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ABSTRACT: In this research, the finite-time stability of Multi-Composition Caputo-Katugampola fractional
Integro- Differential Nonlinear system with many values of fractional derivatives is studied with some sufficient and
necessary conditions as Lipchitz conditions for nonlinear functions involving Riemann— Katugampola fractional
integral and the formulas derived from them with their respective bounded value as well as finding the solution under
these conditions that contains Mittag Leffler functions which appeared through the use of the generalized Laplace
formula which suitable with Caputo-Katugampola fractional derivative. Therefore, important conditions appeared
that contain the parameters that played a good role in finding and computing the stability as in the attached tables of
illustrative examples that explain the necessary time requirements for it.
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1. INTRODUCTION

The first of fractional calculus roots started in the last years of the seventeenth century, by Newton’s work along with
Leibniz’s which established as a basis for the classical calculus. The operators of fractional calculus which is most
classical is called the Riemann— Liouville fractional integral and derivative [1, 36]. Also, Caputo is introducing another
definition of fractional derivatives was suitable for physical conditions, see [ 14,28]. Moreover, several other definitions
of fractional operators have been explained and studied until now, such as Erd’elyi—-Kober, Hadamard, Grunwald—
Letnikov, Hilfer, Marchaud, and Prabhakar, we can see [1, 35, 36].so since that are many definitions implied that
to suggested to establish some generalized fractional operators for the particular cases of definitions. This The motivation
is important for fractional differential equations in models of physics, economics, engineering and other branches of
sciences, see [1,14,35]. There are many methods are presented by many authors for solving FDEs analytically or
numerically, and they developing interesting methods to obtain analytic solutions for some classes of fractional
differential equations and was considered as a one of the most challenging tasks in the field of fractional calculus. In the
last years, some authors have been interested to extensions of the fractional for classical integral transforms, such as
Laplace and other transformations, [13]. In particular, the Laplace transform extensions appeared in [ 13, 14, 15] has been
used as a effective tool for finding analytic of FDEs. The traditional stability, asymptotical stability and exponential
stability in the sense of Lyapunov, which is property of a system was considered in an infinite-time interval. The stability
analysis is important issues of control systems field, also the time- delay systems investigation needed this problem many
years ago [31]. Many researches have been published for this Issues with particular application of Lyapunov’s second
method, see [2,37]. Also, another approach is presented of system stability from the non-Lyapunov point which is (finite
and practical stability) is presented in [25,26]. Moreover, the linear time-delay systems analytically with finite and
practical stability was studied, [8,14]. Recently there are many advances in control theory of fractional dynamical systems
for stability explanting, see [10,11]. A condition based to guarantee the asymptotic stability of the fractional order system
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some of them is robust stability or stabilization of fractional are presented and discussed in [7,31]. Recently, there are
many papers studied finite-time stability analysis of fractional time-delay systems by using many methods such as linear
matrix inequality, Lyapunov functions, and Gronwall’s integral inequality, [19,30]. In [8,29], the authors introduced the
stability in finite time for the system of fractional order with delay equation by using Mittag-Leffler delay type matrix or
other suitable conditions. The authors in [23], studied the finite time stability result for nonlinear fractional order system
involving discrete time delay. In [6], studied the finite time stability for nonlinear fractional system by using Mittag
Leffler function for both orders 0 < a1l —a2 < land1 < al — a2 < 2. 1In[4], have been studies the fractional-
order Black-Scholes equation with Katugampola Fractional Derivative is a one of Caputo type. The analytic solution of
the time-fractional Black-Scholes equation by using the technique of the generalized Laplace homotopy perturbation
method which this method is combination between homotopy perturbation method and generalized Laplace transform
appeared in [13]. Many a branch of science such as control systems, neural networks, missile systems and other fields,
the more practical method is the finite-time stability, see [34,12]. finite time stability focuses on the behavior of a solution
of given system work in a fixed time interval [20]. The finite-time stability analysis of fractional differential systems
Have been considered in [17]. our aim to specifically on the generalized Laplace transform, see [2], which be called
Laplace transform with respect to functions. This issue of operator suitable with the fractional integrals and derivatives
with respect to functions, and which used to solve differential equations. In [5] have been introduced finite time stability
by Granwall’s approach for interesting system time —delay fractional system. In [6, 29] studied finite time stabile of delay
nonlinear fractional equations. In [17] provided the impulses and state time delay involving with nonlinear fractional
system and explained all details of finite stability. In [33] the authors studied the nonlinear stochastic ¥ —Hilfer fractional
system and their finite time stability. In this paper the finite time stability the article is organized as follows. Section 2
contains preliminary definitions from classical and fractional calculus. In Section 3, we consider the generalized Laplace
transform with respect to functions, including from the viewpoint of operational calculus, and prove several important
properties including an inversion formula and generalized Laplace transforms of several fractional operators with respect
to functions. Sections 4 and 5 are devoted to fractional differential equations, firstly a regularity result to show
applicability of the generalized Laplace transform, and then explicitly solving some Cauchy initial value problems.
Finally, Section 6 makes concluding statements about this manuscript and future directions of research.

