On Composition of Continuity in ideal Topological spaces

Muna Jabbar Mohammad

Education College for Pure Sciences, Wasit University, Iraq

Jbarmny7@gmail.com

Faik J. H. Mayah College of Sciences, Department of Physics, Wasit University, Iraq

faik.mayah@gmail.com

Abstract

We define new classes of sets called pre- $\hat{\delta}$ -closed set and pre- $\hat{\delta}$ -open set. Also we define new ideal topological spaces is called $\mathbb{T}_{p\hat{\delta}}$ -spaces, the notion of pre- $\hat{\delta}$ -closed set in is applied to study a new class of functions, continuous function and composition of continuity in ideal topological spaces, so that we investigate some properties, characterizations of these functions.

Keywords: Ideal topological spaces, continuous functions, $\text{Pre-}\hat{\delta}\text{-closed}$, $\text{Pre-}\hat{\delta}\text{-open}$, $\mathbb{T}_{p\hat{\delta}}$.-space.

1 Introduction

A nonempty collection \mathbb{I} of subsets in a topological space (\mathbb{X} , \mathbb{T}) is said to be an ideal if it satisfies

- $\mathcal{A} \in \mathbb{I}$ and $\mathcal{B} \subseteq \mathcal{A}$ implies $\mathcal{B} \in \mathbb{I}$.
- $\mathcal{A} \in \mathbb{I}$ and $\mathcal{B} \in \mathbb{I}$ implies $\mathcal{A} \cup \mathcal{B} \in \mathbb{I}$.

A topological space (\mathbb{X}, \mathbb{T}) with an ideal \mathbb{I} is called an ideal topological space or simply ideal space, if $P(\mathbb{X})$ is the set of all subsets of \mathbb{X} . A set operator $(\cdot)^* \colon P(\mathbb{X}) \to P(\mathbb{X})$ is called a local function [1] of a subset \mathcal{A} with respect to the topology \mathbb{T} and ideal \mathbb{I} is defined as $A^*(\mathbb{X}, \mathbb{T}) = \{x \in \mathbb{X} : \mathcal{W} \cap \mathcal{A} \notin \mathbb{I}, \forall \mathcal{W} \in \mathbb{T}(\mathbb{X})\}$ where $\mathbb{T}(\mathbb{X}) = \{\mathcal{W} \in \mathbb{T} : x \in \mathcal{W}\}$. A kuratowski closure operator $cl^*(\cdot)$ for a topology $\mathbb{T}^*(\mathbb{I}, \mathbb{T})$, called the *-topology; finar than \mathbb{T} is defined by $cl^*(\mathcal{A}) = \mathcal{A}^*(\mathbb{I}, \mathbb{T}) \cup \mathcal{A}$ [2]. Levine [3]; velicko [4] introduced the notions of generalized closed (briefly g-closed) and δ -closed sets respectively and studied their basic properties. The notion of $\mathbb{I}g$ -closed sets first introduced by Dontchev [5] in 1999; Navaneetha Krishanan and Joseph [6] further investigated and characterized $\mathbb{I}g$ -closed sets. Julian Dontchev and

Maximilian Ganster [7]; Yuksel; Acikgoz and Noiri [8] introduced and studied the notions of δ -generalized closed (briefly δ g-closed) and δ - \mathbb{I} -closed sets respectively.

Pre- $\hat{\delta}$ -closed sets a novel type of sets that will be defined in this paper with fundamental characteristics.

2 Fundamental Concepts

Definition 2.1. Let \mathcal{A} subset of a topological space $(\mathbb{X}, \mathbb{T}, \mathbb{I})$ is said a:

- Semi-open set [9] if $A \subseteq cl$ (int(A)).
- Semi-closed set [10] if $int(cl(\mathcal{A})) \subseteq \mathcal{A}$.
- Pre-open set [11] if $\mathcal{A} \subseteq int(cl(\mathcal{A}))$.
- Pre-closed set [12] if $cl(int(\mathcal{A})) \subseteq \mathcal{A}$.
- Regular open set [13] if $\mathcal{A} = int(cl(\mathcal{A}))$.
- Regular closed set [14] if $\mathcal{A} = cl(int(\mathcal{A}))$.

