisher information given by 

𝐼(𝜆, 𝛼) =

[
 
 
 
 

𝑛

𝜆2

𝑛(1 − 𝛾 − log⁡(𝜆))

𝜆𝛼

𝑛(1 − 𝛾 − log⁡(𝜆))

𝜆𝛼

𝑛

𝛼2
(
𝜋2

6
+ (1 − 𝛾 − log⁡(𝜆))2)

]
 
 
 
 

, 

Additionally, the Euler-Mascheroni constant is γ = 0.5772156649. We demonstrate the existence and uniqueness of 

MLEs in the following. 

5-1-3 MLE of Lognormal distribution 

  For lognormal distribution , the likelihood function is: 

𝐿(𝜇, 𝜎2 ∣ 𝑋)⁡= ∏  𝑛
𝑖=1   [𝑓(𝑥𝑖 ∣ 𝜇, 𝜎2]

⁡=
1

√(2𝜋𝜎2)𝑛
∏  𝑛

𝑖=1  
1

𝑥𝑖
exp [∑  𝑛

𝑖=1  
−(𝑙𝑛(𝑥𝑖)−𝜇)2

2𝜎2 ]⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡… (9)
 

ln⁡[𝐿(𝜇, 𝜎2 ∣ 𝑋)] = ln⁡ [
1

√(2𝜋𝜎2)𝑛
∏  

𝑛

𝑖=1

 
1

𝑥𝑖

exp⁡ [∑  

𝑛

𝑖=1

 
−(ln⁡(𝑥𝑖) − 𝜇)2

2𝜎2
]]

⁡= −
𝑛

2
ln⁡(2𝜋𝜎2) − ∑  

𝑛

𝑖=1

 ln⁡(𝑥𝑖) −
∑  𝑛

𝑖=1   ln(𝑥𝑖)
2

2𝜎2
+

∑  𝑛
𝑖=1  𝜇 tn(𝑥𝑖)

𝜎2
−

𝑛𝜇2

2𝜎2

 

The values of 𝜇 and 𝜎2 that indicate 𝐿(𝜇, 𝜎2 ∣ 𝑋) also maximize 𝐿(𝜇, 𝜎2 ∣ 𝑋): 

𝐿(𝜇, 𝜎2 ∣ 𝑋)⁡= ln⁡ ((2𝜋𝜎2)−𝑛/2 ∏  

𝑛

𝑖=1

 
1

𝑋𝑖

exp⁡ [∑  

𝑛

𝑖=1

 
−(ln⁡(𝑋𝑖) − 𝜇)2

2𝜎2
])

⁡= −
𝑛

2
ln⁡(2𝜋𝜎2) − ∑  

𝑛

𝑖=1

 ln⁡(𝑋𝑖) −
∑  𝑛

𝑖=1   (ln⁡(𝑋𝑖) − 𝜇)2

2𝜎2

⁡= −
𝑛

2
ln⁡(2𝜋𝜎2) − ∑  

𝑛

𝑖=1

 ln⁡(𝑋𝑖) −
∑  𝑛

𝑖=1   [ln⁡(𝑋𝑖)
2 − 2ln⁡(𝑋𝑖)𝜇 + 𝜇2]

2𝜎2

⁡

⁡= −
𝑛

2
ln(2𝜋𝜎2) − ∑  

𝑛

𝑖=1

  ln(𝑋𝑖) −
∑  𝑛

𝑖=1   ln(𝑋𝑖)
2

2𝜎2
+

∑  𝑛
𝑖=1   ln(𝑋𝑖)𝜇

𝜎2
−

𝑛𝜇2

2𝜎2
⁡⁡… (10)

 

the gradient of   ℒ(𝜇, 𝜎2 ∣ 𝑋) respect⁡𝜇 and 𝜎̂2 is calculated, and equate to 0, then 

𝜇̂ =
∑  𝑛

𝑖=1  ln⁡(𝑋𝑖)

𝑛
⁡⁡⁡                                                                                                      (11) 
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𝜎̂2 =
∑  𝑛

𝑖=1  (ln⁡(𝑋𝑖)−
∑  𝑛
𝑖=1  (𝑋𝑖)

𝑛
)

2

𝑛
⁡                                                                                   (12) 

 5-2-Moment estimation Method (MOM) 

 

 A moment estimation method for model estimation cases and unobservable population cases where we can solve for 

similar values. In some cases, for example when estimating unknown parameters in the field of probability distributions 

space-based estimators are preferred by Maximum Likelihood. 

 

5-2-1-MOM of Normal Distribution 

The rth moment about the mean of a normal distribution with the pdf is provided by for some integer r>0. 

