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1. INTRODUCTION 

The first of fractional calculus roots started in the last years of the seventeenth century, by Newton’s work along with 

Leibniz’s which established as a basis for the classical calculus. The operators of fractional calculus which is most 

classical is called the Riemann– Liouville fractional integral and derivative [1, 36]. Also, Caputo is introducing another 

definition of fractional derivatives was suitable for physical conditions, see [14,28]. Moreover, several other definitions 

of fractional operators have been explained and studied until now, such as Erd´elyi–Kober, Hadamard, Gr¨unwald–

Letnikov, Hilfer, Marchaud, and Prabhakar, we can see [1, 35, 36].so since that are many definitions implied that  

to suggested to establish some generalized fractional operators for the particular cases of definitions. This The motivation 

is important for fractional differential equations in models of physics, economics, engineering and other branches of 

sciences, see [1,14,35]. There are many methods are presented by many authors for solving FDEs analytically or 

numerically, and they developing interesting methods to obtain analytic solutions for some classes of fractional 

differential equations and was considered as a one of the most challenging tasks in the field of fractional calculus. In the 

last years, some authors have been interested to extensions of the fractional for classical integral transforms, such as 

Laplace and other transformations, [13]. In particular, the Laplace transform extensions appeared in [13, 14, 15] has been 

used as a effective tool for finding analytic of FDEs. The traditional stability, asymptotical stability and exponential 

stability in the sense of Lyapunov, which is property of a system was considered in an infinite-time interval. The stability 

analysis is important issues of control systems field, also the time- delay systems investigation needed this problem many 

years ago [31]. Many researches have been published for this Issues with particular application of Lyapunov’s second 

method, see [2,37]. Also, another approach is presented of system stability from the non-Lyapunov point which is (finite 

and practical stability) is presented in [25,26]. Moreover, the linear time-delay systems analytically with finite and 

practical stability was studied, [8,14]. Recently there are many advances in control theory of fractional dynamical systems 

for stability explanting, see [10,11]. A condition based to guarantee the asymptotic stability of the fractional order system 

ABSTRACT: In this research, the finite-time stability of Multi-Composition  Caputo-Katugampola fractional 

Integro- Differential Nonlinear system with many values of fractional derivatives is studied with some sufficient and 

necessary conditions as Lipchitz  conditions for nonlinear functions involving Riemann– Katugampola fractional 

integral and the formulas derived from them with their respective bounded value as well as finding the solution under 

these conditions that contains Mittag Leffler functions which appeared through the use of the generalized  Laplace 

formula which suitable with Caputo-Katugampola fractional derivative. Therefore, important conditions appeared 

that contain the parameters that played a good role in finding and computing the stability as in the attached tables of 

illustrative examples that explain the necessary time requirements for it. 

 

Keywords: finite time stability, Caputo–Katugampola Composition fractional derivatives, Riemann-Katugampola 

.  ©2025 THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE 

mailto:Mohammed_salah_97@uomustansiriyah.edu.iq
https://wjps.uowasit.edu.iq/index.php/wjps/index
https://doi.org/10.31185/wjps.810
https://orcid.org/signin
https://orcid.org/0000-0002-2613-2584
https://creativecommons.org/licenses/by/4.0/


Mohammed et al., Wasit Journal for Pure Science Vol. 4 No. 4 (2025) p. 1-12 

 

 2 

some of them is robust stability or stabilization of fractional are presented and discussed in [7,31]. Recently, there are 

many papers studied finite-time stability analysis of fractional time-delay systems by using many methods such as linear 

matrix inequality, Lyapunov functions, and Gronwall’s integral inequality, [19,30]. In [8,29], the authors introduced the 

stability in finite time for the system of fractional order with delay equation by using Mittag-Leffler delay type matrix or 

other suitable conditions. The authors in [23], studied the finite time stability result for nonlinear fractional order system 

involving discrete time delay. In [6], studied the finite time stability for nonlinear fractional system by using Mittag 

Leffler function for both orders 0 <  𝛼1 − 𝛼2 <  1 𝑎𝑛𝑑 1 ≤  𝛼1 − 𝛼2 <  2. In [4], have been studies the fractional-

order Black-Scholes equation with Katugampola Fractional Derivative is a one of Caputo type. The analytic solution of 

the time-fractional Black-Scholes equation by using the technique of the generalized Laplace homotopy perturbation 

method which this method is combination between homotopy perturbation method and generalized Laplace transform 

appeared in [13]. Many a branch of science such as control systems, neural networks, missile systems and other fields, 

the more practical method is the finite-time stability, see [34,12]. finite time stability focuses on the behavior of a solution 

of given system work in a fixed time interval [20]. The finite-time stability analysis of fractional differential systems 

Have been considered in [17]. our aim to specifically on the generalized Laplace transform, see [2], which be called 

Laplace transform with respect to functions. This issue of operator suitable with the fractional integrals and derivatives 

with respect to functions, and which used to solve differential equations. In [5] have been introduced finite time stability 

by Granwall’s approach for interesting system time –delay fractional system. In [6, 29] studied finite time stabile of delay 

nonlinear fractional equations. In [17] provided the impulses and state time delay involving with nonlinear fractional 

system and explained all details of finite stability. In [33] the authors studied the nonlinear stochastic Ψ −Hilfer fractional 

system and their finite time stability. In this paper the finite time stability the article is organized as follows. Section 2 

contains preliminary definitions from classical and fractional calculus. In Section 3, we consider the generalized Laplace 

transform with respect to functions, including from the viewpoint of operational calculus, and prove several important 

properties including an inversion formula and generalized Laplace transforms of several fractional operators with respect 

to functions. Sections 4 and 5 are devoted to fractional differential equations, firstly a regularity result to show 

applicability of the generalized Laplace transform, and then explicitly solving some Cauchy initial value problems. 

Finally, Section 6 makes concluding statements about this manuscript and future directions of research.    

2. PRELIMINARIES 

Definition 2.1[37]: The Euclidean norm of a vector 𝑥 =  (𝑥1, 𝑥2, … … … . . , 𝑥𝑛) ∈ 𝑅𝑛 is defined as: 

‖x‖2 = (∑ |xi|
2n

i=1 )
1

2  

Definition 2.2[37]: The Maximum of vector x =  (x1, x2, … … … . . , xn) ∈ Rn is defined as: 
‖x‖∞ = max|xi|,         1 ≤ i ≤ n  

Definition 2.3 [9]: The finite time stable with respect to t ∈ [0, 𝑇] and δ, ε > 0 if and only if σ < δ such that ‖x(t)‖ <

ε ∀ t ∈ [0, T] ,where σ = max{‖x(0)‖, ‖x`(0)‖} is initial time of the system differential 

 

Definition 2.4 [22]: Let β ∈ (0,1), ρ > 0 and   0 < a < b < ∞.  

𝐷𝑡
𝛽,𝜌

𝑓(𝑡) =
𝜌𝛽

Г(1−𝛽)
(𝑡1−𝜌 𝑑

𝑑𝑡
) ∫

sρ−1

(tρ−sρ)β
[f(s) − f(a)]ds,

𝑏

𝑡
𝑎

 𝑐𝑘

  left Caputo- Katugampola fractional differential systems  

𝐷𝑏

𝛽,𝜌
𝑓(𝑡) =

−𝜌𝛽

Г(1−𝛽)
(𝑡1−𝜌 𝑑

𝑑𝑡
) ∫

sρ−1

(sρ−tρ)β
[f(s) − f(b)]ds,

𝑏

𝑡
𝑡

𝑐𝑘

 right Caputo- Katugampola fractional differential systems  

 

Definition 2.5 [22]:  Let 𝛽 > 0, 𝜌 > 0 and consider the interval[a, b], Subset of R, where 0< 𝑎 < 𝑏 < ∞. The left and 

right Riemann-Katugampola fractional differential systems are Respectively defined  by 

 

Dt,
β,ρ

a

  RK
ℎ(𝑡) =

ρβ

ᴦ(1−β)
(t1−ρ d

dt
) ∫

τρ−1

(tρ−τρ)
β  h(τ)dτ,

b

t
  

 

Db,

β,ρ

t

  RK
ℎ(𝑡) =  

−ρβ

ᴦ(1−β)
(t1−ρ d

dt
) ∫

τρ−1

(τρ−tρ)
β  h(τ)dτ,

b

t
  

 Lemma 2.6 [3]: Let α > 0, μ > 0, and x(t) ∈  L1([a, b]), R), 0 < a < b < ∞   

‖ 𝐷𝑎
𝑅𝐾

𝑡

−𝛼,𝜇
𝑥(𝑡) − 𝐷𝑎

𝑅𝐾

𝑡

−𝛼,𝜇
𝑦(𝑡)‖ ≤ 𝑊(𝑡)‖𝑥(𝑡) −  𝑦(𝑡)‖                                

When W(t) =
1

μαΓ(α)
(

tμ−aμ

μ
) 
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Definition 2.7 [7, 11]: The one parameter Mittag Leffler function is given by  

𝐸𝛽1
(𝑧) = ∑

zi

ᴦ(iβ1+1)
,∞

i=0                                                                                                                                                    (1) 

With 𝛽
1

> 0 , 𝑅e (𝛽
1
) > 0 and z ∈ 𝐶.For parameters 𝛽

1
 and 𝛽

2
 

𝐸𝛽1,𝛽2
(𝑧) ∑

𝑧𝑖

ᴦ(𝑖𝛽1+𝛽2)
,∞

𝑖=0                                                                                                                                                   (2) 

With 𝛽
1

 , 𝛽
2

 ∈ C, Re(𝛽
1

 ) > 0, Re(𝛽
2

 ) > 0, z ∈ C.By choosing    𝛽
2

= 1, 𝐸𝛽1,1
(𝑧) = 𝐸𝛽1

(𝑧).     