2. PRELIMINARIES

Definition 2.1[37]: The Euclidean norm of a vector x = (X, Xy, ... ... ..., X,) € R™ is defined as:
1

lIx|I? = (BiLq %122

Definition 2.2[37]: The Maximum of vector X = (X, Xz, v v ene v+, Xp) € R" is defined as:

[1X|lo = max|x;], 1<i<n

Definition 2.3 [9]: The finite time stable with respect to t € [0,T] and 8, & > 0 if and only if 6 < & such that ||x(t)]|
eVt € [0, T] ,where 6 = max{]|x(0)||, [|x"(0)]|} is initial time of the system differential

A\

Deﬁniti0n24[22] LetB € (0,1), p>0and 0<a<b<on.

-
Dﬁ ’ f(t) = m (t1 P d) ft b (t: Sp)G [£(s) — f(a)]ds, left Caputo- Katugampola fractional differential systems

Dﬁpf( ) —

d\ b
(tl_p ) ft al [£(s) — f(b)]ds, right Caputo- Katugampola fractional differential systems

r(1 ) (sP—tP)P

Definition 2.5 [22]: Let 8 > 0, p > 0 and consider the interval[a, b], Subset of R, where 0< a < b < co. The left and
right Riemann-Katugampola fractional differential systems are Respectively defined by

RK g, P 1-p 4y (b 1
aDt' h(t) - r(l—B) (t dt)‘[t (tP—tP)‘3 h(T)dT'

8
DBph( t) = m( t pdt)ft h(t)dr,

Lemma 2.6 [3]: Letx > 0,u > 0,and x(t) € L'([a,b]),R),0<a<b <

D () = My < wollx(©) - ¥y

th—gt
ual"(a)( u )

(- tp)B

When W(t) =
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Definition 2.7 [7, 11]: The one parameter Mittag Leffler function is given by

(o] Zl
Eg () = Lido 1
With §, > 0, Re (ﬁl) > 0 and z € C.For parameters 8, and 3,

[oe] Zi
Eg 5,2 220 By ihy) (2)

With B, , B, € C,Re(B,) > 0,Re(f,) > 0,z € CBy choosing f, =1, Ey | (2) = Eg, (2).

Definition 2.8 [13]: (The generalized Laplace transformation)
Letf,g: [a,00) — Rare two real valued functions when g(t) is continuous and g'(t) > 0 on[a, ),a > 0.If the
generalized Laplace transformation is

Lg{f ®}(s) = f:o ¢~sE0-g() f(t) g'(t) dt, for all values of s, the integral is valid. 3)

Theorem 2.9[ 3 |: If f(¢t) € C'([a,b]),0 < a < b < oo, then

(5o kp ) = (4™ ) ®,  telan]
where a,B,u €ER 3 p,abeapositive, <1 anda+ < 1.
Lemma 2.10 [28], [22]:

1— Lo (D2 x(D)}(s) = 55L§{x(t)}(s) —s%1x(0) 0 < 6<1 (4)
2 — Lo{ KDPPx(0}(s) = sﬁL%{X(t)}(s) — $571%(0) — s52x(0) 1 < 6 < 2 (5)
3-{E} e =53 ©)
N o1
4- Lo {EM (£a (;) )} () =55 ,Re(8) >0 )
P ) S $0—(a+p)
5-Le {E&(MB) (£3 (;) )} (s) = o Re(8) > 0,Re((@+B)) > 0 (8)
6 = Lo {EDTPPX(}(5) = s PLE x(®)(6) - s@HP1x(0) ©

p

3. MULTI-COMPOSITION Caputo - Katugampola -(C — K) FRACTIONAL INTEGRO-
DIFFERENTIAL NONLINEAR SYSTEM

Consider the following system involving the Riemann-Katugampola nonlinear fractional integro —differential
system which explained as follows:

{C*ng"’x(t) — A (D ADEPx(D)) = gt x(), REIFPx(D), t € 1 (10)
x(0) = xo ,x(0) =x (11)
Where C%Df *Pindicates the Caputo-Katugampola Fractional Derivatives with

a,B,6andL = [0,T],x(t) € C(L,LR™"),A ER™and0 < o, <1, a+B<1,1<6§<20 <<
1,g:IXR™ X R™ - R"is a continuous function.

Assumption 3.1:

1- By lemma (2.6), the function g(t, x(t), R§I*x(t) ) satisfies

lg(t 21 (®), *F1Px1 (D) = g6 22 (®), "ELPx(ODII < W2 () = x2(DI] + W] 21(8) — %2 (][, for
W and w(t) > 0.