𝐸(𝑋𝑟) = 𝜇𝑟 = {
𝑎′(𝑟!)

22
[(𝑟, 2)!]  for 𝑟 even :

0,  for r odd 
 

𝜇1 = 𝜇̂1 →⁡⁡⁡⁡⁡⁡⁡ 𝜇̂ = x̅                                                                                (13)                                                                

⁡𝜇2 = 𝐸(𝑋2) = var⁡(𝑋) + (𝐸(𝑋))2 = 𝜎2 + 𝜇2 

⁡𝜇̂2 =
∑xi⁡

2

n
 , then ⁡𝜇2 = 𝜇̂2 →⁡⁡⁡⁡

∑𝑥1⁡2

𝑛
→ 𝜎̂2 =

Σ𝑥𝑖⁡
2

𝑛
− 𝑋‾2 

𝝈̂2 = 𝐒2 =
∑ ⁡ (𝐗i − X̅)2

n
,where ∑ ⁡(𝐗i − 𝐗)2 = ∑⁡𝐗i⁡

2 − 𝐧𝐗2⁡. . (14) 

5-2-2 MOM of Fréchet distribution 

 

The r th moments of 𝑋 for this distribution: 

𝐸(𝑋𝛾 ∣ 𝜆, 𝛼) = 𝜆
𝑟

𝛼Γ (1 −
𝑟

𝛼
),⁡⁡                                                                               (15) 

where 𝑟 ∈ 𝑁 and Γ(𝜆) = ∫
0

∞
 𝑒−𝑡𝑡𝜆−1𝑑𝑡 is the gamma function. where 𝐸(𝑋𝑟 ∣ 𝛾, 𝛼) does not have a finite value for 𝛼 >

𝑟. then: 

𝐸(𝑋 ∣ 𝜆, 𝛼) = 𝜆
1
𝛼Γ (1 −

1

𝛼
)  and

Var⁡(𝑋 ∣ 𝜆, 𝛼) = 𝜆
2
𝛼 (Γ (1 −

2

𝛼
) − Γ2 (1 −

1

𝛼
)) .

 

and, the population coefficient of variation is given by 

𝐶𝑉( 𝑋 ∣ 𝜆, 𝛼 ) =
√Var(𝑋 ∣ 𝜆, 𝛼 )

𝐸(𝑋 ∣ 𝜆, 𝛼 )
= √

Γ(1 − 2𝛼−1)

Γ2(1 − 𝛼−1)
− 1,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(16) 

This does not depend on the scale parameter λ. In order to determine the estimator for α ˆ_"MOM," the following non-

linear equation must be solved: √
Γ(1−2𝛼−1)

Γ2(1−𝛼−1)
− 1 −

8

𝑥‾
= 0.  

Substituting 𝛼̂MOM  in (16) the estimate 𝜆̂MOM  can be obtained by solving 

𝜆̂𝑀𝑂𝑀 =
𝑥‾𝛼

Γ𝛼(1−𝛼−1)
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝛼 > 2⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡                                                              (17) 

5-2-3-MOM of Lognormal Distribution 

its moments are given by the following equation defined by Casella and Berger (2002) 

𝜇𝑟
′ = 𝐸(𝑋𝑛) = 𝑒

(𝑛𝜇+𝑛2𝜎2

2
)
⁡⁡                                                                                 (18) 
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then the Method of Moments estimators are 

𝜇̃ = −
ln(∑  𝑛

𝑖=1  𝑋𝑖
2)

2
+ 2 ln (∑  

𝑛

𝑖=1

 𝑋𝑖) −
3

2
ln(𝑛)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(19)

𝜎̃2 = ln(∑  

𝑛

𝑖=1

 𝑋𝑖
2) − 2 ln (∑  

𝑛

𝑖=1

 𝑋𝑖) + ln(𝑛)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(20)

 

 

6- COMPARATIVE CRITERIONS 

 
The best distribution is selected using comparison criteria, as the distribution with the lowest value for this criterion is 

the most suitable for the studied data. 

 

6-1 - Akaike information criterion (AIC) 

One of the most well-known and frequently applied model selection criteria in statistical practice is the Akaike 

information criterion (AIC), which was the first to receive broad attention in the statistical world. Hirotugu Akaike first 

proposed the criterion in his landmark work "Information Theory and an Extension of the Maximum Likelihood 

Principle" (1973). The traditional maximum likelihood framework, as applied to statistical modeling, provides a cogent 

paradigm for estimating the unknown parameters of a model having a specified dimension and structure. Akaike extended 

this paradigm by considering a setting in which the model size and structure are also unknown, and must therefore be 

determined from the data. As a result, Akaike created a framework that allowed for the simultaneous accomplishment of 

model estimation and selection (Akaike,1974). 