The semi-closure (respectively, pre-closure) of a subset \mathcal{A} of (X, \mathbb{T}) is the intersection of all semi-closed (respectively, pre-closed) sets containing \mathcal{A} and is denoted by $scl(\mathcal{A})$ (respectively, $pcl(\mathcal{A})$).

Definition 2.2. [8] Let $(\mathbb{X}, \mathbb{T}, \mathbb{I})$ be an ideal topological-space, let \mathcal{A} a subset of \mathbb{X} and x is a point of \mathbb{X} , then: x is called a δ - \mathbb{I} -cluster points of \mathcal{A} if $\mathcal{A} \cap (int \ cl^*(\mathcal{W})) \neq \phi$ for all open neighborhood \mathcal{W} of x.

The family of each δ - \mathbb{I} -cluster points of \mathcal{A} is said the δ - \mathbb{I} -closure of \mathcal{A} and is denoted by $[\mathcal{A}]_{\delta-\mathbb{I}}$.

A subset \mathcal{A} is called to be δ - \mathbb{I} -closed if $[\mathcal{A}]_{\delta-\mathbb{I}} = \mathcal{A}$.

The complement of a δ -I-closed set of X is called to be δ -I-open.

Remark 2.1. We can write $[\mathcal{A}]_{\delta-\mathbb{I}} = \{x \in \mathbb{X} : int(cl * (\mathcal{W}) \cap \mathcal{A} \neq \emptyset \text{, for all } \mathcal{W} \in \mathbb{T}(\mathbb{X})\}$. We use the notation $\sigma cl(\mathcal{A}) = [\mathcal{A}]_{\delta-\mathbb{I}}$.

Lemma 2.1. [8] Let \mathcal{A} and \mathcal{B} be subset of an ideal topological space (\mathbb{X} , \mathbb{T} , \mathbb{I}). Then the following properties satisfy:

- $\mathcal{A} \subseteq \sigma cl(\mathcal{A})$.
- If $\mathcal{A} \subset \mathcal{B}$, then $\sigma cl(\mathcal{A}) \subset \sigma cl(\mathcal{B})$.
- $\sigma cl(\mathcal{A}) = \bigcap \{ \mathcal{G} \subset \mathbb{X} : \mathcal{A} \subset \mathcal{G} \text{ and } \mathcal{G} \text{ is } \delta\text{-}\mathbb{I}\text{-closed} \}.$
- If \mathcal{A} is δ - \mathbb{I} -closed set of \mathbb{X} for all $\alpha \in \Delta$; then $\bigcap \{\mathcal{A}_{\alpha} : \alpha \in \Delta\}$ is δ - \mathbb{I} -closed.
- $\sigma cl(\mathcal{A})$ is δ -I-closed.

Remark 2.2. It is well-known that the family of regular open sets of (X, T) is a basis for a topology which is weaker than T.

This topology is called the semi-regularization of \mathbb{T} and is denoted by \mathbb{T}_s . Actually, \mathbb{T}_s is the same as the family of δ -open sets of (\mathbb{X}, \mathbb{T}) .

Lemma 2.2. [8] Let (X, T, I) be an ideal topological-space, and $T_{\delta-I} = \{A \subset X : A \text{ is } \delta \cdot I \text{-open set of } (X, T, I)\}$. Then $T_{\delta-I}$ is a topology such that $T_{\delta} \subset T_{\delta-I} \subset T$.

Remark 2.3. [8] \mathbb{T}_s (respectively, $\mathbb{T}_{\delta-\mathbb{I}}$) is the topology created by the family of δ -open sets (respectively, δ - \mathbb{I} -open sets).