2- The function g(t, x(t), R§I*x(t)) satisfies the following

11 g(tx(®, REIP**x(0) || < (M + W(©)||x(t)||,fort € Lx € R"and M > 0.

3- the operator Bx(t) + REIPx(t)satisfies the following

||Bx(t) + R’élf3'px(t)|| < (|IBIl + w®)|[x(t)|| , where B is a constant matrix.

Lemma 3.2: The solution of Multi -Composition- Caputo- Katugampola fractional integro-differential nonlinear
System (10) with0 < a+ < 1,1 < & < 2 explained as following:
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p(6-(a+p)) ICECE) p(6=(a+p) ICRICE)
X(t) = XO E5—(a+[3) A pé'f(aH%) 0( p67(a+6) )E(S'—(LZ+B),6—(11+B)+1(A p57(a+ﬁ) )+X1E5—((Z+B),Z(A p(g,(aH}) )

¢ ((1-6)P6=(a+p)-1) (t—0)p(6-(a+p)) RK_n,p
Jy (—pﬁf(aJrB)fl )E5—(a+8),5'A R g(0,x(6), " 1*x(9))) do

Proof: Take % Laplace Transform for two side of (10) then

LE{C%Df’px(t)}(s) - LQ{C%DEMB)"’X(O}(S) = Li{g(t,x(t), RKIPx())}, By using lemma (2.10) we get that
B 0 B
s2Xw(s) — s°71x(0) — s°72x'(0) — As@*P) X0 (s) + As@*P)71x(0) = Leo{g(t, x(1), REIPx(1))}(s). From initial
B b P

condition (11) we have that

s9Xw(s) — s g — %71y — As@TPIX 0 (s) + As@Bxy = Loo {g(t, x(D), REIPx(D)}(s)
) ) )

Xeo(s)[s® — AsE@B] X [s57 — As(@B=1 ] — X, 5572= L1 {g(t, (D), REIPx(D)}(s) (12)
P P

multiply (12) by m, we obtain that

@) _ S@ Py P
s6_as(a+PB) sG_as(@+B) | —
@iy @Ry

X (s) — xo
p

-1 ag@+P)-1 $5-2 £ep (8 (ex(O, RSP ON6)army
[ ] X1 [ l B Ss_AS(OH-B)
@t

Lo g6, 0 )}z
__p

S—(a+B)_a]| — SS—(a+B)_»4

O (@tB)—1, 5 -1 O (at+p)—2
$O—(a+B)_p 1

Xe(s) — X
P

tP
Now by using invers — Laplace Transform we have that
P

{g(tx(0, K1Y x ()} () —zrgy
S—(a+p)-1 -1 S—(a+p)-2 Lep s(a+h)
-1 s -1 As -1 s -1 R
x(OL" (X ()} — Lo (%o (mmmms)} + Lo (0 Crmmy) ) + £ @2 , By
p

P 3 3

from lemma (2.10), we get that

(6-(a+p)) (6-(a+p)) p(E=(a+p) (6= (atp))
X(t) = X Es_(asp) | A e ) o =) VEs_(a4p)6—(arpy+1(A EEET )+X1Es_(atp)2(A =TT )

t [ (t—)P6=(@+B)-1) (t—0)P(8-(@+R) RK_n,p
fO (W) E6—(a+[3),6' A W g(e,x(e), OIt X(e))) do (13)

Lemma 3.3: If b(t) > 0& c(t) > 0 is locally integrable on [0,T),8 > 0,d(t) < W with

b(®) < c(® +d® J, ((t PO (@) da, 0 < t < T. Then

(t-o) p(né-1)
pan—l

b(t) <c(®)+ d(t)f [Tie [d(rt():;(s (

)c(a)]da, 0 <t < T.
(t—a)P(6-1)
proof: Assume that A@(t) = d(t)f (7) b(a)da,t > 0, for locally integrable function @. Then b(t) <
c(t) + Ab(t) implies b(t) < Y123 A* c(t) + A™b(t).
[a@®r@)1" ((t—a>p<"5-1)

e b(@]da. (14

and A"b(t) > 0asn > 4+ foreachtin0 <t <T

Now to prove that A"b(t) < fot[

I‘(Tl&)

from this (14) is true forn = 1. Assume that it is true for some n = k.