  

Definition 2.8 [13]: (The generalized Laplace transformation) 

 Let f, g ∶  [a, ∞ )  →  R are two real valued functions when g(t) is continuous and g`(t)  >  0 on[a, ∞), 𝑎 > 0.If the 

generalized Laplace transformation is  

ℒ𝑔{𝑓(𝑡)}(s) = ∫ 𝑒−s(g(t)−g(a))∞

𝑎
f(t) g`(t) dt , for all values of s, the integral is valid.                                                 (3) 

Theorem 2.9[ 3 ]: If 𝒇(𝒕) ∈ 𝑪𝟏([𝒂, 𝒃]), 𝟎 <  𝐚 <  𝐛 <  ∞, then   

                 ( 𝐷𝑎
𝐶𝐾

𝑡

𝛼,𝜇
𝐷𝑎

𝐶𝐾

𝑡

𝛽,𝜇
𝑓)(𝑡) = ( 𝐷𝑎

𝐶𝐾

𝑡

𝛼+𝛽,𝜇
𝑓)(𝑡),           𝑡 ∈ [𝑎, 𝑏],          

where  𝛼, 𝛽, 𝜇 ∈ ℝ ∋ ρ, α be a positive , β < 1  and α + β ≤ 1.   

Lemma 2.10 [28], [22]: 

1 − ℒtρ

ρ

 { Dt
𝛿,ρ

x(t)}(s) = s𝛿L
tρ

ρ0
CK {x(t)}(s) − s𝛿−1x(0)    0 <  𝛿 ≤ 1                                                                          (4) 

2 − ℒtρ

ρ

{ Dt
𝛿,ρ

x(t)}(s) = s𝛿L
tρ

ρ0
CK {x(t)}(s) − s𝛿−1x(0) − s𝛿−2x`(0) 1 < 𝛿 ≤ 2                                                         (5) 

3- ℒ {(
tρ

ρ
)v} (s) =

ᴦ(1+v)

s1+v                                                                                                                                                    (6) 

4- ℒtρ

ρ

{E𝛿,1 〈±ℷ (
tρ

ρ
)

𝛿

〉} (s) =
s𝛿−1

s𝛿±ℷ
              , Re(𝛿) > 0                                                                                                (7) 

5- ℒtρ

ρ

{E𝛿,(𝛼+β) 〈±ℷ (
tρ

ρ
)

𝛿

〉} (s) =
s𝛿−(𝛼+β)

s𝛿±ℷ
      Re(𝛿) > 0, Re((𝛼 + β)) > 0                                                              (8) 

6 − ℒtρ

ρ

 { Dt
𝛼+𝛽,ρ

0
CK x(t)}(s) = s𝛼+βL

tρ

ρ
{x(t)}(s) − s(𝛼+β)−1x(0)                                                                                  (9)                                        

3. MULTI-COMPOSITION Caputo - Katugampola -(𝐂 − 𝐊) FRACTIONAL INTEGRO-

DIFFERENTIAL NONLINEAR SYSTEM  

Consider the following system involving the Riemann-Katugampola nonlinear fractional integro –differential 

system which explained as follows: 

{
Dt

𝛿,ρ
x(t)0

CK − A ( Dt
𝛼,ρ

Dt
𝛽,ρ

0
CK

0
CK x(t)) = g(t, x(t), It

ղ,ρ
x(t)0

RK ), t ∈ I                                                                                        (10)

 x(0) = 𝑥0  , x`(0) = 𝑥1                                                                                                                                                                    (11)
  

Where Dt
𝛿,ρ

0
CK indicates the Caputo-Katugampola Fractional Derivatives with 

α, β , δ and L =  [0, T], x(t)  ∈ 𝐶(L, 𝑅𝑛), A ∈ 𝑅𝑛×𝑛 and 0 <  𝛼, 𝛽 < 1 , 𝛼 + 𝛽 ≤ 1, 1 <  𝛿 ≤ 2, 0 <  ղ <

1 , g: I × 𝑅𝑛 × 𝑅𝑛 →  𝑅𝑛 is a continuous function.  
 

Assumption 3.1: 

1- By lemma (2.6), the function g(t, x(t), It
ղ,ρ

x(t)0
RK ) satisfies   

 ||g(t, 𝑥1(t), It
ղ,ρ

𝑥1(t)0
RK ) − g(t, 𝑥2(t), It

ղ,ρ
𝑥2(t)0

RK ))||   ≤   W|| 𝑥1(𝑡) − 𝑥2(𝑡)||  +  ẁ(t)|| 𝑥1(𝑡) − 𝑥2(𝑡)||, for 

W and ẁ(t) > 0. 

2- The function g(t, x(t), It
ղ,ρ

x(t)0
RK ) satisfies the following 

 || g(t, x(t), It
𝛽3,ρ

x(t)0
RK ) ||   ≤   (M +  ẁ(t))||x(t)||, for t ∈  I, x ∈  𝑅𝑛and 𝑀 > 0. 

3- the operator  Bx(t) + It
ղ,ρ

x(t)0
RK satisfies the following  

‖Bx(t) + It
𝛽3,ρ

x(t)0
RK ‖ ≤ (‖B‖ + ẁ(t))‖x(t)‖ , where B is a constant matrix. 

 

Lemma 3.2: The solution of Multi -Composition- Caputo- Katugampola fractional integro-differential nonlinear 

System (10) with 0 <  α + β < 1 ,1 <  δ ≤ 2 explained as following:  
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x(t) =  𝑋0 E𝛿−(𝛼+β) (A
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) ) − 𝐴𝑋0(
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )E𝛿−(𝛼+β),𝛿−(𝛼+β)+1(A
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β)
)+𝑋1E𝛿−(𝛼+β),2(A

tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β)
) 

∫ (
(t−θ)ρ(𝛿−(𝛼+β)−1)

𝜌𝛿−(𝛼+β)−1
) E𝛿−(𝛼+β),𝛿,

t 

0
 A (

(t−θ)ρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) ) g(θ, x(θ), It
ղ,ρ

x(θ)
0

RK
)) dθ   

 

Proof: Take 
tρ

ρ
 Laplace Transform for two side of (10) then 

ℒtρ

ρ

{ Dt
𝛿,ρ

x(t)}(s) − ℒtρ

ρ

{ Dt
(𝛼+β),ρ

0
CK x(t)}(s) = ℒtρ

ρ

{g(t, x(t), It
ղ,ρ

x(t)0
RK )}0

CK , By using lemma (2.10) we get that 

s𝛿𝑋tρ

ρ

(s) − s𝛿−1x(0) − s𝛿−2x`(0) − As(𝛼+β)𝑋tρ

ρ

(s) + As(𝛼+β)−1x(0) = ℒtρ

ρ

{g(t, x(t), It
ղ,ρ

x(t)0
RK )}(s). From initial 

condition (11) we have that 

s𝛿𝑋tρ

ρ

(s) − s𝛿−1𝑥0 − s𝛿−1𝑥1 − As(𝛼+β)𝑋tρ

ρ

(s) + As(𝛼+β)−1𝑥0 = ℒtρ

ρ

{g(t, x(t), It
ղ,ρ

x(t)0
RK )}(s)  

