β^* -Regular supra topological spaces

https://doi.org/10.31185/wjcm.51

Ehab A. Ghaloob

University of Baghdad ,College of science ,Department of Mathematics ,Baghdad ,Iraq ihab.ahmed1203a@sc.uobaghdad.iq

Dr. Afraa R. Sadek

University of Baghdad ,College of science ,Department of Mathematics ,Baghdad ,Iraq sadek.r.afraa@gmail.com

Abstract—Form the series of generalization of the topic of supra topology is the generalization of separation axioms. In this paper we have been introduced $(S\beta^* - SS\beta^*)$ regular spaces. Most of the properties of both spaces have been investigated and reinforced with examples. In the last part we presented the notations of supra $\beta^* - R_i$ -space (i=0,1) and we studied their relationship with $(S\beta^* - SS\beta^*)$ regular spaces.

Keywords - supra closed, supra g-open, supra semi.open, supra closure and supra interior.

1. Introduction

Mashhour in [1] present the supra topological space and studied some concepts with it like S*-continuous maps, supra neighborhood and supra T_{1^-} space. Recall that [2] a subset A of a supra space (X,τ^*) is called supra g-closed if $cl^{\tau^*}(A) \subset W$ whenever $A \subset W$ and W is supra open and A is supra g-open if $F \subset int^{\tau^*}(A)$ for any supra closed F contained in A , where $cl^{\tau^*}(A)$, $int^{\tau^*}(A)$ are the supra closure and supra interior operators of A respectively[3] .Also A called supra semi-open [4] if $A \subset cl^{\tau^*}(int^{\tau^*}(A))$. Supra semi-closed is the complement of supra semi-open .

T. M. Al-shami etal . [5] evolved the last concept and presented the notations of supra semi. neighborhood and supra semi T_1 - space. In a supra topological space or supra space for short we introduced the notation of supra β^* -closed sets as follows : A subset A of a supra space (X, τ^*) is termed supra β^* -closed , if $cl^{\tau^*}(int^{\tau^*}(A)) \subset V$, wherever $A \subset V$ and V is supra -g-open .The complement of supra β^* -closed is called supra β^* -open [6] .By we supra β^* -open the researchers in [6] [10] defined supra β^* -T₁ and supra β^* -T₂ similar to the definitions of Mashhour , mentioned above .

Finally, a map $f: (X,\tau_1^*) \to (Y,\tau_2^*)$ is said to be S*-closed [1] (resp. supra semi*. closed [5] ,supra semi*.open[5]) if the image of a supra closed is supra closed (resp. the image of a supra semi-closed is supra semi-closed , the image of a supra semi-open is supra semi-open). Further f is called [6] supra β^* -open (resp. $S\beta^*$ -irresolute) if the image (resp. inverse image) of every supra β^* -open is supra β^* -open.

1

2. Supra β*-regular

In this section, we shall present the concepts of $S\beta^*$ -regular among the generalization of the separation axioms that pretain to supra topological spaces .

Definition 2.1

A supra .space (X,τ^*) is called supra β^* -regular $(S\beta^*$ -regular) if for each supra closed set F in X and $v \notin F$, there exist W_1 , $W_2 \in S$ β^*O such that $v \in W_1$, $F \subset W_2$ and $W_1 \cap W_2 = \emptyset$.

Example 2.2

Let $X = \{b_1, b_2, b_3\}$ with supra topology $\tau^* = \{X, \emptyset, \{b_1\}, \{b_1, b_2\}, \{b_2, b_3\}\}$, $\tau^{*c} = \{\emptyset, X, \{b_2, b_3\}, \{b_3\}, \{b_1\}\}$, so $S\beta^*C(X) = \{\emptyset, X, \{b_2, b_3\}, \{b_3\}, \{b_1\}, \{b_1, b_3\}, \{b_2\}\}$, hence $S\beta^*O(X) = \{X, \emptyset, \{b_1\}, \{b_1, b_2\}, \{b_2, b_3\}, \{b_2\}, \{b_1, b_3\}\}$. It is not difficult to show that (X, τ^*) is not supra regular space white it is supra β^* -regular space.

Definition 2.3

A supra space(X, τ^*) and $B \subset X$. A point $w \in X$ is called the supra β^* -cluster point of B if $B \cap W \neq \emptyset$ for each supra β^* -open set W of X containing w. The set of all supra β^* -cluster points of B is said to be supra β^* -closure, we denoted by $s\text{-cl}_{\beta}^*(B)$.