Ifn = k + 1, then the induction hypothesis implies
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a)P(6— 1) Iy 5 a—1)Pké—1)
A(e) = B(A*B() < d(©) fy (055 [T @b () dn| da

Since d(t) is nondecreasing, we get that

(6-1) k _)p(ké-1)
Ak+1b(t) <Ak+1b(t)(d(t))k+1f ((t o();1 1)[f0a[[r(5] ((a )P 1

r(k&) pké—1 )b(T)]dT] da , we have that

L p(6-1) _1)pké-1)
A1) < @) fi [l (S5 b da| b(o) dr

:J-t[[d(t)r(6)]k+1 (t_a)p((k+1)5—1)

r((k+1)B1) pké=1 )b(a)]da, Hence

(t- 0()‘)(8—1) (a_.t)p(kﬁ—l) (t_.r)p(k5+8—1) 1 _ _
= ( )( o ) da = (W)fg(l_z)a ARV

_ ((t—r)p((k"'l)a'l)

_r)P((k+1)6-1)
pk5+8—1 )A(KSI 6) = SOLUL) ((t 2 ) >

r((K+1)8) pk6+6—1

Since, A™b(t) < fot(:ii—?)n (t —a)® 'h(a)da » 0 asn - +oo , t€ [0,T).Then

r n o (t- (né-1)
b(t) < c(®) +d(t) [I[Zhe LIOL) i (e

proy prvE Je(a)]da, 0 <t <T.

Remark 3.4: From above lemma (3.3) we obtain that, b(t) < c(t)Es (d (t)r(d))(g)‘s)

where c(t) is a nondecreasing function.

Lemma 3.5:
(1) For wq, w, = 0 such that, for §,a,p E R* and 6 — (a + B) < 1,

p(6-(@+B)) (f") £P(8—(a+B)) (i)
185wy | A (Ssmarmr) )11 < 01 e 1L and 11Es arps-carsy (ACosamgll < @alle” (2,
where A is constant matrix.
(2) Suppose that §,a,B € R, § — (a + B) = 1thenfory = 1,2,8,
o(6-(a+B)) <tp(5 (a+B))>
t! S5
We have that,||Es- (MM(A(W)H < lle \ PR
(3) If A is a stability matrix, then 3 a constant K > 1 such that ( ) > 0, then
P(6-(a+B)) “(tp)
||E5 (0!+B)Y(A(W)H < Ke P for0<5—(a+B) < 1,and
P(6—(a+p)) - (_)
[|Es-(a+p)y (A (W)) <e \plfor1<é—(a+p)<2,
When the greatest eigenvalue of 4 is 1).
proof: Firstly, from definition ( 2.3) for0 < § — (a + ) < 1, we get that
tP((6—(a+B)) 4  tP((6=(a+B)) tip(((6—(a+p))-1) |5 dp

£ (A(tp(«i (a+B) ) 5 CE o) _ g Kl A E@r® g Lo-@ip) Al

§-(a+p) (6-(a+B) /) — “I=0 15— (a+B))+1) =0 1(i((5—(a+B))+1) K 120" LGi((5—(a+B))+1) k!

tip(((6—(a+B))-1) .

w L@t K4 %)l

ZiZo r(i((5—-(a+B)+1) K!
tP((8—(a+P)) sup sup K!
1Es—erpy (ACmmm) 1<, ¢ g+l ¢ 7+ | oo lle™e |
WF(I(@ (a+p))+1)
P((5—(a+B) .
li Es_ - A——F lim sup, sup K! o@D
im sup ||Es-(a+p)(s (a+6)( (p(5 o) )) Il < Pe. oty NINZE—2=1|
t—> o0 i EZT NP (a+B) i!
t > oo Wl‘(l(s (ll+l3))+1)
tP((8—(a+PB)) i

lim sup | 1Egs—a+p) (AC=mrp)) | < lim sup |||

t - oo t - o

Also note from definition (2.3) for 0 < B; — B,(eR*) < 1
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S AGRGUON AP
B (A(tp(( —(a+B) ) -y H(6—(@+P) =y K! p(0=(@+p) /
(@ (arB)O-(a+B) \T pB-(arh) =0 r(((S- (B +(E=(@+B))  “I=0r(((G—(a+P)+(G-(a+P)) K! B
tip((6—(a+B)-1) . ip(((6—(a+B)-1) .
s L@ < A‘% _ oy : L@ N (4 %)‘
=0 1(i((8-(a+B)+((5—(a+B)) K! =0 r(i((8-(a+B)+(5—(a+B)) K!
P(B—(a+B)) sup sup Kl Lo
||E(5—(“+B)r(5—(“+6) (A( p(a—(a+[3) )) | ~te R+ i € Z+ tlp(l ((6—(a+B))) ”e p ”
—E—@rp (@ B+ (6~ (a+B)
, P((5—(a+B))
lim sup || E(s—(a+),(5-a+p) (A(m)) Il <
t > o
p .
lim sup b “’ b
+ip(1-((5—(a+B)) T
tooo i€l WF(I(@—(“‘FB))H@—(“‘FB))) .
tP
< llmsuplle e
t = oo
P((S~(a+B)) ®
lim sup || E(s-(a+p),(5-(a+) (A(W)) Il < lim sup ||e*?]]
t - oo t > o
On the other hand, if (§ — (¢ + B) € R*) = 1thenfory = 1,2,8
P((5-(@+B)) | L P(=(@+B))
. AP A T ) K A T )
@@y ACGmm ) = it °ro((6 @B~ L0 G @By K!
p((8—(a+B)
P((E-(a+p)) sup sup - K At(s_w
E-@rmr ACamm Il = ¢ ¢ pr <i €zt (Zi=°r<i((6—(a+s>>+y)) e I
, P((5~(a+B) PO @B ;
lim sup | Es—(a+p)6-(a+p) (AC ammrp) ) 1| < lim sup SUP (90 K G <
’ ’ ( plom(er® ) t—> o Ge Z*f(Zl =0r(i((s- (a+B))+Y))) IpXg it =

