γpg**- Closed Set in Topological Spaces

Ahmed Hussein Wajan Education College for Pure Sciences, Wasit University, Iraq

ahmedwn93@gmail.com

Ali Khalaf Hussain Education College for Pure Sciences, Wasit University, Iraq alhachamia@uowasit.edu.iq

Abstract

In this paper we investigate the definitions of g-closed sets, gp-closed sets, pg-closed sets, gg-closed sets, g α -closed sets, α g-closed sets. we introduced a new class of set called γ pg**-closed sets which is settled properly in between the class of semi-closed and the class of g**-closed sets.

Keywords: gp-closed sets, pg-closed sets, γpg*-closed set, γpg**-closed set.

1. Introduction

Levine [1] introduced the class of g-closed set in 1970. H. Maki.K. Balachandran [2] and R. Devi defined gs-closed set in 1996. Which were used for characterizing s-normal space and Dontchev [3] introduced gsp-closed set respectively. We introduce a new class of set called γpg^{**} -closed sets. Which properly placed in between the class of closed sets and the class of g^* -closed sets. We also showed that this new class is properly contained in the class of gs-closed sets, gsp-closed sets, γpg^* -closed set.

Levine [1]. In 2021, Ali. Al kazaragy, Faik. Mayah and Ali Khala Hussain Al-Hachami [4] introduced semi-open sets and pre-open sets respectively. Marwah Munther Hassan and Ali Khalaf Hussain [5] called semi pre—generalized closed sets as semi-preopen sets. H. Maki [2] and p.Bhattacharya [6] and B.Lahiri introduced and studiedgs-closed sets. M.

Paulin Mary Helen. Ponnuthaiselvarani and Veronica vijayan [7] introduced and studied g^{**} -closed sets .

2. Preliminaries

Definition 2.1

A subsets A of a space (X, τ) is referred to as

- 1) pre open [8] if $A \subseteq int(cl(A))$
- 2) Semi open [9] if $A \subseteq cl$ (int (A))
- 3) Semi preopen [5] if $A \subseteq cl$ (int(cl(A))

Preclosed [8] (resp - semiclosed [9]) semipreclosed [5] is a space (X, τ) preopen (resp. semiopen, semipreopen) sets complement.

Definition 2.2

Let (X, τ) be a topological space. A subset B of the space X is called

- 1) A generalized closed set (brifly, g closed) [1] if $cl(B) \subseteq V$, every time $B \subseteq V$ and V is open in (X, τ) .
- 2) A semi generalized closed set (brifly, sg closed) [6] if scl(B) \subseteq V, every time B \subseteq V and V is semi open in (X, τ) .
- 3) A generalized semi- closed set (brifly, gs closed) [10] if $Scl(B) \subseteq V$, every time $B \subseteq V$ and V is open in (X, τ) .
- 4) generalized α closed (brifly, $g\alpha$ closed) [11] if α cl(B) \subseteq V, every time B \subseteq V and V are α open . or equivelent, if B was g closed in relation to α (X).
- 5) A generalized semi preclosed set (brifly, gsp closed) [3] if Spcl (B) \subseteq V, every time B \subseteq V and V is open in (X, τ).
- 6) $A \alpha$ generalized closed set (brifly, αg closed) [3] if α cl(B) \subseteq V, every time B \subseteq V and V is open in (X, τ) .
- 7) A regular generalized closed set (brifly, rg–closed) [12] if cl(B) \subseteq V, every time B \subseteq V and V is regular open in (X, τ) .
- 8)A γ generalized closed set (brifly , γg closed) [13] if γ cl(B) \subseteq V, every time B \subseteq V and V is open in (X, τ) .

9)A γ - generalized regular closed set (brifly, $\gamma gr - closed$) [13] if $\gamma - cl(B) \subseteq V$, every time $B \subseteq V$ and V is regular open in (X, τ) .

3. Basic properties of γpg** - closed sets

We introduce the following defintions

Definition 3.1[11]

A subset A of a topological space (X, τ) is called generalized preclosed set (briefly: gp-closed) if $pcl(A) \subseteq V$ whenever $A \subseteq V$ and V is open set in X.