The following useful proposition follows from definition (1.3).

Proposition 2.4

Let B be a subset of a supra .space (X, τ^*) , then $s-cl_{\beta}^*(B) = \bigcap \{F \in S\beta^*C(X) | B \subset F \}$.

Proof. Suppose first $x \in s\text{-}\mathrm{cl}_{\beta}^*(B)$. Now we have to show $x \in \cap \{F \in S\beta^*C(X) \mid B \subset F\}$, so let $x \notin \cap \{F \in S\beta^*C(X) \mid B \subset F\}$, then there exists $F_i \in S\beta^*C(X)$ which containing B and $x \notin F_i$ implies $x \in X$ - F_i which is supra β^* -open but $(X-F_i) \cap B = \emptyset$ a contradiction since $x \in s\text{-}\mathrm{cl}_{\beta}^*(B)$. Conversely let $x \in \cap \{F \in S\beta^*C(X) \mid B \subset F\}$ and $x \notin s\text{-}\mathrm{cl}_{\beta}^*(B)$, hence there exists \mathcal{U} such that $x \in \mathcal{U}$ and $\mathcal{U} \cap B = \phi$ implies $B \subset (\mathcal{X} - \mathcal{U})$ which is supra β^* -closed and by the assumption we have $x \in X$ - \mathcal{U} that is impossible since $x \in \mathcal{U}$ and we have done.

Some properties are realized in the supra β^* - regular spaces as we will see in the following three results . In fact the conditions of (1.5,1.6) are sufficient .

Theorem2.5

A supra space (X,τ^*) is $S\beta^*$ - regular if and only if for every $v \in X$ and every supra open set W such that $v \in W$, there exists a supra β^* -open set V such that $v \in V \subset s\text{-cl}_{\beta}^*(V) \subset W$.

Proof . For necessity , since $v \notin U^c$ and U^c is supra closed so by the $S\beta^*$ -regularity of X , there exist disjoint supra β^* -open V and W containing x and U^c respectively. But $s\text{-}cl_\beta*(V) \subset s\text{-}cl_\beta*(W^c)$ and since $s\text{-}cl_\beta*(W^c)$ is supra β^* -closed [6], hence $s\text{-}cl_\beta*(V) \subset W^c \subset U$, therefore $x \in V \subset s\text{-}cl_\beta*(V) \subset U$. For sufficiency let E be a supra closed in (X,τ^*) and $x \notin E$, E^c is supra β^* -open containing x implies that there exist supra β^* -open set V such that $x \in V \subset s\text{-}cl_\beta^*(V) \subset E^c$. Now $E \subset (s\text{-}cl_\beta*(V))^c$, thus V and $(s\text{-}cl_\beta^*(V))$ are two supra β^* -open sets that containing x and E respectively ,implies (X,τ^*) is $S\beta^*$ -regular .

Theorem2.6

A supra space (X,τ^*) is $S\beta^*$ -regular if and only if for each supra closed set E and each $x \notin E$, there exists a supra β^* -open V containing E such that $x \notin s\text{-cl}_{\beta}*(V)$.

Proof . Since (X,τ^*) is $S\beta^*$ -regular and $x \notin E$, so there exist disjoint supra β^* -open sets U,V such that $x \in U$, $E \subset V$ which is exactly mean x does not belong to $s\text{-}\mathrm{cl}_{\beta}*(V)$. For sufficiency Suppose E is a supra closed in (X,τ^*) and $v \notin E$. By the a assumption we have $V \in S\beta^*O(X)$ such that $E \subset V$ and $v \notin s\text{-}\mathrm{cl}_{\beta}*(V)$, this means that there is a supra β^* -open set W containing x and $W \cap V = \emptyset$ implies (X,τ^*) is $S\beta^*$ -regular.

Proposition2.7

If X is S β^* -regular and c \in X , then each supra neighborhood of c contain a supra β^* -closed set consist of c. Proof .Let c \in X and a supra neighborhood M of c , then there is a supra open set $N \subset X$ such that $c \in N \subset M$ implies $c \notin X - N$. Since X is S β^* -regular ,so we have $U_1, U_2 \in S$ $\beta^*O(X)$ such that $c \in U_1$ and $X - N \subset U_2$ and $U_1 \cap U_2 = \emptyset$. Hence $c \in U_1 \subset X - U_2 \subset N \subset M$,therefore $X - U_2$ will be the required supra β^* -closed .