t - oo

L P(E—(atB)
lim sup”e Wll

t - oo
. tP((6—(a+B)) tP((5 (a+P))
lim sup || Eqs-(as ). 6-(e8) (ACgmammr)) 1 < 1M supy 455wy |
t = o
t = o

p
In addition, if A is a stability matrix, then 3 a constant K > 1 such that (%) >0

P((5—(a+P)) ( )
||E(5 (OH'G)Y(A(W)H < Ke for 0 < (6 - (a + B) <1

P((5—(a+B)) 0
IE¢s- (aw)y(A(W)H <e (P)for 1 < (6 — (a + B) < 2. When n be the greatest eigenvalue of A

Theorem 3.6: Let0 < § — (¢ +B) <1 andt € [,x(.) € R™ the R — K nonlinear fractional integro —differential
system (10 ), (11) is finite time stable provided that condition:

ke (7) [1 + 14| (%) ] Es—(asp) (K(M + W(®)) r(8 = (@ + B)) (%) << (15)

proof: Taking norm function of solution equation (13),we obtain following,

P(6-(@+B)) P(6—(@+B)) P(6—(@+B))
@1 =l [Es-erpy Aoz | + Ao | iz | [Eo-iemrsmiarmron sz + il

(t- 9)9(5 (a+p)-1 (t— 9)0(5—

p(6-(a+P)) (a+P))
[|Es- (a+B)2(A(W)” f | | IEs-(a+prs A smwarp DI 1g(6,x(6), RE1x(8))[| d6 (16)
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by using lemma(3.5), equation (16), become that

(P(6—(a+B) @
el = llsoll o)+ gl | oy | e e
(6-(a+B)-1) (t=0P
1 ke ™ (57 1111 g(0,x(0), *512#x(8)) 1 a6 (17)

By using assumption (3.1), (2), the equation ( 17 ), become that

_n(i) tp(«s (@+B) (tp)
@l = llxoll ke + alllwoll || S || e ™ )4 el ke
(t—0)P(8—(a+p)-1) (=8P .
L R AT ONTOEL (18)
tP

Multiply equation (18) by e"%”, we have that

tP _
i o(6-(a+p)) (t—)P6—(a+B)-1)
S| = Kltsoll + 111 11 1 (p(—ﬁ))” g 1+ ) 1 | ke +
w(8))lx(e)lld6 (19)
. Il( ) tP(8—(a+P))
According to lemma (3.3), and put b(t) = e ~p’||x(t)||, and put c(t) = K[||Xo|| + [|All ||1X0 || |5 T )”
[1%1 |]], and put d(t) = K(M + w(8) ), By remark (3.4), the equation (19), become to
tP6—(a+p)
b(t) < c()Es—(a+p) (d(t)l"(5 —(a+ B))(W)>
(P(5—(a+B)) P(6—(a+B))
Killoll + 1A 1ol ||| + 101 Bscesy (KM + () )r(8 = @ + D) o) 20)

i
then, [[x(t)|| < Ke () [”on + IIAIIIIonI

tp(a (a+B))
O || + ]
N tP(6—(a+B))
Es—qasy (KO + W(0) )r(6 = (@ + B) i)

From definition (2.3), we obtain ||x,]| < 6, ||x,|| < 6, then

(21

p(6-(a+B)) a
(Ssersr )| + 10 Eamqanpy (KO + 90 15 = (a4 BN Eogpargy)

Therefore,||x(t)| < ¢ forall te[0,T). Which implies that formula (10), is a finite time stable.