Example 3.2

Let $X = \{1,2,3\}$, $\tau = \{\emptyset, X, \{1\}, \{1,2\}\}$ be a topology in XAnd let $A = \{1,3\}$, it is clear pcl(A) = X

The only open sets containing A is X, and It also contains pcl(A)

So $A = \{1,3\}$ is a gp-closed set

Hence $A^c = \{2\}$ is a gp-open set.

Proposition 3.3[14]

Each closed set is a gp-closed set

But the convers of (**proposition 3.3**) is false. In gerenal as on the next as an example.

Example 3.4

Let $X = \{1,2,3\}$, $\tau = \{\emptyset, X, \{1\}, \{1,2\}\}$ be a topology define in X And let $A = \{1,3\}$, $B = \{2\}$

So A is a gp-closed set but it is not closed set

And B is a gp-open set but it is not open set.

Proposition 3.5[14]

Each g-closed set is a gp-closed set.

But the convers of (**proposition 3.5**) is false. In general as on the next as an example.

Example 3.6

Let $X = \{1,2,3\}$, $\tau = \{X,\emptyset,\{1,3\}\}$ be a topology defined in XLet $A = \{1\}$, it is clear that $pcl(A) = \{1\}$, the open sets that contain A are : X, $\{1,3\}$ and it is also contain pcl(A) So *B* is a gp-closed set but it is not g-closed set because $\overline{(B)} = X$ Hence that $A \subseteq \{1,3\}$ but $\overline{(A)} = X \nsubseteq \{1,3\}$.

Definition 3.7[11]

A subset A of a topological space (X, τ) is called a pre generalized-closed set (briefly: pg-open) if $pcl(A) \subseteq V$ whenever $A \subseteq V$ and V is a pre-open set in X.

Example 3.8

Let $X = \{1,2,3\}$, $\tau = \{\emptyset, X, \{1\}, \{2,3\}\}$ be a topology define in X And let $A = \{3\}$, it is clear that $pcl(A) = \{3\}$

The pre-open sets containing A are X, $\{2,3\}$, $\{1,3\}$, $\{3\}$, and it also contains a pcl(A).

So $A = \{3\}$ is a pg-closed set

Hence $A^c = \{1,2\}$ is a pg-open set.

Proposition 3.9[14]

Every closed set is a pg-closed set.

But the convers of (**proposition 3.9**) is false. In general, as on the next as an example.

Example 3.10

Let $X = \{1,2,3,4\}$, $\tau = \{X,\emptyset,\{2\},\{1,2,3\}\}$ be a topology defined X And let $A = \{3\}$, so $pcl(A) = \{3\}$

The p-open sets containing A is: X, $\{1,2,3\}$, $\{2,3\}$, $\{2,3,4\}$, and it is also contained pcl(A)

So A is a pg-closed set but it is not closed set.

Remark 3.11[13]

The union of two pg-closed sets is not necessary to be a pg-closed set, as shown by the following example .

Example 3.12

Let $X = \{1,2,3,4\}$, $\tau = \{X,\emptyset,\{1,2,3\}\}$ be a topology defined in X And let $A = \{1,2\}$, $B = \{2,3\}$

So X, {1,2,3} is a pre-open set which contain each of A and B and contain pcl(A) and pcl(B)

Hence that each of A and B are a pg-closed set

And since $A \cup B = \{1,2,3\}$, so $pcl(A \cup B) = X$

Hence $A \cup B \subseteq \{1,2,3\}$ and $pcl(A \cup B) \nsubseteq \{1,2,3\}$

So $A \cup B$ is not pg-closed set.

Definition 3.13

A subset A of a topological space (X, τ) is said to be a γpg^* -closed set if $\gamma pcl(A) \subseteq V$ whenever $A \subseteq V$ and V is g-open set in (X, τ) .

Definition 3.14

A subset A of a topological space (X, τ) is said to be a γpg^{**} -closed set if $\gamma pcl(A) \subseteq V$ whenever $A \subseteq V$ and V is g^* -open set in (X, τ) .

Theorem 3.15

Each closed set is γpg**-closed set.

Proof:

Let A be any closed and G be any g^* -open set containing A in (X, τ) .

Since A is closed.