What are the characteristics of functions that transfer a supra β^* - regular space to a supra β^* - regular space or vice versa? we will see this in the following two theorems.

Theorem 2.8

Let $f:(X,\tau_1^*) \to (Y,\tau_2^*)$ be an injective S^* .closed and $S\beta^*$ - irresolute ,then X is supra β^* -regular if Y is supra β^* -regular .

Proof. Suppose $x \in X$ and B is any supra closed subset of X such that $x \notin B$. Since f is S^* .closed, so f(B) is supra closed subset of Y such that $f(x) \notin f(B)$ thus by the supra β^* -regularity of Y we have disjoint V, W containing f(B) and f(x) respectively. Clear that (for instance see [8]) B $\subset f^{-1}(f(B)) \subset f^{-1}(V)$ and $x \in f^{-1}(W)$, also $f^{-1}(V) \cap f^{-1}(W) = \emptyset$, hence $f^{-1}(V)$ and $f^{-1}(W)$ are the required supra β^* -open sets which complete proof.

Theorem 2.9

Let $f: (X, \tau_1^*) \to (Y, \tau_2^*)$ be a bijective , supra β^* -open and S^* .continuous map, then Y is supra β^* -regular if X is supra β^* -regular .

Proof. Suppose $y \in Y$ and B is any supra closed subset of Y such that $y \notin B$, hence $f^{-1}(y) \notin f^{-1}(B)$. Since f is S^* .continuous, so $f^{-1}(B)$ is supra closed in X and by the supra β^* -regularity of X there are disjoint W_1 , $W_2 \in S \beta^*O(X)$ which containing $f^{-1}(y)$ and $f^{-1}(B)$ respectively. Now it is easy to $f(W_1)$, $f(W_2)$ are the required supra β^* -open sets, implies Y is supra β^* -regular.

The following example shows that not every supra β^* -regular space is supra β^* - T_2 -space .

Example 2.10

 $\begin{array}{l} \text{Let } X = \{w_1 \ , w_2 \ , w_3 , w_4 \} \quad \text{with supra topology } \tau^* = \{ \ X \ , \emptyset \ , \{w_1\}, \{w_3\}, \{w_1, w_3\}, \{ \ w_1, w_2\}, \{ \ w_1 \ , w_4 \} \ , \{ w_2 \ , w_3, w_4 \}, \{ \ w_1 \ , w_3, w_4 \} \}, \\ \text{so } S\beta^*C(X) = \{ \emptyset \ , X \ , \{ \ w_1 \ \} \ , \{ \ w_2 \ , w_3\}, \{ w_1 \ , w_2 \ , w_3 \}, \{ w_1 \ , w_2 \ , w_3 \}, \{ w_1 \ , w_2 \ , w_3 \}, \{ w_2 \ , w_4 \} \ , \{ w_1, w_2 \ , w_4 \}, \{ w_1, w_2, w_3 \} \}, \\ \text{hence } S\beta^*O(X) = \{ X \ , \{ w_1 \}, \{ w_1, w_2 \}, \{ w_1, w_2 \}, \{ w_1, w_4 \} \ , \{ w_2 \ , w_4 \}, \{ w_1 \ , w_2 \ , w_3 \}, \{ w_1 \ , w_2, w_4 \}, \{ w_2 \ , w_3, w_4 \}, \{ w_1 \ , w_2 \ , w_3 \}, \{ w_2 \ , w_3 \ , w_4 \}, \{ w_2 \ , w_3 \ , w_4 \}, \{ w_2 \ , w_3 \ , w_4 \}, \{ w_3 \ , w_4 \}, \{ w_1 \ , w_2 \ , w_3 \}, \{ w_1 \ , w_2 \ , w_3 \}, \{ w_1 \ , w_2 \ , w_3 \ , w_4 \}, \{ w_2 \ , w_3 \ , w_4 \}, \{ w_1 \ , w_2 \ , w_3 \}, \{ w_1 \ , w_2 \ , w_3 \ , w_4 \}, \{ w_2 \ , w_3 \ , w_4 \}, \{ w_1 \ , w_2 \ , w_3 \ , w_4 \}, \{ w_2 \ , w_3 \ , w_4 \}, \{ w_2 \ , w_3 \ , w_4 \}, \{ w_3 \ , w_4 \}, \{ w_1 \ , w_2 \ , w_3 \ , w_4 \}, \{ w_2 \ , w_3 \ , w_4 \}, \{ w_1 \ , w_2 \ , w_3 \ , w_4 \}, \{ w_2 \ , w_3 \ , w_4 \}, \{ w_1 \ , w_2 \ , w_3 \ , w_4 \}, \{ w_2 \ , w_3 \ , w_4 \}, \{ w_1 \ , w_2 \ , w_3 \ , w_4 \}, \{ w_2 \ , w_3 \ , w_4 \}, \{ w_3 \ , w_4 \}, \{ w_1 \ , w_2 \ , w_3 \ , w_4 \}, \{ w_2 \ , w_3 \ , w_4 \}, \{ w_3 \ , w_4 \}, \{ w_1 \ , w_2 \ , w_3 \ , w_4 \}, \{ w_1 \ , w_2 \ , w_3 \}, \{ w_1 \ , w_2 \ , w_3 \ , w_4 \}, \{ w_2 \ , w_3 \ , w_4 \}, \{ w_1 \ , w_2 \ , w_3 \ , w_4 \}, \{ w_1 \ , w_2 \ , w_3 \ , w_4 \}, \{ w_2 \ , w_3 \ , w_4 \}, \{ w_1 \ , w_2 \ , w_3$