Lemma 2.3. Let $(\mathbb{X}, \mathbb{T}, \mathbb{I})$ be an ideal topology space, and \mathcal{A} a subset of \mathbb{X} . $\sigma cl(\mathcal{A}) = \{x \in \mathbb{X} : \mathcal{A} \cap int(cl^*(\mathcal{W})) \neq \phi; \text{ for each } \mathcal{W} \in \mathbb{T}(\mathbb{X})\}$ is closed.

Proof. If $x \in cl(\sigma cl(\mathcal{A}))$, and $\mathcal{W} \in \mathbb{T}(\mathbb{X})$, then $\mathcal{W} \cap \sigma cl(\mathcal{A}) \neq \emptyset$.

Then $y \in W \cap \sigma cl(A)$ for some $y \in X$.

Since $\mathcal{W} \in \mathbb{T}(y)$ and $y \in \sigma cl(\mathcal{A})$, from the definition of $\sigma cl(\mathcal{A})$ we have $\mathcal{A} \cap int(cl^*(\mathcal{W})) \neq \phi$. Therefore, $x \in \sigma cl(\mathcal{A})$. So $cl(\sigma cl(\mathcal{A})) \subset \sigma cl(\mathcal{A})$ and hence $\sigma cl(\mathcal{A})$ is closed.

Definition 2.3. Let (X,T) be a topological-space; a subset A of X is said to be :

- g-closed set [3] if $cl(\mathcal{A}) \subseteq \mathcal{W}$, whenever $\mathcal{A} \subset \mathcal{W}$ and \mathcal{W} is open in (\mathbb{X}, \mathbb{T})
- δ -closed set [4] if $\mathcal{A} = cl_{\delta}(\mathcal{A})$; where $\delta cl(\mathcal{A}) = cl_{\delta}(\mathcal{A}) = \{x \in \mathbb{X} : (int(cl(\mathcal{W})) \cap \mathcal{A} \neq \emptyset, \mathcal{W} \in \mathbb{T} \text{ and } x \in \mathcal{W}\}.$
- δ -generalized closed set (short, δ g-closed) set [7] if $cl_{\delta}(\mathcal{A}) \subseteq \mathcal{W}$, whenever $\mathcal{A} \subseteq \mathcal{W}$ and \mathcal{W} is open.
- $\delta \hat{g}$ -closed set [15] if $cl_{\delta}(A) \subseteq W$, whenever $A \subseteq W$ and W is \hat{g} -0pen set in (X, T).

Definition 2.4. Let $(\mathbb{X}, \mathbb{T}, \mathbb{I})$ be an ideal space. A subset \mathcal{A} of \mathbb{X} is said to be: \mathbb{I}_g -closed set [5] if $\mathcal{A}^* \subseteq \mathcal{W}$, whenever $\mathcal{A} \subseteq \mathcal{W}$ and \mathcal{W} is open in \mathbb{X} .

Definition 2.5. [16] Let (X, T, I) be an ideal space, a subset \mathcal{A} of X is called $\hat{\delta}$ -closed if $\sigma cl(\mathcal{A}) \subset \mathcal{W}$, whenever $\mathcal{A} \subset \mathcal{W}$, and \mathcal{W} is open in (X, T, I). The complement of $\hat{\delta}$ -closed set in (X, T, I) is called $\hat{\delta}$ -open set in (X, T, I).

Definition 2.6. In ideal topological-space $(\mathbb{X}, \mathbb{T}, \mathbb{I})$; let $\mathcal{A} \subset \mathbb{X}$, \mathcal{A} is called pre- $\hat{\delta}$ -closed if $\sigma cl(\mathcal{A}) \subset \mathcal{W}$ whenever $\mathcal{A} \subset \mathcal{W}$ and \mathcal{W} is pre-open in $(\mathbb{X}, \mathbb{T}, \mathbb{I})$. The complement of pre- $\hat{\delta}$ -closed in $(\mathbb{X}, \mathbb{T}, \mathbb{I})$ is called pre- $\hat{\delta}$ -open set in $(\mathbb{X}, \mathbb{T}, \mathbb{I})$.