Cl(A) = A, so $cl(A) \subseteq V$.

Hence A is γpg^{**} -closed in (X, τ) .

the convers of (Theorem~3.15) is false.In gerenal as on the next as an example shows .

Example 3.16

Let
$$X = \{1, 2, 3\}, \tau = \{X, \emptyset, \{1\}, \{1, 2\}\}.$$

Then the set A = $\{1, 3\}$ is γpg^{**} -closed set but not closed set in (X, τ) .

Proposition 3.17[15]

Each pg-closed set is a gp-closed set.

But the convers of (**Proposition 3.17**) is false. In general as on the next as an example.

Example 3.18

Let $X = \{1,2,3,4,5\}$ and let $\tau = \{X, \emptyset, \{1\}, \{3,4\}, \{1,3,4\}\}$ be a topology defined on

And let $A = \{2\}$, so $pcl(A) = \{2,5\}$

The only p-open sets containing A is X and it is also contained pcl(A)

So A is a gp-closed set but it is not pg-closed set since the p-open set containing A are: $\{1,2,4\},\{1,2,4,5\},\{1,2,3,4\},\{1,2,3,5\},\{1,2\},\{1,2,3\}$ and it is not contained pcl(A).

Proposition 3.19[17]

Each gp-closed set is gsp-closed.

the convers of (**Theorem 3.19**) is false. In general, as on the next as an example shows

Example 3.20

Let $X = \{1,2,3\}$, $\tau = \{X, \emptyset, \{1,2\}\}$ be a topology defined in **X**

And let $A = \{2\}$, so $spcl(A) = \{2\}$

The only open sets containing A is $\{1,2\}$ and it is also contained spcl(A)

So A is a gsp-closed set but it is not gp-closed set since $A \subseteq \{1,2\}$

But
$$\overline{(A)} = X \subset \{1,2\}$$

Proposition 3.21

Every γpg**-closed set is gsp-closed but not conversely.

Example 3.22

Let $X = \{1,2,3\}$, $\tau = \{X, \emptyset, \{1\}, \{2\}, \{1,2\}\}$ be a topology defined in X.

And let A= $\{1, 2\}$ is a gsp - closed set but it is not γpg^{**} -closed set of (X, τ)

Remark 3.23[18]

Every gp-closed set is gpr-closed but not conversely.

Proposition 3.24

Each $\gamma pg^{**}\text{-}$ closed set is gpr- closed but not conversel .

Example 3.25

Let $X = \{1,2,3\}$, $\tau = \{X,\emptyset,\{1\}\}$ be a topology defined in X.

And let $A = \{1\}$ is gpr- closed set but it is not γpg^{**} -closed set

Proposition 3.26

Each γpg^{**} - closed set is gp- closed but not conversely

Theorem 3.27

Every α – *closed set* is γpg^{**} -closed set.

Proof:

Let A be α – *closed* and G be g^* -open set in (X,τ) *such that* $A \subseteq G$.

Since A is $\alpha - closed$, $\alpha cl(A) = A$.

But $\gamma pcl(A) \subseteq \alpha cl(A)$ is always true.

Thuse $\operatorname{\gamma pcl}(A) \subseteq G$.

Hence A is γpg^{**} - closed set in (X, τ) .

the convers of (**Theorem 3.27**) is false. In general, as on the next as an example shows.

Example 3.28

Let $X = \{1, 2, 3\}, \tau = \{X, \emptyset, \{1\}, \{1, 2\}\}.$

Then the set $A = \{2\}$ is γpg^{**} - closed set but not α – closed set in (X, τ) .

Proposition 3.29

If A is a γpg^{**} - closed set of (X, τ) then $\gamma pcl(A)$ / A does not contain any non – empty γpg^* - closed set.

Proof:

Let *M* be a g^* - closed set of (X, τ) such that $M \subseteq \gamma pcl(A) / A$.

Then $A \subseteq X / M$.

Since A is γpg^{**} - closed and X / M is γpg^{*} - open, $\gamma pcl(A) \subseteq X / M$.

This implies $M \subseteq X / \gamma pCl(A)$.