Theorem 2.11

Any supra β^* - regular and supra T_1 -space is supra β^* - T_2 -space.

Proof . Assume that (X,τ^*) be a supra β^* -regular , supra T_1 -space and $v \neq y \in X$. From [1] we have $\{v\}$ is supra closed and since $y \notin \{v\}$, then we have disjoint $W, V \in S\beta^*O(X)$ such that $y \in W$ and $\{v\} \subset V$, implies X is supra β^* - T_2 -space.

The following example shows how the quotient space of supra β^* -regular might not supra β^* -regular.

Example2.12

Let (\mathbb{R}, τ_u) be the real numbers with τ_u and let $\rho : \mathbb{R} \to B$, when $B = \{b_1, b_2, b_3, b_4\}$ defined as follows.

$$\rho(\mathbf{x}) = \begin{cases} b_2 & x < 1 \\ b_3 & 1 \le x < 5 \\ b_4 & 5 \le x < 20 \\ b_1 & x \ge 20 \end{cases}$$

Thus the quotient supra topology on B is qsT (B)= {Ø , B ,{ b₂} , { b₂, b₃} , { b₂, b₃, b₄}} .Therefore S β *O(B) = {Ø , B ,{ b₂} , { b₂, b₃} ,{ b₂, b₃} ,{ b₂, b₃, b₄} , { b₁, b₂, b₃} , { b₁, b₂, b₃} , { b₁, b₂, b₄}, { b₂, b₄}, { b₂, b₄}, { b₁, b₂}, { b₄}, { b₃} } . It is clear that (B, qsT(B)) is not supra β * -regular .

3. strongly supra β^* - regular

This section deals with a strong from of $S\beta^*$ -regularity. In the beginning we will present the following definition .

Definition3.1

A supra space (X,τ^*) is called strongly supra β^* -regular $(SS\beta^*$ -regular), if for each supra semi-closed set F and a $\notin F$, there exist disjoint supra β^* -open sets U,V such that $a \in U$, $F \subset V$.

The next two theorems give characterizations for $SS\beta^*$ - regular spaces .

Theorem3.2

A supra space (X,τ^*) is $SS\beta^*$ - regular if and only if for each $v \in X$ and any supra semi -open set V such that $v \in V$, there exist a supra β^* -open set V such that $v \in V \subset s\text{-}cl_{\beta}^*(V) \subset W$.