 𝑋tρ

ρ

(s)[s𝛿 − A s(𝛼+β)]−𝑋0[s𝛿−1 − As(𝛼+β)−1 ] − 𝑋1s𝛿−2= ℒtρ

ρ

 {g(t, x(t), It
ղ,ρ

x(t)0
RK )}(s)                                          (12) 

multiply (12) by 
1

[s𝛿−As(𝛼+β)]
, we obtain that                      

 𝑋tρ

ρ

(s) − 𝑥0 [ 

𝑠𝛿−1−𝐴𝑠(𝛼+β)−1

s(𝛼+β)

𝑠𝛿−𝐴𝑠(𝛼+β)

s(𝛼+β)

] − 𝑥1  [

s𝛿−2

s(𝛼+β)

𝑠𝛿−𝐴𝑠(𝛼+β)

s(𝛼+β)

] =

ℒtρ

ρ

{g(t,x(t), It
ղ,ρ

x(t)0
RK )}(s)

1

s(𝛼+β)

𝑠𝛿−𝐴𝑠(𝛼+β)

s(𝛼+β)

   

𝑋tρ

ρ

(s) − 𝑋0 [
s𝛿−(𝛼+β)−1+As−1

s𝛿−(𝛼+β)−A
] − 𝑋1  [

s𝛿−(𝛼+β)−2

s𝛿−(𝛼+β)−A
] =

ℒtρ

ρ

{g(t,x(t), It
ղ,ρ

x(t)
0

RK
)}(s)

1

s(𝛼+β)

s𝛿−(𝛼+β)−𝐴
  

Now by using invers 
tρ

ρ
 Laplace Transform we have that 

𝑥(𝑡)ℒtρ

ρ

−1 {𝑋0 (
s𝛿−(𝛼+β)−1

s𝛿−(𝛼+β)−A
)} − ℒtρ

ρ

−1 {𝑋0 (
As−1

s𝛿−(𝛼+β)−A
)} + ℒtρ

ρ

−1 {𝑋1 (
s𝛿−(𝛼+β)−2

s𝛿−(𝛼+β)−A
)} + ℒtρ

ρ

−1 {

ℒtρ

ρ

{g(t,x(t), It
ղ,ρ

x(t)0
RK )}(s)

1

s(𝛼+β)

s𝛿−(𝛼+β)−𝐴
} , By 

from lemma (2.10), we get that 

x(t) =  𝑋0 E𝛿−(𝛼+β) (A
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) ) − 𝐴𝑋0(
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )E𝛿−(𝛼+β),𝛿−(𝛼+β)+1(A
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β)
)+𝑋1E𝛿−(𝛼+β),2(A

tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β)
) 

∫ (
(t−θ)ρ(𝛿−(𝛼+β)−1)

𝜌𝛿−(𝛼+β)−1
) E𝛿−(𝛼+β),𝛿,

t 

0
 A (

(t−θ)ρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) ) g(θ, x(θ), It
ղ,ρ

x(θ)
0

RK
)) dθ                                                          (13)  

 

Lemma 3.3: If  b(t)  >  0& c(t)  >  0 is locally integrable on [0, T), δ >  0, d(t)  ≤ W with 

b(t)  ≤ c(t) + d(t) ∫ (
(t−α)ρ(δ−1)

ρδ−1 )b(α)dα, 0 ≤ t < T.
t

0
 Then  

b(t)  ≤ c(t) + d(t) ∫ [∑
[d(t)ᴦ(δ]n

ᴦ(nδ)

+∞
n=1 (

(t−α)ρ(nδ−1)

ρnδ−1 )c(α)]dα, 0 ≤ t < T.
t

0
  

proof: Assume that  𝐴∅(𝑡) =  𝑑(𝑡) ∫ (
(t−α)ρ(𝛿−1)

𝜌𝛿−1 ) 𝑏(𝛼)𝑑𝛼, 𝑡 > 0,
𝑡

0
 for locally integrable function ∅. Then   𝑏(𝑡) ≤

𝑐(𝑡) + 𝐴𝑏(𝑡) implies  𝑏(𝑡) ≤ ∑ 𝐴𝑘𝑛−1
𝑘=0 𝑐(𝑡) + 𝐴𝑛𝑏(𝑡). 

Now to prove that 𝐴𝑛𝑏(𝑡) ≤ ∫ [
[𝑑(𝑡)ᴦ(𝛿)]𝑛

ᴦ(𝑛𝛿)
(

(t−α)ρ(n𝛿−1)

ρn𝛿−1 )𝑏(𝛼)]𝑑𝛼.
𝑡

0
                                                                                 (14) 

and 𝐴𝑛𝑏(𝑡) → 0 𝑎𝑠 𝑛 → +∞ for each t in 0 ≤ 𝑡 < 𝑇 

from this (14) is true for 𝑛 =  1. Assume that it is true for some 𝑛 =  𝑘. 

If n =  k + 1, then the induction hypothesis implies  
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𝐴𝑘+1𝑏(𝑡) = 𝐵(𝐴𝑘𝑏(𝑡)) ≤ 𝑑(𝑡) ∫ (
(t−α)ρ(𝛿−1)

𝜌𝛿−1 ) [∫ [
[𝑑(𝑡)ᴦ(𝛿]𝑘

ᴦ(𝑘𝛿)
(

(𝛼−τ)ρ(k𝛿−1)

ρk𝛿−1 )𝑏(𝜏)]𝑑𝜏,
𝛼

0
] 𝑑𝛼  

𝑡

0
  

Since d(t) is nondecreasing, we get that 

𝐴𝑘+1𝑏(𝑡) ≤ 𝐴𝑘+1𝑏(𝑡)(𝑑(𝑡))𝑘+1 ∫ (
(t−α)ρ(𝛿−1)

𝜌𝛿−1 ) [∫ [
[ᴦ(𝛿]𝑘

ᴦ(𝑘𝛿)
 (

(𝛼−τ)ρ(k𝛿−1)

ρk𝛿−1 )𝑏(𝜏)]𝑑𝜏
𝛼

0
] 𝑑𝛼  

𝑡

0
, we have that 

𝐴𝑘+1𝑏(𝑡) ≤ (𝑑(𝑡))𝑘+1 ∫ [∫ [
[ᴦ(𝛿)]𝑘

ᴦ(𝑘𝛿)
(

(t−α)ρ(𝛿−1)

𝜌𝛿−1 ) (
(𝛼−τ)ρ(k𝛿−1)

ρk𝛿−1 )𝑏(𝜏)]𝑑𝛼
𝛼

0
] 𝑏(𝜏)

𝑡

0
𝑑𝜏 

=∫ [
[𝑑(𝑡)ᴦ(𝛿)]𝑘+1

ᴦ((𝑘+1)𝛽1)
(

(𝑡−𝛼)ρ((k+1)𝛿−1)

ρk𝛿−1 )𝑏(𝛼)]𝑑𝛼,
𝑡

0
 Hence  

= ∫ (
(t−α)ρ(𝛿−1)

𝜌𝛿−1 ) (
𝑡

𝜏

(𝛼−τ)ρ(k𝛿−1)

ρk𝛿−1 ) 𝑑𝛼 =  (
(t−𝜏)ρ(k𝛿+𝛿−1)

𝜌k𝛿+𝛿 ) ∫ (1 − 𝑍)𝛿−11

0
𝑍k𝛿−1𝑑𝑧  

= (
(t−𝜏)ρ((k+1)𝛿−1)

𝜌k𝛿+𝛿−1 ) 𝐴(𝐾𝛿, 𝛿) =
ᴦ(𝛿)ᴦ(𝐾𝛿)

ᴦ((𝐾+1)𝛿)
 (

(t−𝜏)ρ((k+1)𝛿−1)

𝜌k𝛿+𝛿−1 ) , 

Since,  𝐴𝑛𝑏(𝑡) ≤ ∫
(ᴦ(𝛿))𝑛

ᴦ(𝑛𝛿)
 

𝑡

0
(𝑡 − 𝛼)𝑛𝛿−1𝑏(𝛼)𝑑𝛼 → 0 𝑎𝑠 𝑛 → +∞ , t ∈ [0, 𝑇).Then 

 𝑏(𝑡) ≤ 𝑐(𝑡) + 𝑑(𝑡) ∫ [∑
[𝑑(𝑡)ᴦ(𝛿)]𝑛

ᴦ(𝑛𝛿)

+∞
𝑛=1 (

(t−α)ρ(n𝛿−1)

ρn𝛿−1 )𝑐(𝛼)]𝑑𝛼, 0 ≤ 𝑡 < 𝑇.
𝑡

0
 

Remark 3.4: From above lemma (3.3) we obtain that, 𝑏(𝑡) ≤ 𝑐(𝑡)𝐸𝛿(𝑑(𝑡)ᴦ(𝛿))(
tρ

ρ
)𝛿) 

where 𝑐(𝑡) is a nondecreasing function.  