So, $M \subseteq (\mathcal{X}/\gamma pCl(A)) \cap (\gamma pCl(A)/A) \subseteq (X/\gamma pCl(A)) \cap \gamma pCl(A) = \emptyset$.

Therefore $M = \emptyset$.

Hence $\gamma pcl(A)$ /A does not contain any non - empty γpg^* - closed set.

Proposition 3.30

If A is γpg^{**} - closed set of (X, τ) such that $A \subseteq B \subseteq \gamma pcl(A)$, Then B is also a γpg^{**} - closed set of (X, τ) .

Proof:

Let V be γpg^* - open set of (X, τ) such that $B \subseteq V$.

Then $A \subseteq V$ where V is γpg^* -open.

Since A is γpg^{**} - closed, $\gamma pcl(A) \subseteq V$.

Then $\gamma pcl(B) \subseteq \gamma pcl(\gamma pcl(A)) = \gamma pcl(A) \subseteq V$.

Thus, B would be γpg** - closed.

Theorem 3.31

Vol. (2) No. (1)

Let $A \subseteq Y \subseteq X$ and assume that Is the a γpg^{**} -closed set of (X, τ) . Then, A is γpg^{**} -closed in relative to Y.

Proof:

Let $A \subseteq Y \cap G$, where G is g^* - open.

Therefore $A \subseteq G$ as a result, $\gamma pcl(A) \subseteq G$.

This suggests that $Y \cap \gamma pcl(A) \subseteq Y \cap G$.

A is thus γpg^{**} -closed relative to Y.

Theorem 3.32

If A be γpg^{**} -closed in (X, τ) . Then A is preclosed if and only if $\gamma pcl(A)$ - A is g^* -closed.

Proof:

Assume A is preclosed.

As a result, $\gamma pcl(A) = A$, and $\gamma pcl(A) - A = \emptyset$, which is g^* -closed.

Conversely:

Let's say that $\gamma pcl(A)$ - A is g*-closed.

Since A is γpg^{**} - closed, $\gamma pcl(A) - A = \emptyset$.

That would be, $\gamma pcl(A) = A$ or A is preclosed.

Definition 3.33

The subset A in X is referred to as γpg^{**} -open in (X, τ) if X - A is γpg^{**} -closed in (X, τ) .

Theorem 3.34

The set A is γpg^{**} - open in (X, τ) if and only when $F \subseteq \gamma pint(A)$ everytime F was g^* -closed in (X, τ) when $F \subseteq A$.

Proof:

If F was g*-closed & F \subseteq A, then let's say that F \subseteq γ pint(A).

Assume X- $A \subseteq G$ when G is g^* -open to (X, τ) .

Consequently $G \subseteq X - G$ and $X - G \subseteq \gamma pint(A)$.

And hence \mathcal{X} – A is γpg^{**} - closed in (X, τ) .

Therefore, A is γpg^{**} - open in (X, τ) .

Conversely:

Assume that A is γpg^{**} -open, $F \subseteq A$, & F becomes g^* -closed on (X, τ) .

As a result, \mathcal{X} - F is g*-open while X - A \subseteq X- F.

Consequently, $\gamma pcl(X-A) \subseteq X-F$.

Nevertheless, $\gamma pcl(X - A) = X - pInt(A)$

And therefore, $F \subseteq \gamma pint(A)$

Theorem 3.35

A subset A is γpg^{**} - open in (X, τ) if and only if G = X everytime G is g^* - open when $\gamma pint(A) \cup (X-G) \subseteq G$.

Proof:

Assume that A is γpg^{**} -open, G is g^{*} -open, and that $\gamma pInt(A) \cup (X - A) \subseteq G$.

The result is $X - G \subseteq (X - \gamma pint(A)) \cap (X - A) = X - \gamma pint(A) - (X - A) = \gamma pcl(X - A) - (X - A).$

because X -A is γpg^{**} -closed and X-G is g^{*} -closed.

In light of Theorem (3.34), it is evident that $X - G = \emptyset$.

As a result, X = G.

Conversely:

Assume that F is g^* -closed and that $F \subseteq A$.