Example 2.1. Let $\mathbb{X} = \{e_1, e_2, e_3\}$, $\mathbb{T} = \{\mathbb{X}, \phi, \{e_1\}, \{e_2\}, \{e_1, e_2\}\}$, $\mathbb{I} = \{\phi, \{e_3\}\}$. Let $\mathcal{A} = \{e_1, e_3\}$ then \mathcal{A} is pre- $\hat{\mathcal{S}}$ -closed.

Remark 2.4. Each Pre- $\hat{\delta}$ -closed is $\hat{\delta}$ -closed, but the opposite of is not true. It is clear from the following example.

Example 2.2. Let $\mathbb{X} = \{e_1, e_2, e_3, e_4\}$; $\mathbb{T} = \{\mathbb{X}, \, \varphi, \, \{e_1\}, \, \{e_2\}, \, \{e_1, e_2\}, \, \{e_2, e_3\}, \, \{e_1, e_2, e_3\}\}$, and $\mathbb{I} = \{\varphi, \{e_1\}\}$. Let $\mathcal{A} = \{e_1, e_4\}$, then \mathcal{A} is $\hat{\delta}$ -closed but not pre- $\hat{\delta}$ -closed.

Remark 2.5. The collection of all pre- $\hat{\delta}$ -closed set in (X, T, I) denoted by $P\hat{\delta}C(X)$; the family of all pre- $\hat{\delta}$ -open sets denoted by $P\hat{\delta}O(X)$.

Definition 2.7. [17]

A function $\Gamma: (X, T) \to (Y, T)$, continuous function if $\Gamma^{-1}(Y)$ is an open set in X, for all open set in Y.

3 Some types of Continuous Function

In this section, a new classes of continuous functions are defined and studied the relations between these concepts.

Definition 3.1.

A function $f: (\mathbb{X}, \mathbb{T}, \mathbb{I}) \to (\mathbb{Y}, \mathbb{T}', \mathbb{I}')$ is called:

- Pre- δ -continuous function denoted by p δ -continuous function, if $f^{-1}(V)$ is a pre- δ -open set in X, whenever V is a pre- δ -open set in Y.
- δ -irresolute function if $f^{-1}(\mathcal{V})$ is a δ -open set in \mathbb{X} , whenever \mathcal{V} is a δ -open set in \mathbb{Y} .
- δ -continuous function if $f^{-1}(\mathcal{V})$ is a δ -open set in \mathbb{X} , whenever \mathcal{V} is a pre- δ -open set in \mathbb{Y} .
- Strongly pre- δ -continuous function denoted by strongly p δ -continuous function if $f^{-1}(\mathcal{V})$ is a pre- δ -open set in \mathbb{X} , whenever \mathcal{V} is a δ -open set in \mathbb{Y} .

The following diagram shows the relations among the variant concepts were introduced in Definition (3.1).

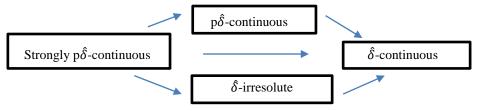


Figure 3.1: Relationships among the function that defined in Definition (3.1).

Proposition 3.1.

If the function $f: (\mathbb{X}, \mathbb{T}, \mathbb{I}) \to (\mathbb{Y}, \mathbb{T}', \mathbb{I}')$ is a strongly $p\hat{\delta}$ -continuous function then f is a $p\hat{\delta}$ -continuous function.

Proof. Let f be a strongly $p\hat{\delta}$ -continuous function.