 

Lemma 3.5: 

(1) For 𝜔1, 𝜔2 ≥ 0 such that, for 𝛿, 𝛼, β ∈ 𝑅+ and 𝛿 − (𝛼 + β) < 1,  

||E𝛿−(𝛼+β),1 (A (
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )) || ≤ 𝜔1 ||𝑒
𝐴(

𝑡ρ

ρ
)
||, and ||𝐸𝛿−(𝛼+𝛽),𝛿−(𝛼+𝛽)(𝐴(

𝑡𝜌(𝛿−(𝛼+𝛽))

𝜌𝛿−(𝛼+𝛽) )|| ≤ 𝜔2||𝑒
𝐴(

𝑡𝜌

𝜌
)
||, 

where A is constant matrix. 

(2) Suppose that 𝛿, 𝛼, β ∈ 𝑅+ , 𝛿 − (𝛼 + β)  ≥ 1 then for 𝛾 = 1,2, 𝛿, 

 We have that,||E𝛿−(𝛼+β),γ(A(
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )|| ≤ ||𝑒
𝐴(

tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )
|| 

(3) If A is a stability matrix, then ∃ a constant 𝐾 ≥ 1 such that (
tρ

ρ
) > 0 , then 

||E𝛿−(𝛼+β),γ(A(
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )|| ≤ K𝑒
−ղ(

tρ

ρ
)
for 0 < 𝛿 − (𝛼 + β) < 1, and  

||E𝛿−(𝛼+β),γ(A (
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )) ≤ 𝑒
−ղ(

tρ

ρ
)
for 1 ≤ 𝛿 − (𝛼 + β) < 2, 

When the greatest eigenvalue of 𝐴 is ղ.  
proof: Firstly, from definition ( 2.3)  for 0 <  𝛿 − (𝛼 + β) < 1, we get that 

𝐸𝛿−(𝛼+β) (A(
tρ((𝛿−(𝛼+β))

𝜌(𝛿−(𝛼+β) )) = ∑
(A

tρ((𝛿−(𝛼+β))

𝜌(𝛿−(𝛼+β) )i

ᴦ(i((𝛿−(𝛼+β))+1)

∞
i=0 = ∑

K!

ᴦ(i((𝛿−(𝛼+β))+1)

∞
i=0

A𝑖(
tρ((𝛿−(𝛼+β))

𝜌(𝛿−(𝛼+β) )i

𝐾!
=  ∑

tiρ(((𝛿−(𝛼+β))−1)

𝜌(𝛿−(𝛼+β) K!

ᴦ(i((𝛿−(𝛼+β))+1)

∞
i=0

𝐴𝑖  t
iρ

ρ

𝐾!
 =

 ∑

tiρ(((𝛿−(𝛼+β))−1)

𝜌(𝛿−(𝛼+β) K!

ᴦ(i((𝛿−(𝛼+β))+1)

∞
i=0

(𝐴  t
ρ

ρ
)𝑖

𝐾!
 

||𝐸𝛿−(𝛼+β) (A(
tρ((𝛿−(𝛼+β))

𝜌(𝛿−(𝛼+β) )) || ≤   
𝑠𝑢𝑝

𝑡 ∈ 𝑅+(
𝑠𝑢𝑝

𝑖 ∈ 𝑍+ (
K!

tiρ(1−((𝛿−(𝛼+β)))

𝜌(𝛿−(𝛼+β)
ᴦ(i((𝛿−(𝛼+β))+1)

))||𝑒
𝐴

tρ

ρ ||  

lim suρ ||𝐸(𝛿−(𝛼+β)(𝛿−(𝛼+β) (A(
tρ((𝛿−(𝛼+β))

𝜌(𝛿−(𝛼+β) )) ||

𝑡 → ∞                                                        
≤  

lim 𝑠𝑢𝑝
𝑡 → ∞

(
𝑠𝑢𝑝

𝑖 ∈ 𝑍+(
K!

tiρ(1−(𝛿−(𝛼+β)))

𝜌𝛿−(𝛼+β) ᴦ(i(𝛿−(𝛼+β))+1)

))|| ∑
(𝐴  t

ρ

ρ
)𝑖

𝑖!

∞
𝑖 ||  

lim suρ ||𝐸(𝛿−(𝛼+β) (A(
tρ((𝛿−(𝛼+β))

𝜌(𝛿−(𝛼+β) )) ||

𝑡 → ∞                                                
≤ lim suρ ||𝑒

𝐴
tρ

ρ ||
𝑡 → ∞                 

  

Also note from definition (2.3) for 0 < 𝛽1 − 𝛽2(𝜖𝑅+) < 1 
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𝐸(𝛿−(𝛼+β),(𝛿−(𝛼+β) (A(
tρ((𝛿−(𝛼+β))

𝜌(𝛿−(𝛼+β) )) = ∑
(A

tρ((𝛿−(𝛼+β))

𝜌(𝛿−(𝛼+β)
)i

ᴦ(i((𝛿−(𝛼+β))+((𝛿−(𝛼+β)))

∞
i=0 = ∑

K!

ᴦ(i((𝛿−(𝛼+β))+((𝛿−(𝛼+β)))

∞
i=0

A𝑖(
tρ((𝛿−(𝛼+β))

𝜌(𝛿−(𝛼+β)
)i

𝐾!
 =

∑

tiρ(((𝛿−(𝛼+β))−1)

𝜌(𝛿−(𝛼+β) K!

ᴦ(i((𝛿−(𝛼+β))+((𝛿−(𝛼+β)))

∞
i=0

𝐴𝑖  t
iρ

ρ

𝐾!
=  ∑

tiρ(((𝛿−(𝛼+β))−1)

𝜌(𝛿−(𝛼+β) K!

ᴦ(i((𝛿−(𝛼+β))+((𝛿−(𝛼+β)))

∞
i=0

(𝐴  t
ρ

ρ
)𝑖

𝐾!
 

||𝐸(𝛿−(𝛼+β),(𝛿−(𝛼+β) (A(
tρ((𝛿−(𝛼+β))

𝜌(𝛿−(𝛼+β) )) || ≤  
𝑠𝑢𝑝

𝑡 ∈ 𝑅+ (
𝑠𝑢𝑝

𝑖 ∈ 𝑍+ (
K!

tiρ(1−((𝛿−(𝛼+β)))

𝜌(𝛿−(𝛼+β) ᴦ(i((𝛿−(𝛼+β))+((𝛿−(𝛼+β)))

)) ||𝑒
𝐴

tρ

ρ ||  

lim suρ || 𝐸(𝛿−(𝛼+β),(𝛿−(𝛼+β) (A(
tρ((𝛿−(𝛼+β))

𝜌(𝛿−(𝛼+β) )) ||

𝑡 → ∞                                                
≤

lim 𝑠𝑢𝑝
𝑡 → ∞

(
𝑠𝑢𝑝

𝑖 ∈ 𝑍+(
K!

tiρ(1−((𝛿−(𝛼+β)))

𝜌(𝛿−(𝛼+β) ᴦ(i((𝛿−(𝛼+β))+((𝛿−(𝛼+β)))

))|| ∑
(𝐴  t

ρ

ρ
)𝑖

𝑖!

∞
𝑖 ||  

≤ lim suρ ||𝑒
𝐴

tρ

ρ ||
𝑡 → ∞                 

 

lim suρ ||𝐸(𝛿−(𝛼+β),(𝛿−(𝛼+β) (A(
tρ((𝛿−(𝛼+β))

𝜌(𝛿−(𝛼+β) )) ||

𝑡 → ∞                                                        
≤ lim suρ ||𝑒

𝐴
tρ

ρ ||
𝑡 → ∞                 

  

On the other hand, if (𝛿 − (𝛼 + β) ∈ 𝑅+)  ≥ 1 then for 𝛾 = 1,2, 𝛿 

E(𝛿−(𝛼+β),γ(A(
tρ((𝛿−(𝛼+β))

𝜌(𝛿−(𝛼+β) )  = ∑
(A

tρ((𝛿−(𝛼+β))

𝜌(𝛿−(𝛼+β) )i

ᴦ(i((𝛿−(𝛼+β))+γ)

∞
i=0  = ∑

K!