𝐴𝐼𝐶 = −2𝐿𝑜𝑔𝐿 + 2𝑘⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(21) 

Where: Log L: maximum likelihood function, K: is the number of the parameter.  

 

6-2-Bayesian Information Criterion (BIC) 

    Another criterion for model selections is the Schwarz Criterion or Bayesian Information Criterion (BIC). Schwarz 

(1987) developed the criterion from Bayesian likelihood maximization. Schwarz also proved that the BIC is valid since 

it does not depend on the prior distribution (Wang, Y & Liu,Q,(2006) 

𝐴𝐼𝐶 = −2𝐿𝑜𝑔𝐿 + 𝑘 log(𝑛)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(22)  

Where: K: the number of the parameter,  

 

7. RESULTS AND DISCUSSION 

 
      The exchange rate volatility data for the oil-producing countries were obtained from the World Bank's official data 

website, where data were taken for the following countries: some of the Arab countries which are members of OPEC 

include Iraq, Saudi Arabia, United Arab Emirates, Kuwait, Qatar, Libya, Iran, Algeria, Oman, Egypt and Bahrain.                                      

.    Before we proceed with the analysis of the results, it is important to compare the theoretical distributions with the 

exchange rate volatility data of the countries under analysis and check if the latter adequately represents the former.                                                                                

Some additional details for clarity: 

• This data is particularly on exchange rate volatility for the oil-exporting countries discussed in the paper . 

• Just as mentioned, it originates from the World Bank, which is the official source for such information . 

• The aim in the following empirical analysis is to assess the adequacy of theoretical statistical distributions in 

capturing the exchange rate volatilities for these countries. 

• These are quality of appropriate statistical tests that measure the extent of distribution fit and were used as outlined 

hereby theoretically. 

7.1 Parameters Estimation  

     The results of estimations for the parameters of three distributions using two estimation techniques (6, 7, 8, 13, 14, 

17, 19, and 20) are displayed in Tables (1), (2), and (3). 
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TABLE (1) for Normal Distribution  

City Methods 
Normal Distribution 

𝛍̂ 𝛔̂𝟐 

Iraq 
MLM 0.8120978 6.4821796 

MOM 1.009980 8.708746 

Saudi Arabia 
MLM 0.5957507 7.1217949 

MOM 0.7910488 12.6267262 

UAE 
MLM 1.136404 2.896736 

MOM 0.9771104 2.7938222 

Kuwait 
MLM 1.057811 3.012745 

MOM 0.8776269 2.9017733 

Qatar 
MLM 1.122696 2.403545 

MOM 0.776007 2.208614 

Libya 
MLM 1.035279 2.661930 

MOM 0.8167523 2.6104700 

Iran 
MLM 1.045796 2.907406 

MOM 0.9226814 2.8509042 

Algeria 
MLM 2.102914 1.341390 

MOM 1.431426 1.256343 

Oman 
MLM 1.590155 1.642574 

MOM 0.9771315 1.3972572 

Egypt 
MLM 1.59996 1.65627 

MOM 0.9771315 1.3972572 

Bahrain 
MLM 1.624228 1.569639 

MOM 0.9771315 1.3972572 

 

TABLE (2) for Fréchet distribution  

City Methods 
Fréchet distribution 

𝜆̂  𝜶̂ 

Iraq 

 MLM 20.5255 1.4614 

MOM 22.3666 1.6533 

Saudi Arabia 
 MLM 20.3853 1.1115 

MOM 35.6040 1.6111 

UAE 
 MLM 32.7426 1.1324 

MOM 21.0757 2.4549 

Kuwait 
 MLM 23.9320 1.0364 

MOM 20.3487 1.3031 

Qatar 
 MLM 25.3602 0.2184 

MOM 34.4336 1.8633 

Libya  MLM 45.6792 0.5287 
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MOM 42.6892 1.9221 

Iran 
 MLM 34.7599 0.3341 

MOM 31.1867 1.8991 

Algeria 
 MLM 31.0895 1.2969 

MOM 24.3279 0.9710 

Oman 
 MLM 29.9855 2.5697 

MOM 22.6140 1.0569 

Egypt 
 MLM 46.0158 1.2644 

MOM 40.9365 1.3794 

  Bahrain 
 MLM 22.7216 2.0793 

MOM 20.2302 2.1477 

 