Proof . For necessity , since $v \notin W^c$ and W^c is supra semi-closed so by the $SS\beta^*$ -regularity of X , ,so we have disjoint H , $K \in S \beta^*O$ such that $v \in H$ and $W^c \subset K$.But $s - cl_\beta * (V) \subset s - cl_\beta * (W^c)$ and since $s - cl_\beta * (W^c)$ is supra β^* -closed [6], hence $s - cl_\beta * (V) \subset W^c \subset W$, therefore $v \in V \subset s - cl_\beta * (V) \subset W$. For sufficiency let E be a supra semi-closed in (X,τ^*) and $x \notin E$, E^c is supra semi-open containing x implies that there exists a supra β^* -open set V such that $x \in V \subset s - cl_\beta^*(V) \subset E^c$. Now $E \subset (s - cl_\beta * (V))^c$, thus V, $(s - cl_\beta^*(V)) \in S\beta^*O$ such that $x \in V$ and $E \subset (s - cl_\beta^*(V))$, implies (X,τ^*) is $SS\beta^*$ -regular.

Theorem3.3

A supra space (X, τ^*) is $SS\beta^*$ -regular if and only if for every supra semi closed set E and each $v \notin E$, there exists a supra β^* -open V containing E such that $v \notin s-cl_{\beta}^*(V)$

Proof. Since (X,τ^*) is $SS\beta^*$ -regular and $v \notin E$, so there exist disjoint supra β^* -open sets W, V such that $v \in W$, $E \subset V$, hence $v \notin s\text{-}cl_{\beta}^*(V)$. For sufficiency let E be a supra semi closed in (X,τ^*) and $v \notin E$. By the a assumption we have $V \in S\beta^*O(X)$ such that $E \subset V$ and $v \notin s\text{-}cl_{\beta} *(V)$. As a result, there is a supra β^* -open set W containing X and $W \cap V = \emptyset$ implies (X,τ^*) is $SS\beta^*$ -regular.

Theorem3.4

A supra space X is SS β^* -regular if for every $\nu \in X$ the supra β^* -closed neighborhood of ν form a basis of a supra semi-open neighborhood of ν .

Proof. Suppose $v \in X$ and let F be any supra semi-closed does not contain v. Thus X-F is supra semi-open containing v, so there is a supra β^* -closed neighborhood W of v such that $v \in W \subset X-F$. Now let G = X-W, then G is supra β^* -open and $F \subset G$. On the other hand W is supra neighborhood of v, hence there is a supra open set H such that $v \in H \subset W$ [6]. Therefore $G \cap H \subset X-W \cap W = \emptyset$ and since H is supra β^* -open(3.1.3) the proof complete. \square

For a mapping between two $SS\beta^*$ - regular spaces we have the following theorems .

Theorem 3.5

let $f:(X,\tau_1^*) \to (Y,\tau_2^*)$ be an injective, supra semi*.closed and supra β^* .continuous map , then X is supra $SS\beta^*$ -regular if Y is $SS\beta^*$ -regular .

Proof. Suppose $x \in X$ and B is any supra semi-closed subset of X such that $x \notin B$. Since f is supra semi*.closed, so f(B) is supra semi-closed subset of Y such that $f(x) \notin f(B)$ and by the $SS\beta^*$ -regularity of Y we have disjoint V, W $\in S\beta^*O(X)$ containing f(B) and f(x) respectively. Clear that (for instance see [9]) $B \subset f^{-1}(f(B)) \subset f^{-1}(V)$ and $f(A) \subset f^{-1}(V)$ a

Theorem 3.6

Let $f: (X, \tau_1^*) \to (Y, \tau_2^*)$ be a bijective , supra semi*.open and S^* .continuous map, if X is $SS\beta^*$ -regular then Y is $SS\beta^*$ -regular .

Proof . Suppose $y \in Y$ and B is any supra semi-closed subset of Y such that $y \notin B$, hence $f^{-1}(y) \notin f^{-1}(B)$. Since f is S^* continuous, so $f^{-1}(B)$ is supra semi-closed in X and by the $SS\beta^*$ -regularity of X there are disjoint W_1 , $W_2 \in S\beta^*O(X)$ which containing $f^{-1}(y)$ and $f^{-1}(B)$ respectively. Now it is easy to $f(W_1)$, $f(W_2)$ are the required supra β^* -open sets, implies Y is $SS\beta^*$ -regular.

The following example shows that not every $SS\beta^*$ -regular space is supra β^* - T_2 -space.