ᴦ(i((𝛿−(𝛼+β))+γ)

∞
i=0

A𝑖(
tρ((𝛿−(𝛼+β))

𝜌(𝛿−(𝛼+β) )i

𝐾!
  

||E(𝛿−(𝛼+β),γ(A(
tρ((𝛿−(𝛼+β))

𝜌(𝛿−(𝛼+β) )|| ≤
𝑠𝑢𝑝

𝑡 ∈ 𝑅+ (
𝑠𝑢𝑝

𝑖 ∈ 𝑍+ (∑
K!

ᴦ(i((𝛿−(𝛼+β))+γ)
∞
i=0 )) ||𝑒

𝐴
tρ((𝛿−(𝛼+β))

𝜌(𝛿−(𝛼+β) ||  

lim suρ || 𝐸(𝛿−(𝛼+β),(𝛿−(𝛼+β) (A(
tρ((𝛿−(𝛼+β))

𝜌(𝛿−(𝛼+β) )) ||

𝑡 → ∞                                                
≤

lim 𝑠𝑢𝑝
𝑡 → ∞

(
𝑠𝑢𝑝

𝑖 ∈ 𝑍+(∑
K!

ᴦ(i((𝛿−(𝛼+β))+γ)
∞
i=0 )) || ∑

(𝐴  t
ρ((𝛿−(𝛼+β))

𝜌(𝛿−(𝛼+β) )𝑖

𝑖!

∞
𝑖 || ≤

lim 𝑠𝑢𝑝
𝑡 → ∞

||𝑒
𝐴

tρ((𝛿−(𝛼+β))

𝜌(𝛿−(𝛼+β) ||   

lim suρ || 𝐸(𝛿−(𝛼+β),(𝛿−(𝛼+β) (A(
tρ((𝛿−(𝛼+β))

𝜌(𝛿−(𝛼+β) )) ||

𝑡 → ∞                                                
≤

lim sup
𝑡 → ∞

||𝑒
𝐴

tρ((𝛿−(𝛼+β))

𝜌(𝛿−(𝛼+β) ||  

In addition, if 𝐴 is a stability matrix, then ∃ a constant 𝐾 ≥ 1 such that (
tρ

ρ
) > 0  

||E(𝛿−(𝛼+β),γ(A(
tρ((𝛿−(𝛼+β))

𝜌(𝛿−(𝛼+β) )|| ≤ K𝑒
−ղ(

tρ

ρ
)
for 0 < (𝛿 − (𝛼 + β) < 1 

||E(𝛿−(𝛼+β),γ(A(
tρ((𝛿−(𝛼+β))

𝜌(𝛿−(𝛼+β) )||  ≤ 𝑒
−ղ(

tρ

ρ
)
for 1 < (𝛿 − (𝛼 + β) < 2. When ղ be the greatest eigenvalue of 𝐴        

        

Theorem 3.6: Let 0 <  𝛿 − (𝛼 + β) < 1  and 𝑡 ∈ 𝐼, 𝑥(. ) ∈  𝑅𝑛 the  𝑅 − 𝐾 nonlinear fractional integro –differential 

system (10 ), (11) is finite time stable provided that condition: 

𝐾𝑒
−ղ(

tρ

ρ
)

[1 + ||𝐴|| (
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) ) + (
tρ

ρ
)] E𝛿−(𝛼+β) (𝐾(𝑀 + ẁ(t))) ᴦ(𝛿 − (𝛼 + β)) (

t(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) ) <
𝜀

𝜇
                          (15) 

 

𝐩𝐫𝐨𝐨𝐟: Taking norm function of solution equation (13),we obtain following,      

‖𝑥(𝑡)‖ = ‖𝑥0‖ ‖E𝛿−(𝛼+β)(A(
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )‖ + ‖𝐴‖‖𝑥0‖ ‖(
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )‖ ‖E𝛿−(𝛼+β),𝛿−(𝛼+β)+1(A(
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )‖ + ‖𝑥1‖            

||E𝛿−(𝛼+β),2(A(
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )|| + ∫ |
(t−θ)ρ(𝛿−(𝛼+β)−1)

𝜌𝛿−1 |  ||E𝛿−(𝛼+β),𝛿
t 

0
 A(

(t−θ)ρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )|| ||g(θ, x(θ), It
ղ,ρ

x(θ)0
RK )|| dθ (16) 
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by using lemma(3.5), equation (16), become that 

‖𝑥(𝑡)‖ = ‖𝑥0‖ 𝐾𝑒
−ղ(

tρ

ρ
)

+ ‖𝐴‖‖𝑥0‖ ‖(
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β)
)‖ 𝐾𝑒

−ղ(
tρ

ρ
)

+ ‖𝑥1‖|(
tρ

ρ
)| K𝑒

−ղ(
tρ

ρ
)
            

+ ∫ |
(t−θ)ρ(𝛿−(𝛼+β)−1)

𝜌𝛿−1 |K𝑒
−ղ(

(t−θ)ρ

ρ
)
 || ||

t 

0 
g(θ, x(θ), It

ղ,ρ
x(θ)0

RK )|| dθ                                                                             (17)                                                                   

By using assumption (3.1), (2), the equation ( 17 ), become that  

‖𝑥(𝑡)‖ = ‖𝑥0‖ 𝐾𝑒
−ղ(

tρ

ρ
)

+ ‖𝐴‖‖𝑥0‖ ‖(
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β)
)‖ 𝐾𝑒

−ղ(
tρ

ρ
)

+ ‖𝑥1‖|(
tρ

ρ
)| K𝑒

−ղ(
tρ

ρ
)
  

+ ∫ |
(t−θ)ρ(𝛿−(𝛼+β)−1)

𝜌𝛿−1 |K𝑒
−ղ(

(t−θ)ρ

ρ
)
  ||

t 

0 
(M +  ẁ(θ) )||x(θ)|| dθ                                                                                   (18) 

Multiply equation (18) by 𝑒
ղ(

tρ

ρ
)
, we have that  

e
ղ(

tρ

ρ
)
||x(t)|| = K[||x0||  + ||A|| ||x0 ||  ‖(

tρ(δ−(α+β))

ρδ−(α+β) )‖ + ||x1 ||] + ∫ |
(t−θ)ρ(𝛿−(𝛼+β)−1)

𝜌𝛿−1
| 

t 

0 
K𝑒ղθ(M +

 ẁ(θ) )‖x(θ)‖𝑑θ                                                                                                                                                           (19) 

𝐴ccording to lemma (3.3), and put b(t) =  e
ղ(

tρ

ρ
)
||x(t)||, and put c(t) =  K[||x0||  + ||A|| ||x0 ||  ‖(

tρ(δ−(α+β))

ρδ−(α+β) )‖ +

||x1 ||], and put d(t)  = K (M +  ẁ(θ) ), By remark (3.4), the equation (19), become to 

𝑏(𝑡) ≤ 𝑐(𝑡)𝐸𝛿−(𝛼+β) (𝑑(𝑡)ᴦ(𝛿 − (𝛼 + β))(
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β)
)) 

       ≤ K[||𝑥0||  + ||A|| ||𝑥0||  ‖(
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )‖  + ||𝑥1||] 𝐸𝛿−(𝛼+β) (𝐾(M +  ẁ(θ) ))ᴦ(𝛿 − (𝛼 + β))(
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) ))     (20) 

then, ‖x(t)‖ ≤ K𝑒
−ղ(

tρ

ρ
)

[||𝑥0|| + ‖𝐴‖‖𝑥0‖ ‖(
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )‖ + ‖𝑥1‖]   

𝐸𝛿−(𝛼+β) (K(M +  ẁ(θ) )ᴦ(𝛿 − (𝛼 + β))(
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) ))                                                                                                (21) 

From definition (2.3), we obtain  ‖𝑥0‖ ≤ δ, ‖𝑥1‖ ≤ δ,  then 

||x(t)|| ≤ Kδ𝑒
−ղ(

tρ

ρ
)
[1 + ||A|| ‖(

tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )‖ + |(
tρ

ρ
)|] E𝛿−(𝛼+β) (K(M +  ẁ(θ) )ᴦ(𝛿 − (𝛼 + β))(

tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )), 

Therefore,||x(t)| ≤  ε, for all  t ϵ [0, 𝑇). Which implies that formula (10), is a finite time stable.  

 

Theorem 3.7: Let 1 ≤  δ − (α + β)   <  2 and  t ∈  I, x(. )  ∈  Rn. Then the R − K nonlinear fractional integro –

differential system (10 ), (11), is a finite time stable provided that 

𝑒
−ղ(

tρ

ρ
)

[1 + ||𝐴|| (
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) ) + (
tρ

ρ
)] E𝛿−(𝛼+β) ((𝑀 +  ẁ(𝑡))ᴦ(𝛿 − (𝛼 + β)) (

tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )) <
ε

μ
, for any t ∈ [𝑜, 𝑇).                    