TABLE (3) for Log Normal Distribution  

City Methods 
Log Normal Distribution 

𝛍̂ 𝛔̂𝟐 

Iraq 

 MLM 0.1145 4.6028 

MOM 0.0412 1.4087 

Saudi Arabia 
 MLM 0.3369 1.6476 

MOM 0.5613 2.6530 

UAE 
 MLM 0.2510 2.0890 

MOM 0.5297 1.6935 

Kuwait 
 MLM 0.9741 1.3830 

MOM 0.0632 2.2661 

Qatar 
 MLM 0.0489 1.4517 

MOM 0.2986 1.8350 

Libya 
 MLM 0.4036 1.9388 

MOM 0.5863 1.5738 

Iran 
 MLM 0.7885 1.1139 

MOM 0.4267 1.8134 

Algeria 
 MLM 0.0028 1.0076 

MOM 0.2590 0.5282 

Oman 
 MLM 0.7731 2.9011 

MOM 0.6376 2.0788 

Egypt 
 MLM 0.9177 2.9080 

MOM 0.3638 1.3721 

  Bahrain 
 MLM 0.2496 1.3940 

MOM 0.6793 2.5190 

 

 The table (1) summarizes the findings on the process of using the Normal distribution on exchange rate volatility for 

select oil-exporting countries so we noted that:  
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 We noted that Algeria has the highest mean estimate (2.102914 for MLE), suggesting its data tends to be higher than 

other countries. In addition, Saudi Arabia and Iraq show higher variances, indicating more spread in their data. So 

Countries like Qatar and Bahrain have lower variances, suggesting more consistent data.and Inconsistencies Some 

countries (Egypt, Oman, Bahrain) only have one method's results listed, which may indicate incomplete data or analysis. 

 Where, we are noted from table (2) the estimation methods: Both MLE and MOM estimates are provided for most 

countries, allowing for comparison. Scale parameter (λ) are values range widely, from about 20 to 46. Therefore, Libya 

and Egypt have the highest λ values, suggesting their data has a wider spread. In addition, Iraq and Bahrain have lower 

λ values, indicating a narrower spread, and Shape parameter (α ) is most values are between 1 and 2.5.and Qatar has the 

lowest α (0.2184 for MLM), suggesting very heavy tails in its distribution  so UAE and Oman show higher α values, 

indicating lighter tails. 

 In addition, from table (3) we are noted that the Values range of mean from near 0 to about 0.97 . As Kuwait has the 

highest μ̂ (0.9741 for MLE), suggesting its logged data has the highest average. So Algeria has the lowest μ̂ (0.0028 for 

MLE), indicating its logged data has the lowest average.  Moreover, most values of variances are between 1 and 3. As 

Iraq shows the highest variance (4.6028 for MLE), suggesting more spread in its logged data.so Algeria has the lowest 

variance (0.5282 for MOM), indicating less spread . 

7.2 Fit Quality Outcomes 

 To determine the best fit for distributions on the Exchange Rate Volatility Behavior in Oil Countries, the (GOF) tests 

discussed in the theoretical section. The outcomes as follows: 

TABLE (4) displays the outcomes of the Exchange Rate Volatility goodness of fit analysis. 

City Distributions Methods 
The criteria of quality of fit 

AIC BIC 

Iraq 

Normal 
MLM 404 229 

MOM 515 588 

Fréchet  
MLM 428 697 

MOM 576 668 

Log Normal 
MLM 620 339 

MOM 550 648 

Saudi 
Arabia 

Normal 
MLM 537 431 

MOM 522 465 

Fréchet  
MLM 497 662 

MOM 639 505 

Log Normal 
MLM 310 421 

MOM 543 482 

UAE 

Normal 
MLM 714 680 

MOM 354 368 

Fréchet  
MLM 258 250 

MOM 600 319 

Log Normal 
MLM 427 405 

MOM 612 441 

Kuwait 

Normal 
MLM 242 315 

MOM 648 317 

Fréchet  
MLM 691 639 

MOM 451 580 

Log Normal MLM 399 699 
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MOM 483 572 