Example 3.7

Let $X = \{w_1 \ , \ w_2 \ , \ w_3, \ w_4\}$ with supra topology $\tau^* = \{X \ , \emptyset \ , \ \{w_1, \ w_3\}, \ \{w_1, \ w_2\}, \ \{\ w_2, \ w_3\}, \ \{\ w_3 \ , \ w_4\}, \ \{\ w_1, \ w_2 \ , \ w_3\}, \ \{\ w_1 \ , \ w_2 \ , \ w_4\}, \ \{\ w_1 \ , \ w_3, \ w_4\}, \ \{\ w_1 \ , \ w_3, \ w_4\}, \ \{\ w_1 \ , \ w_3, \ w_4\}, \ \{\ w_1 \ , \ w_3, \ w_4\}, \ \{\ w_1 \ , \ w_3\}, \ \{\ w_1 \ , \ w_2\}, \ \{\ w_1 \ , \ w_3\}, \ \{\ w_1 \ , \ w_2\}, \ \{\ w_1 \ , \ w_3\}, \ \{\ w_1 \ , \ w_3\}, \ \{\ w_1 \ , \ w_2\}, \ \{\ w_1 \ , \ w_3, \ w_4\}, \ \{\ w_1 \ , \ w_3, \ w_4\}\}.$ It is not difficult to show that $(\ X \ , \tau^*)$ is not $SS\beta^*$ -regular space ,but it is supra β^* - T_2 -space.

Theorem3.8

Any $SS\beta^*$ - regular and supra semi T_1 -space is supra β^* - T_2 -space.

Proof. Let (X, τ^*) be a $SS\beta^*$ -regular, supra semi T_1 -space and $x \neq y \in X$. From [5] we have $\{x\}$ is supra semiclosed and since $y \notin \{x\}$, so we have disjoint $U, V \in S\beta^*O(X)$ such that $y \in U$ and $\{x\} \subset V$, implies (X, τ^*) is supra β^* - T_2 -space.

4. Supra β^* - R₀-space and supra β^* - R₁-space .

Recall that [7] a space X is said to be R_0 -space if for each open set V and $c \in V$ we have $cl(\{c\}) \subset V$ and X is called R_1 -space if for each $d_1 \neq d_2$ in X with $cl(\{d_1\}) \neq cl(\{d_2\})$, then we have disjoint open sets V_1, V_2 such that $cl(\{d_1\}) \subset V_1$ and $cl(\{d_2\}) \subset V_2$.

Definition4.1

A supra space (X, τ^*) is called supra $-R_0$ if each supra open set contains the supra closure of each of its singleton.

Definition 4.2

A supra .space (X, τ^*) is called supra $-R_1$ if for each c_1 , c_2 in X with $\operatorname{cl}^{\tau^*}\{c_1\} \neq \operatorname{cl}^{\tau^*}(\{c_2\})$, there exist disjoint supra open sets W_1 , W_2 such that $\operatorname{cl}^{\tau^*}(\{c_1\}) \subset W_1$ and $\operatorname{cl}^{\tau^*}(\{c_2\}) \subset W_1$.

Example4.3

Let $X = \{w_1, w_2, w_3\}$ with supra topology $\tau^* = \{X, \emptyset, \{w_1\}, \{w_2\}, \{w_1, w_2\}, \{w_2, w_3\}, \{w_1, w_3\}\}$, $\tau^{*c} = \{\emptyset, X, \{w_1\}, \{w_3\}, \{w_2\}, \{w_2, w_3\}, \{w_1, w_3\}\}$. It is not difficult to show that (X, τ^*) is supra R_0 -space and supra R_1 -space

Remark 4.4

Every supra R_1 is supra R_0 .

Proof. Assume U be a supra open subset of a supra space (X,τ^*) . We want to show that $cl^{\tau^*}(\{c\}) \subset U$ for each $c \in U$. Now suppose $y \notin U$, hence $c \notin cl^{\tau^*}(\{y\})$ and hence $cl^{\tau^*}(\{c\}) \neq cl^{\tau^*}(\{y\})$. Since (X,τ^*) is supra R_1 , so there exists supra open W_v such that $cl^{\tau^*}(\{y\}) \subset W_v$ implies $y \notin cl^{\tau^*}(\{c\})$ which complete the proof.

The converse of (3.4) is not true as seen in the following example.

Example 4.5

Let $X = \{w_1, w_2, w_3\}$ with supra topology $\tau^* = \{X, \emptyset, \{w_1, w_2\}, \{w_2, w_3\}, \{w_1, w_3\}\}$, hence $\tau^{*c} = \{\emptyset, X, \{w_1\}, \{w_2\}, \{w_3\}\}$, it is clear that (X, τ^*) is not supra R_1 -space, while it is supra R_0 -space.