[Ix(D)]] < KSe_“(%)[l + 1Al

Theorem 3.7: Let1 < § —(a+B) < 2and t € [,x(.) € R™ Then the R — K nonlinear fractional integro —
differential system (10 ), (11), is a finite time stable provided that

tp(&—(a+B)))

54 (6-(a+B))
n(P)[l-l—“A”(W + L

(%)] E5—(a+8) ((M + W(t))l"(5 - (a + B)) <W>> < E, for any te [O, T)
(22)

Proof: Taking norm function of solution equation (13),we obtain following

P(6—(a+p) P(6—(at+B)) P (6—(a+p)
@l = ol || B Az || + Mol | S | | Bomcessrimcasprn GGz | + Ml
#(6-(a+p)) (t—6)P(—(a+p)-1) (t—0)P(5-(+p)) '
s (o2 AN + Jy 1| 11Es- (a+ﬁ)5A(W)llllg(e.x(e). Ix(®)I1de (23)
by using lemma (3.5), equation (23), become that
_n(i) (P(6=(a+B) (“’)
Ixcoll = lisol )t g || G | 6 4 iy
(6-(a+p)-1)  _p(C=0P
I 1 e (5 )||g(e,x(e),“él?px(e))||de. (24)
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By using assumption (3.1), (2), the equation (24), become that

el = lloll &)+ allzg | oy | 6 s )

e () 104 + w(@))11x(@) 1 e (25)
Multiply equation (25) by eq(% , we have that

DNl = o+ Aol | |+l it + 11 2252 o a4

w(6))[[x(8)]] d6 . (26)

According to lemma (3.3), we put b(t) = en( )||x(t)|| and put

c® = [lIxoll +1Allllxo + 1% III( DIl andd@® = (M + W(®))
by remark (3.4), the equation (26) become to

P(B—(a+B)) P(E—(a+B))
b(6) < (OB o—aspy (4O — (@ + BN Cosargr) Eo—iasty (M + WO NI — (@ + B o)) @7)
(¥ p(6—(a+B))
Then. Ix(Oll < (o) 1ol + 14Nl (S )|+t
tp(a (@+B))
Es—arpy (M + W(0))r(8 = (@ + B Sommgy)) (28)
From definition (2.3), we obtain ||x0|| <35, ||x1|| < §, then
o p(5—(a+B)) p(6—(a+B))

Ix@l < s ()1 + fay | (e )1 Es—arpy (M + 9(0)) )r((8 = (@ + BN oz
Therefore,||x(t)|| < eforallte [0 T). which 1mpl1es that formula (10), is finite time stable.
Corollary 3.8: The R—K linear fractional integro—differentail system
{C*gnf'Px(t) — A(SDEPEDEPx(D)) = Bx() + REIx(D),  fortel (29)

X(O) = X ,X\(O) =X (30)

Is finite time stable for 0 <6 — (a + B) <1,if

tP —(a+
e [1 4 1a1] (Smr?) + ()] s (CIBI -+ OO K 18— (0 + B) Corane) ) <5 (D)

p
proof: By using % Laplace trance form on (29), we obtion

Lo {ED2Px(D}(s) — LQ{A(CED:""C%Df'px(t))}(s) = Lo {Bx(D) + REIPx(t) }(s)
o p P
s%X(s) — s71x(0) — s972x°(0) — As(@*P)X(s) + As@*+B)-1x(0)

= Lo{Bx(0) + *¥IM*x(t) }(s), By using initial condition (30) ,we get that,
)

X (s)[s® — As@B] — xo[s571 — As@*B)~1] — %5572 = £p{Bx(D) + REIMx(D) }(s)

p )
L, p{Bx()+REVPx(t
s0-1pag(a+p)-1 $6-2 ﬂ{ O+l x(© }(S)
Xeo(8) = X0 — 2 | =0
i 0 sé—_As(a+B) 1 s6—_As(a+B) s6—As(@+B)
)
_ RK 1, 1
S g1 o2 Lo {Bx+" 150 }O
@B Gl
Xe(s) — xg PR X1 | B_@m | T B_a.@th)
P | s(a+pB) s(a+p) s(a+B)

RK n,p 1
LpiBx(D+ 1 —
F (@ +B)—1 4 g1 O-(@rp)-2 §{ x(D+ I x(® }(S)S(HB)
Xe(s) = x | o-(atB_p ] -t [55—(a+6)_A] =
0

0—(a+B) _p

p
By using inverse % Laplace trance form we get that,
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L, {Bx(©)+REPx(t) }(s)ﬁ

5—(a+p)-1 -1 S—(a+p)-2 —

_ -1 s -1 As -1 S -1 P

x(0) = L3 {xo (Grmm3)} — L5 {0 (semma)} + L3 {1 ()} + £ @A ;
3 r) 3 P

By using lemma (2.10) we get

tP(6—(a+B)) tPS—(a+B) tP(6—(a+B)) tP(6—(a+B))
x(t) = %oEs-(a+p)(A W) Axo(W)Es (a+B).5—(a+p)+1(A (W)) + xEs- (a+B)2(A(W))
t (t-0)P(6—(@+p)-1) (t—8)P(6-(@+p) !
+Jy 1 Es-ape A(w) (Bx(0) + REIx(0)) d6 (32)
Now taking norm function of solution equation (32), then
tP(8—(a+B)) P(8—(a+B)) p(6-(a+p))
1 Ol = 1ol | By (A S| = Nl | Ssmazar | 1B cesrorpron (A Smrmzmr ) 1+