                                                                                                                                                                                      (22)            

   

Proof: Taking norm function of solution equation (13),we obtain following 

‖𝑥(𝑡)‖ = ‖𝑥0‖  ‖E𝛿−(𝛼+β)(A(
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β)
)‖ + ‖𝐴‖‖𝑥0‖ ‖(

tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β)
)‖ ‖E𝛿−(𝛼+β),𝛿−(𝛼+β)+1(A(

tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β)
)‖ + ‖𝑥1‖            

||E
𝛿−(𝛼+β),2

(A(
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )|| + ∫ |
(t−θ)ρ(𝛿−(𝛼+β)−1)

𝜌𝛿−1
|  ||E𝛿−(𝛼+β),𝛿

t 

0
 A(

(t−θ)ρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )|| ||g(θ, x(θ), It
ղ,ρ

x(θ)
0

RK
)|| dθ  (23) 

by using lemma (3.5), equation (23), become that 

‖𝑥(𝑡)‖ = ‖𝑥0‖ 𝑒
−ղ(

tρ

ρ
)

+ ‖𝐴‖‖𝑥0‖ ‖(
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β)
)‖ 𝑒

−ղ(
tρ

ρ
)

+ ‖𝑥1‖|(
tρ

ρ
)| 𝑒

−ղ(
tρ

ρ
)
  

+ ∫ |
(t−θ)ρ(𝛿−(𝛼+β)−1)

𝜌𝛿−1 |𝑒
−ղ(

(t−θ)ρ

ρ
)
 

t 

0 
||g(θ, x(θ), It

ղ,ρ
x(θ)0

RK )|| dθ .                                                                                 (24) 
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By using assumption (3.1), (2), the equation (24), become that  

‖𝑥(𝑡)‖ = ‖𝑥0‖ 𝑒
−ղ(

tρ

ρ
)

+ ‖𝐴‖‖𝑥0‖ ‖(
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β)
)‖ 𝑒

−ղ(
tρ

ρ
)

+ ‖𝑥1‖|(
tρ

ρ
)| 𝑒

−ղ(
tρ

ρ
)
  

+ ∫ |
(t−θ)ρ(𝛿−(𝛼+β)−1)

𝜌𝛿−1 |𝑒
−ղ(

(t−θ)ρ

ρ
)
 

t 

0 
||(M +  ẁ(θ) )||x(θ)|| dθ .                                                                                    (25) 

 Multiply equation (25) by 𝑒
ղ(

tρ

ρ
)
, we have that  

𝑒
ղ(

tρ

ρ
)
‖𝑥(𝑡)‖ = ‖𝑥0‖ + ‖𝐴‖‖𝑥0‖ ‖(

tρ(𝛿−(𝛼+β))

𝛿−(𝛼+β)
)‖ + ‖𝑥1‖|(

tρ

ρ
)|  + ∫ |

(t−θ)ρ(𝛿−(𝛼+β)−1)

𝜌𝛿−1 |𝑒ղθ 
t 

0 
||(M +

 ẁ(θ) )||x(θ)|| dθ .                                                                                               (26) 

𝐴ccording to lemma (3.3), we put b(t)  =   e
ղ(

tρ

ρ
)
||x(t)||, and put 

c(t)  =  [||x0||  + ||A|| ||x0 || ‖(
tρ(δ−(α+β))

ρδ−(α+β) )‖  + ||x1 |||(
tρ

ρ
)| ], and d(t)  =  (M +  ẁ(θ) ) 

 by remark (3.4), the equation (26), become to 

𝑏(𝑡) ≤ 𝑐(𝑡)𝐸(𝛿−(𝛼+β) (𝑑(𝑡)ᴦ((𝛿 − (𝛼 + β))(
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )) 𝐸(𝛿−(𝛼+β) ((M +  ẁ(θ) ))ᴦ((𝛿 − (𝛼 + β))(
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) ))   (27) 

Then, ‖x(t)‖ ≤ 𝑒
−ղ(

tρ

ρ
)
[‖𝑥0‖ + ‖𝐴‖‖𝑥0‖ ‖(

tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )‖ + ||𝑥1|| ] 

𝐸𝛿−(𝛼+β) ((M +  ẁ(θ) ) )ᴦ(𝛿 − (𝛼 + β))(
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) ))                                                                                                (28) 

From definition (2.3), we obtain ||𝑥0|| ≤ δ, ||𝑥1|| ≤ δ, then 

 ‖x(t)‖ ≤ δ𝑒
−ղ(

tρ

ρ
)
[1 + ‖𝐴‖ ‖(

tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )‖+|(
tρ

ρ
)|] E(𝛿−(𝛼+β) ((M +  ẁ(θ) ) )ᴦ((𝛿 − (𝛼 + β))(

tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )). 

Therefore,‖x(t)‖  ≤ ε for all t ϵ [0, 𝑇). which implies that formula (10), is finite time stable.  

 

Corollary 3.8: The R−K linear fractional integro−differentail system  

{
Dt

𝛿,ρ
x(t)0

CK − A ( Dt
𝛼,ρ

Dt
𝛽,ρ

0
CK

0
CK x(t)) = Bx(t) + It

ղ,ρ
x(t)),0

RK for t ∈ I                                                                         (29)

 x(0) = 𝑥0  , x`(0) = 𝑥1                                                                                                                                                                   (30)
 

Is finite time stable for 0 < 𝛿 − (𝛼 + β) < 1, if  

𝐾𝑒
−ղ(

tρ

ρ
)

[1 + ||𝐴|| (
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) ) + (
tρ

ρ
)] E𝛿−(𝛼+β)((‖B‖ + ẁ(t))‖x(t)‖ K  ᴦ(𝛿 − (𝛼 + β)) (

tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) ) ) < 
ε

μ
            (31) 

𝐩𝐫𝐨𝐨𝐟: By using 
tρ

ρ
 Laplace trance form on (29), we obtion 

ℒtρ

ρ

{ Dt
𝛿,ρ

x(t)}(s) − ℒtρ

ρ

{A( Dt
𝛼,ρ

Dt
𝛽,ρ

0
CK

0
CK x(t))}(s) = ℒtρ

ρ

{Bx(t) + It
ղ,ρ

x(t)  0
RK }(s) 0

CK  

s𝛿X(s) − s𝛿−1x(0) − s𝛿−2x`(0) − As(𝛼+β)X(s) + As(𝛼+β)−1x(0) 

= ℒtρ

ρ

{Bx(t) + It
ղ,ρ

x(t)  0
RK }(s), By using initial condition (30) ,we get that, 

𝑋tρ

ρ

(𝑠)[s𝛿 − 𝐴s(𝛼+β)] −  𝑥0[s𝛿−1 − 𝐴s(𝛼+β)−1] −  𝑥1s𝛿−2 =  ℒtρ

ρ

{Bx(t) + It
ղ,ρ

x(t)  0
RK }(s)  

 𝑋tρ

ρ

(𝑠) −  𝑥0[
s𝛿−1+As(𝛼+β)−1

s𝛿−As(𝛼+β) ] − 𝑥1 [
s𝛿−2

s𝛿−As(𝛼+β)] =

ℒtρ

ρ

{Bx(t)+ It
ղ,ρ

x(t)  0
RK }(s)

s𝛿−As(𝛼+β)  

𝑋tρ

ρ

(𝑠) −  𝑥0 [
𝑠𝛿−1+𝐴𝑠(𝛼+β)−1

s(𝛼+β)

𝑠𝛿−𝐴𝑠(𝛼+β)

s(𝛼+β)

] − 𝑥1 [
s𝛿−2

s(𝛼+β)

𝑠𝛿−𝐴𝑠(𝛼+β)

s(𝛼+β)

] =

ℒtρ

ρ

{Bx(t)+ It
ղ,ρ

x(t)  
0

RK
}(s)

1

s(𝛼+β)

𝑠𝛿−𝐴𝑠(𝛼+β)

s(𝛼+β)

  

𝑋tρ

ρ

(𝑠) −  𝑥0 [
s𝛿−(𝛼+β)−1+As−1

s𝛿−(𝛼+β)−A
] − 𝑥1 [

s𝛿−(𝛼+β)−2

s𝛿−(𝛼+β)−A
] =

ℒtρ

ρ

{Bx(t)+ It
ղ,ρ

x(t)  
0

RK
}(s)