Definition 4.6

A supra space (X, τ^*) is called supra β^* - R_0 if every supra β^* -open set contains the supra β^* -closure of each of its singleton.

Definition 4.7

A supra space (X,τ^*) is said be to supra β^*-R_1 if for each c_1 , c_2 in X with $s-cl_\beta*\{c_1\}\neq s-cl_\beta*\{c_2\}$, there exist disjoint supra β^* -open sets V_1,V_2 such that $s-cl_\beta*\{c_1\}\subset V_1$ and $s-cl_\beta*\{c_2\}\subset V_2$.

Example 4.8

```
Let X = \{w_1, w_2, w_3\} with supra topology \tau^* = \{X, \emptyset, \{w_1\}, \{w_1, w_2\}, \{w_2, w_3\}\}, \tau^{*c} = \{\emptyset, X, \{w_2, w_3\}, \{w_3\}, \{w_1\}\}. Thus S\beta^*C = \{\emptyset, X, \{w_2, w_3\}, \{w_3\}, \{w_1\}, \{w_1, w_3\}, \{w_2\}\}, and S\beta^*O = \{X, \emptyset, \{w_1\}, \{w_1, w_2\}, \{w_2, w_3\}, \{w_2\}, \{w_1, w_3\}\}. It is clear that (X, \tau^*) is supra \beta^* - R_0-space and supra \beta^* - R_1-space .
```

Remark 4.9

Every supra β^* - R₁-space is supra β^* - R₀-space.

Proof. The proof is similar to (3.4).

The following example demonstrates that the opposite of the aforementioned statement (3.9) is not true.

Example 4.10

```
Let X = \{w_1, w_2, w_3\} with supra topology \tau^* = \{X, \emptyset, \{w_1, w_2\}, \{w_2, w_3\}\}, hence \tau^{*c} = \{\emptyset, X, \{w_1\}, \{w_3\}\}. Thus S\beta^*C = \{\emptyset, X, \{w_1\}, \{w_3\}, \{w_1, w_3\}, \{w_2\}\}, implies S\beta^*O = \{X, \emptyset, \{w_2, w_3\}, \{w_1, w_2\}, \{w_2\}, \{w_1, w_3\}\}. It is obvious that (X, \tau^*) is not supra \beta^*- R_1-space, while it is supra \beta^*- R_0-space.
```

Theorem4.11

A supra space X is supra β^* -R₀ if and only if for any c_1 and c_2 in X such that $\operatorname{s-cl}_{\beta}^*(\{c_1\}) \neq \operatorname{s-cl}_{\beta}^*(\{c_2\})$, then $\operatorname{s-cl}_{\beta}^*(\{c_1\}) \cap \operatorname{s-cl}_{\beta}^*(\{c_2\}) = \emptyset$.

Proof. Assume X is supra β^* -R₀- space and $c_1, c_2 \in X$ such that $\operatorname{s-cl}_{\beta}^*(\{c_1\}) \neq \operatorname{s-cl}_{\beta}^*(\{c_2\})$, so let $w \in \operatorname{s-cl}_{\beta}^*(\{c_1\})$ and $w \notin \operatorname{s-cl}_{\beta}^*(\{c_2\})$. Thus there is $U \in S$ $\beta^*O(X)$ such that $c_2 \notin U$ and $w \in U$. But $w \in \operatorname{s-cl}_{\beta}^*(\{c_1\})$, hence $c_1 \in U$ and hence $c_1 \notin \operatorname{s-cl}_{\beta}^*(\{c_2\})$ implies $c_1 \in (\operatorname{s-cl}_{\beta}^*(\{c_2\}))^c$ which is supra β^* -open and by the supra β^* -R₀ of X we have $\operatorname{s-cl}_{\beta}^*(\{c_1\}) \subset (\operatorname{s-cl}_{\beta}^*(\{c_2\}))^c$ implies $\operatorname{s-cl}_{\beta}^*(\{c_1\}) \cap \operatorname{s-cl}_{\beta}^*(\{c_2\}) = \emptyset$. Conversely let U be a supra β^* -open and $c \in U$, we want to show $\operatorname{s-cl}_{\beta}^*(\{c\}) \subset U$. Now suppose $w \notin U$, hence $c \notin \operatorname{s-cl}_{\beta}^*(\{w\})$ and hence $\operatorname{s-cl}_{\beta}^*(\{c\}) = \emptyset$ implies $v \notin \operatorname{s-cl}_{\beta}^*(\{c\})$ and we have done.