(p(6~(@+B))
||E6—(a+[3),2( 5(a+3))|| f |

from lemma (3.5), equation (33) implies that,

(t—0)P(8—(a+B))

(t—0)P(6—(a+B)-1) i
— i | Eg-@a+ps A(W)IIH(BX(G) + REIPx(6)) ||d6. (33)

I Il = lrolice™ ) = el | e e ™) 4 g, ke () +
S e ) o) + iznce)) Jae. (39
Multiply equation (34) by e (_) , implies that,
P Ol = K [l + 1Al | (S )| + ] + S22 e
|| Bx(6) + OI?’px(G))”dG (35)
(P(6—(a+B))

From lemma (3.3), put b(t) = en( )||X(t)|| and c(t) = K[||xol| + [|All |I%0 ||

Comam)|| + 11x [l and 4 =

[|(Bx(8) + REI*Px(8))||K, from the Remark (3.4), the equation (35), become

P (8—(@+B)

b(t) < c(t)Es—(a+p) (d(t)r((5 (a + B))(W)) < K[l1%ll + 1Al 1%]] PO~ (@+B)

Csmsd)|| + 1l Es gy

(P(8-(a+B) )

(IlcBx(®) + R§1Px (00 ||Kr(B1 ~ B2) Ss=rars) (36)

ot p(6-(a+B)
therefore, [[x(D)|| < Ke “(P)[leoll + A1l (t

O s )| + 1B asgy (B + M1Px0) [k (s -

(6—(a+B))
(a+ B))(tpgw)) From definition (2.3), we have that |[|xg|| < §, ||x,]| < §, thus

t —(a
kol = ke ()4 1] | (S e,y

e ||+ 1 By (CIBI + w8)) KBy — B )

Hence.||x(t)|| < &, forall t € [0, T). then system (29), (30) is finite time stable, for the interval 0 < § — (a + B) < 1.

Corollary 3.9: System(29) is finite time stable for 1 <6 — (a +B) < 2,
eP( +8))

tP( )
els )1+||A||(W) ()1 By (1B + W(O)) 16 = (@ + BY) (o)) < (37)

Proof: Now taking norm function of solution equation (32), then

(6= (a+p) P (6=(a+B)) p(6-(a+p))
e 1 =l | Es-enty 4 g || = Halllbxoll | S || 1B esmymcassrens (8 =5 ) 1+ D
(P(6—(@+p)) (t—6)P(6-(a+p)-1) (t—6)P(6—(a+5) RK 1,
s cermed S| + Iy 15— 1 HE-eems AC S| Bx(@) + “i7x@)) [ld0. 38)
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From lemma (3.5), equation (38) implies that,

(i (i
(% (6= (@+p))

I @l = lsalle™ )~ Halllell || S| )+ et ) 4

t (t=p)PO6-(@+p-1 (T RK 1,
J; =l e “(p)||(Bx(e) + 7 1x(8)) ||ae. (39)

®

Multiply equation (39) by e\ P), implies that

tP

& (6= (@t+p) 9)P(6—(a+p)-1)
&Pl Ol = xall = Halllxoll | S || + sl + 1422255220 e

RK n,p
| Bx(6) + “ 1i"x(8)) ||d6. (40)
p( B))

From lemma (3.3), put b(t) = eq( )||x(t)|| and c(t) = [|Ixol| = IIAll I1xo || (tsTJ,B))“ +Ixq [I] and d(t) =

|(Bx(8) + REI*x(8))]|, from Remark (3.4), the equation (40), become

P(B—(a+B))

b() < c(OBs—asy (ADFE = (@ + BN ey < [HIxoll + 1Al x| [|orsy

Cmn)|| + 1l

(5-(a+B)
Bp,-g, (|(Bx(®) + B1°x(6))[r(6 — (@ + BY Csamgy)) (41)
(% (6-(a+p))
Therefore, |[x(D]| < e 11(">[||9Co|| + [1A1]]1xo]] (t;g_Tﬂg))” + [1x:11] Es-(a+p) (”(BX(e) + REIPx(0))||r(6 —
(5-(a+B)
@+ B) ) (42)

From definition ( 2.3 ), we have that ||x0|| <3, ||x1 || < §,thus,

(tp(5—(a+8)) tP(8—(a+p)) )

s ||+ 1N sy (B + 90 18 = (@ + B )