1

s(𝛼+β)

s𝛿−(𝛼+β)−A
  

By using inverse 
tρ

ρ
 Laplace trance form we get that, 
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𝑥(𝑡) = ℒtρ

ρ

−1 {𝑥0 (
s𝛿−(𝛼+β)−1

s𝛿−(𝛼+β)−A
)} − ℒtρ

ρ

−1 {𝑥0 (
As−1

s𝛿−(𝛼+β)−A
)} + ℒtρ

ρ

−1 {𝑥1 (
s𝛿−(𝛼+β)−2

s𝛿−(𝛼+β)−A
)} + ℒtρ

ρ

−1 {

ℒtρ

ρ

{Bx(t)+ It
ղ,ρ

x(t)  0
RK }(s)

1

s(𝛼+β)

s𝛿−(𝛼+β)−A
} , 

By using lemma (2.10) we get  

𝑥(𝑡) =  𝑥0E𝛿−(𝛼+β)(A
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) ) − 𝐴𝑥0(
tρ𝛿−(𝛼+β)

𝜌𝛿−(𝛼+β) )E𝛿−(𝛼+β),𝛿−(𝛼+β)+1(A (
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )) +  𝑥1E𝛿−(𝛼+β),2(A(
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )) 

+∫
(t−θ)ρ(𝛿−(𝛼+β)−1)

𝜌𝛿−1 E𝛿−(𝛼+β),𝛿
t 

0
A(

(t−θ)ρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) ) (Bx(θ) + It
ղ,ρ

x(θ))  0
RK dθ                                                                 (32) 

 Now taking norm function of solution equation (32), then 

‖x (t)‖ = ‖𝑥0‖ ‖E𝛿−(𝛼+β)(A
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )‖ − ‖𝐴‖‖𝑥0‖ ‖(
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )‖ ||E𝛿−(𝛼+β),𝛿−(𝛼+β)+1 (A
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) ) || + ‖𝑥1‖ 

‖E𝛿−(𝛼+β),2(A
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )‖ + ∫ |
(t−θ)ρ(𝛿−(𝛼+β)−1)

𝜌𝛿−1 |  ||E(𝛿−(𝛼+β),𝛿
t 

0
 A(

(t−θ)ρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )||‖(Bx(θ) + It
ղ,ρ

x(θ))  0
RK ‖dθ .   (33) 

from lemma (3.5), equation (33) implies that, 

‖x (t)‖ = ‖𝑥0‖K𝑒
−ղ(

tρ

ρ
)

− ‖𝐴‖‖𝑥0‖ ‖(
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β)
)‖ K𝑒

−ղ(
tρ

ρ
)

+ ‖𝑥1‖ K𝑒
−ղ(

tρ

ρ
)

+

∫ |
(t−θ)ρ(𝛿−(𝛼+β)−1)

𝜌𝛿−1 |  ||
t 

0
 K𝑒

−ղ(
tρ

ρ
)
‖(Bx(θ) + It

ղ,ρ
x(θ))  0

RK ‖dθ .                                                                                    (34)                                                                                                      

Multiply equation (34) by 𝑒
ղ(

tρ

ρ
)
, implies that,  

𝑒
ղ(

tρ

ρ
)
‖x (t)‖ = 𝐾 [‖𝑥0‖ + ‖𝐴‖‖𝑥0‖ ‖(

tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )‖ + ‖𝑥1‖] + ∫ |
(t−θ)ρ(𝛿−(𝛼+β)−1)

𝜌𝛿−1 | Keղs 
t 

0 
         

‖(Bx(θ) + It
ղ,ρ

x(θ))
0

RK
‖dθ                                                                                                                                           (35)   

From lemma (3.3), put b(t)  =  e
ղ(

tρ

ρ
)
||x(t)|| and c(t)  =  K[||x0||  + ||A|| ||x0 ||  ‖(

tρ(δ−(α+β))

ρδ−(α+β) )‖ + ||x1 ||] and d(t) =

 ‖(Bx(θ) + It
ղ,ρ

x(θ))0
RK ‖K, from the Remark (3.4), the equation (35), become 

𝑏(𝑡) ≤ 𝑐(𝑡)E(𝛿−(𝛼+β) (d(t)ᴦ((𝛿 − (𝛼 + β))(
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )) ≤ K[||𝑥0||  + ||A|| ||𝑥0||  ‖(
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )‖  + ||𝑥1||] E𝛿−(𝛼+β) 

(‖(Bx(θ) + It
ղ,ρ

x(θ))0
RK ‖Kᴦ(β1 − β2)(

tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) ))                                                                                                     (36) 

therefore, ||x(t)|| ≤ K𝑒
−ղ(

tρ

ρ
)
[‖𝑥0‖ + ‖𝐴‖‖𝑥0‖ ‖(

tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )‖ + ||𝑥1||]E𝛿−(𝛼+β) (‖(Bx(θ) + It
ղ,ρ

x(θ))0
RK ‖Kᴦ(𝛿 −

(𝛼 + β))(
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )), From definition (2.3), we have that  ‖𝑥0‖ ≤ δ, ‖𝑥1‖ ≤ δ, thus 

 ||x(t)|| ≤ Kδe
−ղ(

tρ

ρ
)
[1 + ||A|| ‖(

tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )‖ + |(
tρ

ρ
)|] E𝛿−(𝛼+β) ((‖B‖ + ẁ(θ)) Kᴦ(β1 − β2)(

tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )) 

Hence.||x(t)|| ≤ ε, for all t 𝜖 [0, 𝑇). then system (29), (30) is finite time stable, for the interval 0 <  𝛿 − (𝛼 + β) < 1. 

 

Corollary 3.9: System(29) is finite time stable for  1 ≤ 𝛿 − (𝛼 + β) < 2 , if 

𝑒
−ղ(

tρ

ρ
)
[1 + ||𝐴||(

tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) ) + (
tρ

ρ
)]E𝛿−(𝛼+β)((‖B‖ + ẁ(t))) ᴦ(𝛿 − (𝛼 + β)) (

tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )) <
ε

μ
                              (37) 

 

Proof:  Now taking norm function of solution equation (32), then 

‖x (t)‖ = ‖𝑥0‖ ‖E𝛿−(𝛼+β)(A
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β)
)‖ − ‖𝐴‖‖𝑥0‖ ‖(

tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β)
)‖ ||E𝛿−(𝛼+β),𝛿−(𝛼+β)+1 (A

tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) ) || + ‖𝑥1‖ 

‖E𝛿−(𝛼+β),2(A
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β)
)‖ + ∫ |

(t−θ)ρ(𝛿−(𝛼+β)−1)

𝜌𝛿−1
|  ||E(𝛿−(𝛼+β),𝛿

t 

0
 A(

(t−θ)ρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β)
)||‖(Bx(θ) + It

ղ,ρ
x(θ))  

0

RK
‖dθ .  (38) 
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From lemma (3.5), equation (38) implies that, 

‖x (t)‖ = ‖𝑥0‖e
−ղ(

tρ

ρ
)

− ‖𝐴‖‖𝑥0‖ ‖(
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β)
)‖ e

−ղ(
tρ

ρ
)

+ ‖𝑥1‖ e
−ղ(

tρ

ρ
)

+

∫ |
(t−θ)ρ(𝛿−(𝛼+β)−1)

𝜌𝛿−1
| 

t 

0
 e

−ղ(
tρ

ρ
)
‖(Bx(θ) + It

ղ,ρ
x(θ))  

0

RK
‖dθ .                                                                                      (39) 

Multiply equation (39) by 𝑒
ղ(

tρ

ρ
)
, implies that   

𝑒
ղ(

𝑡𝜌

𝜌
)
‖𝑥 (𝑡)‖ = ‖𝑥0‖ − ‖𝐴‖‖𝑥0‖ ‖(

𝑡𝜌(𝛿−(𝛼+𝛽))

𝜌𝛿−(𝛼+𝛽)
)‖ + ‖𝑥1‖ + ∫ |

(𝑡−𝜃)𝜌(𝛿−(𝛼+𝛽)−1)

𝜌𝛿−1 | 
𝑡 

0
𝑒ղ𝜃 

‖(𝐵𝑥(𝜃) + 𝐼𝑡
ղ,𝜌

𝑥(𝜃))  
0

𝑅𝐾
‖𝑑𝜃 .                                                                                                                                    (40) 

From lemma (3.3), put b(t)  =  e
ղ(

tρ

ρ
)
||x(t)|| and c(t)  =  [||x0|| − ||A|| ||x0 || ‖(

tρ(δ−(α+β))