Qatar 

Normal 
MLM 607 421 

MOM 449 327 

Fréchet  
MLM 622 711 

MOM 611 403 

Log Normal 
MLM 661 532 

MOM 216 285 

Libya 

Normal 
MLM 342 301 

MOM 517 726 

Fréchet  
MLM 553 442 

MOM 445 708 

Log Normal 
MLM 675 668 

MOM 456 586 

Iran 

Normal 
MLM 301 255 

MOM 745 376 

Fréchet  
MLM 303 535 

MOM 337 443 

Log Normal 
MLM 338 378 

MOM 700 604 

Algeria 

Normal 
MLM 287 434 

MOM 561 679 

Fréchet  
MLM 603 725 

MOM 538 746 

Log Normal 
MLM 587 477 

MOM 654 660 

Oman 

Normal 
MLM 222 218 

MOM 466 360 

Fréchet  
MLM 669 586 

MOM 564 543 

Log Normal 
MLM 568 463 

MOM 616 403 

Egypt 

Normal 
MLM 615 354 

MOM 430 655 

Fréchet  
MLM 684 372 

MOM 509 609 

Log Normal 
MLM 679 464 

MOM 229 323 

Bahrain 

Normal 
MLM 369 703 

MOM 283 225 

Fréchet  
MLM 573 574 

MOM 484 450 

Log Normal 
MLM 472 546 

MOM 525 439 
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The table (4) presents the values of goodness-of-fit criteria (AIC and BIC) provided : 

1. Iraq :    Best fit: Normal distribution with MLE [   AIC: 404, BIC: 229 ] 

   These are the lowest values for Iraq, indicating the Normal distribution best describes the data . 

2.  Saudi Arabi  :Best fit: Log Normal distribution with MLE 

[ AIC: 310, BIC: 421 

   The Log Normal has the lowest AIC, though the Normal distribution has a lower BIC. Log Normal is slightly favored 

overall . 

3. UAE:    Best fit: Fréchet distribution with MLE [ AIC: 258, BIC: 250]. 

   These are significantly lower than other distributions, suggesting Fréchet is the best fit. 

4.  Kuwait  :Best fit: Normal distribution with MLE [   AIC: 242, BIC: 315]. 

   The Normal distribution has the lowest AIC and a competitive BIC . 

5.  Qatar   :Best fit: Log Normal distribution with MOM [ AIC: 216, BIC: 285] 

   These are the lowest values across all distributions for Qatar. 

6. Libya   :Best fit: Normal distribution with MLE [   AIC: 342, BIC: 301]. 

   The Normal distribution shows the best balance of low AIC and BIC values. 

7.  Iran   :Best fit: Normal distribution with MLE [   AIC: 301, BIC: 255]. 

   These are the lowest values for Iran, indicating the Normal distribution fits best. 

8.  Algeria   :Best fit: Normal distribution with MLE[   AIC: 287, BIC: 434] 

   The Normal distribution has the lowest AIC and a competitive BIC . 

9. Oman   :Best fit: Normal distribution with MLE [   AIC: 222, BIC: 218]. 

   These are significantly lower than other distributions, suggesting Normal is the best fit . 

10.  Egyp:   Best fit: Log Normal distribution with MOM[   AIC: 229, BIC: 323] 

    The Log Normal distribution shows the lowest overall values for Egypt . 

11. Bahrain    :Best fit: Normal distribution with MOM[    AIC: 283, BIC: 225] 

    These are the lowest values across all distributions for Bahrain . 

In general, we noted that  the Normal distribution tends to be the best fit for many countries (Iraq, Kuwait, Libya, Iran, 

Algeria, Oman, Bahrain)  and The Log Normal distribution is the best fit for some countries (Saudi Arabia, Qatar, Egypt)  

so The Fréchet distribution is the best fit only for UAE. 

 

8. CONCLUSION 

 
 This research provides a clear overview into the distributional properties of exchange rate volatility for major oil-

exporting developing economies over a 32-year period. The comparative analysis of Normal, Fréchet, and Log Normal 

distributions reveals important differences in the underlying characteristics of exchange rate dynamics across these 

countries . 

 The predominance of the Normal distribution as the best fit for many countries, including Iraq, Kuwait, Libya, Iran, 

Algeria, Oman, and Bahrain, suggests that exchange rate volatility in these economies often follows patterns that can be 

adequately captured by symmetric, bell-shaped distributions. This finding has implications for risk modeling and 

forecasting approaches in these markets . 

 The superior fit of the Log Normal distribution for Saudi Arabia, Qatar, and Egypt indicates that exchange rate volatility 

in these countries tends to exhibit more skewed patterns. This asymmetry should be accounted for in volatility modeling 

and risk assessment for these economies . 

 The unique case of the United Arab Emirates, where the Fréchet distribution provides the best fit, highlights the potential 

for extreme value distributions to capture exchange rate dynamics in certain contexts. This finding underscores the 

importance of considering a range of distributional options when modeling exchange rate volatility. 

 These results contribute to a more nuanced understanding of exchange rate behavior in oil-exporting developing 

economies and can inform more accurate risk modeling and policy formulation. Future research could explore the 

economic and policy factors underlying these distributional differences and examine how they evolve over time in 

response to changing global economic conditions and oil market dynamics. 
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