Hence, ||x(t)|| < &, for all te[0, T) Then system (29), (30) is finite time stable, for the interval 1 < § — (a + B) < 2.

ol < se ()1 + 1]

Example 3.10: Consider the R—C nonlinear fractional integro—differential system
1
KDy, (1) — DBy, (1) = (x2 + 2.9)2 + 0.05 tanh(x) + REIF+Px, () (43)
€D %, () — “§DI P Px, (0 = 0 (44)

Where § = 1.75 anda = 0.5, =0.75, (6§ — (a + B) = 1.25 ,by using consider system (10), for (43), (44),

3 Bs,
vield 4 =[; (9| and g(ex(®), 1P x ) = [(xf #2997+ 005 tanh(:) + 1515 O Now o proof tht,
3 Bs,
gt x(v), RKIf3'px M= [(xlz +2.9)2 + 0.05 tanh(x) + R§I;*"x, (t)| satisfies the Lipchitz condition, ménage there
0

exists a constant L such that:
g6 x(0), REIPPx (t) — gt y(0), *IPPy (1) |< (w + w(t)|x(t) — y(t)| for all x(.), y(.) € R*.
1

Since (x2 + 2.9)z + 0.05 tanh(x) has derivative —— + 0.05 sech?(x)
(x3+2.9)2
. | < T bl < |x;|, by assumption(3.1), we obtain |g(t, x(t), R%If&px ®l<a+
(x2+2.9)2+0.05 tanh(x)  (¥?+2.9)2+0.05 tanh(x)
w()|Ix(®)| fort € 1,x € R?
Now to compute the condition (11) w.r.t M =1 and w(t) =1.05, n=1.5,1.6,1.7,1.8,1.9 and by definition (2.1) we find

[|1A]| = 1 and choose u = 0.2,0.1,0.01,0.4,0.5and K = 1,1.2,1.3,1.4,1.5 s=434215 ,p =1, then
_q(£> 0(6-(a+)) at) ¢
ke |14 14l (S ) + ()] Baoaam (K (M + WP = (@ + B iy < £

Hence the estimated finite time stable ofR — K nonlinear fractional integro- d1fferent1a1 system T =~
0.4495,0.0723,1.4379,2.8075,0.0178

10



Mohammed et al., Wasit Journal for Pure Science Vol. 4 No. 4 (2025) p. 1-12

Table (1) The value of Finite time stability T, for § = 0.05,e =1

Bi= | B,= [e= 5= K= o= n= M= =
2.75 2.25 1 0.05 1.74 1 0.33 | 0.4495
2.75 2.25 1 0.05 1.20 1 1.44 | 0.0723
2.75 2.25 1 0.05 1.35 1 1.9 | 1.4379
2.75 2.25 1 0.05 0.88 1 1.63 | 2.8075
2.75 2.25 1 0.05 0.99 1 1.55 | 0.0178

Example 3.11: Consider the system (29) with the parameters § = 1.75,a = 0.75, § = 0.50

—(a+B)=054 = [i (2) and B = 3 ﬂ,be choosing many value of K = 1,1.2,1.3,1.4,1.5and, e =

landp =1,and § = 1.75,and , n = 0.2,0.1,0.01, 0.4, 0.5, and p = 0.05 and by definition (2.2) we find ||A]|| =
3.7417 and by definition (2.2) we find ||B|| = 2. With
P(6=(a+p)

tP
—n(— tP(8—(a+P)) tP . . N
ke (%) [1 + il () + (;)] Es_ sy (1Bl + W(©) K (8 — (a + B)) (W) < £ with w(o) =
1 t(@+B) _q(@+B)
(a+B)ST(8) (a+B)

Jthe estimated time stable of (29), (30) are T =~ 0.6961,0.6362,1.3200,0.1219,0.0373

Table (2) The value of Finite time stability T, for 6 =1.75,e =1

a+pB= a= |n= n= K = £ = B = 6 = =
1.25 0.75 0.2 0.05 1 1 0.5 1.75 0.6961
1.25 0.75 0.1 0.05 1.2 1 0.5 1.75 0.6362
1.25 0.75 0.01 0.05 1.3 1 0.5 1.75 1.3200
1.25 0.75 0.4 0.05 14 1 0.5 1.75 0.1219
1.25 0.75 0.5 0.05 1.5 1 0.5 1.75 0.0373

4. CONCLUSION

We concluded that each fractional derivative has a special function that is substituted into the generalized formula of
Laplace to find the transformations of the functions required in calculating the results of the given problem. Also, the
Gronwall's inequality with Mittag Leffler functions made a good role for compute the conditions of time stability. The
time stability depended on the type of derivatives of the nonlinear fractional system and concepts of nonlinear functional
analysis. The time stability of this problem of composite fractional derivative depended on a value of fractional orders of
derivate and integrals
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