ρδ−(α+β) )‖  + ||x1 ||] and 𝑑(𝑡) =

‖(Bx(θ) + It
ղ,ρ

x(θ))0
RK ‖, from Remark (3.4), the equation (40), become 

𝑏(𝑡) ≤ 𝑐(𝑡)E𝛿−(𝛼+β) (d(t)ᴦ(𝛿 − (𝛼 + β))(
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )) ≤ [||𝑥0||  + ||A|| ||𝑥0||  ‖(
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )‖  + ||𝑥1||] 

 Eβ1−β2
(‖(Bx(θ) + It

ղ,ρ
x(θ))0

RK ‖ᴦ(𝛿 − (𝛼 + β))(
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) ))                                                                                     (41) 

Therefore, ||𝑥(t)|| ≤ e
−ղ(

tρ

ρ
)
[||𝑥0|| + ||A||||𝑥0|| ‖(

tρ(𝛿−(𝛼+β))

𝜌(𝛿−(𝛼+β) )‖ + ||𝑥1||]   E𝛿−(𝛼+β) (‖(Bx(θ) + It
ղ,ρ

x(θ))0
RK ‖ᴦ(𝛿 −

(𝛼 + β))(
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) ))                                                                                                                                                     (42) 

From definition ( 2.3 ), we have that  ||𝑥0|| ≤ δ, ||𝑥1|| ≤ δ,thus, 

||𝑥(t)|| ≤ δ𝑒
−ղ(

tρ

ρ
)
[1 + ||A|| ‖(

tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) )‖ + |(
tρ

ρ
)|]E(𝛿−(𝛼+β) ((‖B‖ + ẁ(θ)) ᴦ((𝛿 − (𝛼 + β))(

tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) ))    

Hence, ||𝑥(𝑡)||  ≤  𝜀, for all tϵ[0, 𝑇) Then system (29), (30) is finite time stable, for the interval  1 ≤ 𝛿 − (𝛼 + β) < 2.  
 

Example 3.10:  Consider the R−C nonlinear fractional integro−differential system  

{
Dt

𝛿,ρ
𝑥1(t) − Dt

(𝛼+β),ρ
0

CK 𝑥2(t) = (𝑥1
2 + 2.9)

1
2 + 0.05 tanh(𝑥)0

CK + It
𝛽3,ρ

𝑥1(t)0
RK                                                                   (43)

Dt
𝛿,ρ

0
CK 𝑥2(t) − Dt

(𝛼+β),ρ
0

CK 𝑥1(t) = 0                                                                                                                                                (44)
 

 

Where 𝛿 = 1.75     and𝛼 = 0.5, β = 0.75 ,  (𝛿 − (𝛼 + β) = 1.25   ,by using consider  system (10), for (43), (44), 

yield 𝐴 = [
1 0
0 0.75

] and  𝑔(t, x(t)), It
𝛽3,ρ

𝑥 (t)0
RK = [(𝑥1

2 + 2.9)
1

2 + 0.05 tanh(𝑥) + It
𝛽3,ρ

𝑥1(t)0
RK

0
]Now to proof that, 

 𝑔(t, x(t)), It
𝛽3,ρ

𝑥 (t)0
RK = [(𝑥1

2 + 2.9)
1

2 + 0.05 tanh(𝑥) + It
𝛽3,ρ

𝑥1(t)0
RK

0
] satisfies the Lipchitz condition, ménage there 

exists a constant L such that: 

𝑔(t, x(t)), It
𝛽3,ρ

𝑥 (t)0
RK −  g(t, y(t), It

𝛽3,ρ
𝑦 (t)0

RK ) |≤ (𝑤 + 𝑤(𝑡))̀ |𝑥(𝑡) − 𝑦(𝑡)| for all 𝑥(. ), 𝑦(. ) ∈ 𝑅+. 

Since (𝑥1
2 + 2.9)

1

2 + 0.05 tanh(𝑥)  has derivative  
𝑥

(𝑥1
2+2.9)

1
2

+ 0.05 sech2(𝑥) 

|𝑥1|

(𝑥1
2+2.9)

1
2+0.05 tanh(𝑥)

≤
|𝑥1|

(𝑥1
2+2.9)

1
2+0.05 tanh(𝑥)

≤ |𝑥1|, by assumption(3.1), we obtain |g(t, x(t), It
𝛽3,ρ

𝑥 (t)0
RK | ≤ (1 +

𝑤(𝑡))̀ ‖x(t)‖ for t ∈  I , x ∈  R2 

Now to compute the condition (11) w.r.t 𝑀 =1 and ẁ(t) =1.05, η= 1.5,1.6,1.7,1.8,1.9 and by definition (2.1) we find 

||𝐴|| =  1 and choose  𝜇 = 0.2,0.1,0.01,0.4,0.5 and  𝐾 =  1,1.2,1.3,1.4,1.5 ,𝜀 = 4,3,4,2,1.5  , ρ = 1, then  

𝐾𝑒
−ղ(

tρ

ρ
)

[1 + ‖𝐴‖ (
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) ) + (
tρ

ρ
)] E𝛿−(𝛼+β)(K (M +  ẁ(t)))ᴦ(𝛿 − (𝛼 + β))(

t(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β)  <  
𝜀

𝜇
  

 Hence the estimated finite time stable ofR − K nonlinear fractional integro- differential system T ≈
 0.4495,0.0723,1.4379,2.8075,0.0178 
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Table (1) The value of  Finite time stability 𝑻,  for  𝜹 = 𝟎. 𝟎𝟓, 𝜺 = 𝟏 

β1 = β2 = 𝜀 = 𝛿 = 𝐾 = ρ = 𝜂 = 𝑀 = 𝑇 = 

2.75 2.25   1 0.05   1.74  1  0.33   1 0.4495 

2.75 2.25   1 0.05   1.20  1   1.44   1 0.0723 

2.75 2.25   1 0.05   1.35  1   1.9   1 1.4379 

2.75 2.25   1 0.05   0.88  1   1.63   1 2.8075 

2.75 2.25   1 0.05   0.99  1   1.55   1 0.0178 

 

Example 3.11: Consider the system (29) with the parameters 𝛿 = 1.75,𝛼 = 0.75 , 𝛽 =  0.50 

(𝛿 − (𝛼 + β) = 0.5, 𝐴 =  [
3 0
1 2

]  and  𝐵 =  [
2 1
0 1

], be choosing many value of 𝐾 =  1,1.2,1.3,1.4,1.5 and , 𝜀 =

1 and ρ = 1, and 𝛿 = 1.75, and , 𝜂 = 0.2, 0.1, 0.01, 0.4, 0.5, and μ = 0.05 and by definition (2.2) we find ||𝐴||  =
 3.7417 and by definition (2.2) we find  ||𝐵||  =  2. With 

𝐾𝑒
−ղ(

tρ

ρ
)

[1 + ||𝐴|| (
tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) ) + (
tρ

ρ
)] E𝛿−(𝛼+β)((‖B‖ + ẁ(t)) K  ᴦ(𝛿 − (𝛼 + β)) (

tρ(𝛿−(𝛼+β))

𝜌𝛿−(𝛼+β) ) <  
ε

μ
, with 𝑤̀(𝑡) =

1

(𝛼+β)𝛿Γ(𝛿)
(

t(𝛼+β)−a(𝛼+β)

(𝛼+β)
)the estimated time stable of (29), (30) are  T ≈  0.6961,0.6362,1.3200,0.1219,0.0373 

Table (2) The value of Finite time stability 𝑻,  for  𝜹 = 𝟏. 𝟕𝟓, 𝜺 = 𝟏 

𝛼 + β =  𝛼 = 𝜂 = 𝛍 = 𝐾 = 𝜀 = β = 𝛿 = 𝑇 = 

1.25  0.75  0.2 0.05   1   1   0.5 1.75 0.6961 

1.25  0.75   0.1 0.05   1.2   1   0.5 1.75 0.6362 

1.25  0.75  0.01 0.05   1.3   1   0.5 1.75 1.3200 

1.25  0.75   0.4 0.05   1.4   1   0.5 1.75 0.1219 

1.25  0.75   0.5 0.05   1.5   1   0.5 1.75 0.0373 

4. CONCLUSION 

    We concluded that each fractional derivative has a special function that is substituted into the generalized formula of 

Laplace to find the transformations of the functions required in calculating the results of the given problem. Also, the 
Grönwall's inequality with Mittag Leffler functions made a good role for compute the conditions of time stability. The 

time stability depended on the type of derivatives of the nonlinear fractional system and concepts of nonlinear functional 

analysis. The time stability of this problem of composite fractional derivative depended on a value of fractional orders of 

derivate and integrals 
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