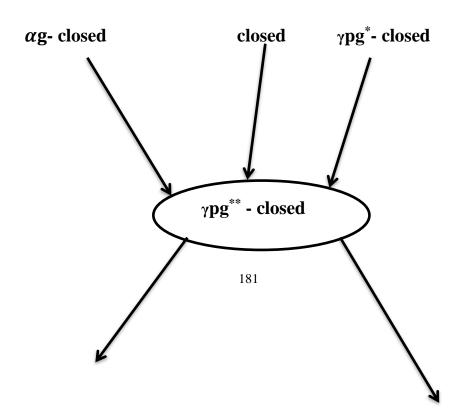
Since $(X - A) \cup \gamma pInt(A) \subseteq \gamma pint(A) \cup (X-F)$.

Consequently, $\gamma pint(A) \cup (X - F) = X$.

Therefore, $F\subseteq int(A)$.

Hence, A is γpg^{**} -open in (X, τ) .

The above results can be represented in the following figure.





References

- [1] N. Levine, "Generalized closed sets in topology," *Rend. del Circ. Mat. di Palermo*, vol. 19, no. 1, pp. 89–96, 1970.
- [2] H. Maki. K. Balachandran and R. Devi. Remarks on semi-generalized closed sets and generalized semi-closed sets. Kyungpook. Math.J., 36 (1996). 155-163.
- [3] J. Dontchey. On generating semi-preopen sets, Mem. Fac. Sci. Kochi. Univ. Ser. A., Math., 16 (1995), 35-48.
- [4] A. Alkhazragy, A.K.H. Al Hachami and F. Mayah "Notes on strongly Semi closed graph". Herald of the Bayman Moscow StateTechnical University, Series Natural Sciences, 2022 no.3 (102) PP. 17-27.
- [5] Marwah Munther Hassan and Ali Khalaf Hussain "On Semi pre-generalized-closed sets". Wasit journal for pure science. Vol (1) No. (2) 2022.
- [6] P. Bhattacharya and B.K. Lahiri. Semi-generalized closed sets in topology, Indian J.Math., 29 (1987). 375-382.
- [7] M. Paulin Mary Helen. Ponnuthai Selvarani. S. Veronica Vijayan. g**-closed sets in topological spaces, IJMA, 3(5), 2012, 1-15.
- [8] A.S. Mashhour, I.A. Hasanein and S.N.El-Deeb, On pre-continuous and weak precontinuous mappings, proc . Math. and phys. Soc. Egypt, 53(1982), 47-53.
- [9] N. Levine, "Semi-open sets and semi-continuity in topological spaces," *Am. Math. Mon.*, vol. 70, no. 1, pp. 36–41, 1963.
- [10] S.p. Arya and T. Nour, Gharacterizations of s-normal spaces, Indian J. Pure. Appl. Math., $21\ (1990)$, 717-719.
- [11] H. Maki, J. Umehara and T. Noiri. Every topological spaces is pre- $T_{1/2}$, Mem.Fac.Sci.Kochi. Univ.Ser. A.,17 (1996), 33-42.
- [12] N. Palaniappan and K. Rao. Regular generalized closed sets. Kyungpook. Math. J., 33(1993), 211-219.
- [13] T. Fukutake, A.A. Nasef, A.I.EL-Maghrabi, Some topological concepts via γ -generalized closed sets, Bulletin of Fukuoka Uni-versity of Education 52 (3) (2003) 1-9 .
- [14] سالم داود محسن الخفاجي , (حول التطبيقات المغلقة PG) , رسالة ماجستير , كلية التربية الجامعة

المستنصرية (2004).

Vol. (2) No. (1)

- [15] Dunham, W, 'A new closure operator for non-T1 topologies', Kyungpook Mathematical Journal, vol. 22, no. 1, pp. 55-60, (1982).
- [16] Taresh, M.R. and A. Al-Hachami, on normal space: OR, Og, Wasit Journal of pure sciences, 2022. 1(2): p. 61-70.
- [17] S.P. Arya and T. Nour, Characterization of s-normal space. Indian J. Pure. Appl. Math., 21(1990). 717-719.
- [18] Y. Gnanambal, on generalized preregular closed sets in topological spaces. Indian J. Pure. Appl. Math., 28(3) (1997), 351-360.

Article submitted 10 February 2023. Published as resubmitted by the authors 14 March 2023.