Remark 4.12

Every $S\beta^*$ -regular and every $SS\beta^*$ -regular are supra β^* - R_0 .

Proof .1. Assume X be a $SS\beta^*$ -regular , so by (2.2) we have for every $w \in X$ and any supra semi-open W_1 such that $w \in W_1$, there exists supra β^* -open W_2 such that $w \in W_2 \subset s\text{-}cl_{\beta}^*(W_2) \subset W_1$. In particular for each $v \in W_1$ we have $s\text{-}cl_{\beta}^*(\{v\}) \subset W_1$, hence X is supra β^* -R₀ and since each supra open is also supra semi-open [4], thus the proof of the case X is $S\beta^*$ -regular follows immediately.

Theorem 4.13

Every supra β^* -R₁- space is supra β^* -regular restricted on s-cl_{\beta}*({c})

Proof. Assume X be a supra β^* -R₁- space ,so by (3.4) it is supra β^* -R₀- space and let $z \notin s\text{-}cl_{\beta}^*(\{c\})$, hence $s\text{-}cl_{\beta}^*(\{c\}) \neq s\text{-}cl_{\beta}^*(\{z\})$ implies $s\text{-}cl_{\beta}^*(\{c\}) \cap s\text{-}cl_{\beta}^*(\{z\}) = \emptyset$ (3.11). Now since X is supra β^* - R₁- space ,then we have U, $V \in S\beta^*O(X)$ such that $s\text{-}cl_{\beta}^*(\{z\}) \subset U$ and $s\text{-}cl_{\beta}^*(\{c\}) \subset V$. But $s\text{-}cl_{\beta}^*(\{c\})$ is supra β^* -closed (1.4) and since each supra closed is supra β^* -closed [6] . As a result every supra closed F of the form $s\text{-}cl_{\beta}^*(\{c\})$ for each c in X and $c \notin F$ separated by supra β^* -open sets .

5. Conclusions

Our main target in this work was to generalize one of the properties of separation axioms in the supra topological spaces which is the supra regularity . The concept of $(S\beta^*-SS\beta^*)$ spaces was introduced and the properties of such kind of spaces were studied , also these types were linked to the concept of (R_0-R_1) spaces after their generalization to supra β^*-R_0 and supra β^*-R_1 .

7

6. References

- [1] A. S. Mashour,"On supra topological space", Indian J.Pure appl. Math., vol. 14, pp.502-510, 1983.
- [2] O.Ravi , G .Ramkumar and M . Kamaraj , "On supra g-closed sets" , International Journal of Advances in pure and Applied Mathematics, vol. 2 , pp.52-66, 2011
- [3] B.K. Mahmoud, "On supra –separation Axioms for supra topological space", Tikrit Journal of Pure Science, vol.22, pp. 117-120, 2017.
- [4]Tareq Al-shami, "On supra semi open sets and some applications on topological spaces", Journal of Advanced Studies in Topology, vol. 8, pp. 144–153, 2017.
- [5] T. M. Al-shami1, E. A. Abo-Tabl, B. A. Asaad and M. A. Arahet, "Limit points and separation axioms with respect to supra semi-open sets", Eur. J. Pure Appl. Math, vol.3, pp. 427-443, 2020.
- [6] E. A. Ghaloob and A. R. Sadek ," On β^* -supra topological spaces", Accepted and will be processed to publication in the journal of interdisciplinary mathematics.
- [7] L. A. Al-Swidi and B. M. Mohammed, "Separation axioms via kernel set in topological spaces", Archives Des Sciences, Vol .65, pp. 41-48, 2012.
- [8] A. R. Sadak ,P, "P-L. Compact topological ring", Iraq journal of science, vol.57, pp. 2754-2759, 2016.
- [9] G.Dheia and A. R. Sadak, "On compact topological groups", Iraq journal of science, vol. 124, pp.842-846, 2013
- [10] Mohammed Raheem Taresh, Al-Hachami, A. K. (2022), On normal space: OR, Og. Wasit Journal for Pure Science. V. 1 No. 2, 61-70

Article submitted 10 October, 2022. Published as resubmitted by the authors 30 Dec. 2022.