Let $\mathcal{V} \in \mathbb{T}'$ and \mathcal{V} is a pre- $\hat{\delta}$ -open set, Since every pre- $\hat{\delta}$ -open is a $\hat{\delta}$ -open.

Then \mathcal{V} is a $\hat{\delta}$ -open set in \mathbb{Y} . This implies $f^{-1}(\mathcal{V}) \in \mathbb{T}$,

and $f^{-1}(\mathcal{V})$ is a pre- $\hat{\delta}$ -open. so f is a p $\hat{\delta}$ -continuous function.

Proposition 3.2.

If the function f is a strongly $p\hat{\delta}$ -continuous function then f is a $\hat{\delta}$ -irresolute function. **Proof.** Let f be a strongly $p\hat{\delta}$ -continuous function.

Let \mathcal{V} be a $\hat{\delta}$ -open set in \mathbb{Y} . Since f is a strongly $p\hat{\delta}$ -continuous function, so $f^{-1}(\mathcal{V}) \in \mathbb{T}$ and $f^{-1}(\mathcal{V})$ is a pre- $\hat{\delta}$ -open set.

Since every pre- $\hat{\delta}$ -open set is a $\hat{\delta}$ -open set.

This implies $f^{-1}(\mathcal{V})$ is a $\hat{\delta}$ -open set in \mathbb{X} .

Then f is a $\hat{\delta}$ -irresolute function.

Proposition 3.3.

If the function f is a $\hat{\delta}$ -irresolute function then f is a $\hat{\delta}$ -continuous function.

Proof. Let f be a $\hat{\delta}$ -irresolute function. Let \mathcal{V} be a pre- $\hat{\delta}$ -open set in \mathbb{Y} .

Then \mathcal{V} be a $\hat{\delta}$ -open in \mathbb{Y} , since every pre- $\hat{\delta}$ -open is a $\hat{\delta}$ -open.

Then $f^{-1}(\mathcal{V})$ is a $\hat{\delta}$ -open set in \mathbb{X} . Then f is a $\hat{\delta}$ -continuous function.

Proposition 3.4.

If the function f is a $p\hat{\delta}$ -continuous function then f is a $\hat{\delta}$ -continuous function.

Proof. Let f be a $p\hat{\delta}$ -continuous function.

Let \mathcal{V} be a pre- $\hat{\delta}$ -open set in \mathbb{Y} .

Then $f^{-1}(\mathcal{V}) \in \mathbb{T}$ and $f^{-1}(\mathcal{V})$ is a pre- $\hat{\delta}$ -open set.

Since every pre- $\hat{\delta}$ -open is a $\hat{\delta}$ -open set.

Then $f^{-1}(\mathcal{V})$ is a $\hat{\delta}$ -open set in \mathbb{X} .

Hence f is a $\hat{\delta}$ -continuous function.

Corollary 3.1.

If the function f is a strongly $p\hat{\delta}$ -continuous function then f is a $\hat{\delta}$ -continuous function.

Proof. Let f be a strongly $p\hat{\delta}$ -continuous function.

Let \mathcal{V} be a pre- $\hat{\delta}$ -open set in \mathbb{Y} . Since every pre- $\hat{\delta}$ -open is a $\hat{\delta}$ -open set.

Since f is a strongly $p\hat{\delta}$ -continuous function.

Therefore $f^{-1}(\mathcal{V})$ is a pre- $\hat{\delta}$ -open set in \mathbb{X} .

so $f^{-1}(\mathcal{V})$ is a $\hat{\delta}$ -open set in \mathbb{X} . Then f is a $\hat{\delta}$ -continuous function.

Proposition 3.5.

If $f: (\mathbb{X}, \mathbb{T}, \mathbb{I}) \to (\mathbb{Y}, \mathbb{T}', \mathbb{I}')$ and $g: (\mathbb{Y}, \mathbb{T}', \mathbb{I}') \to (\mathbb{W}, \mathbb{T}'', \mathbb{I}'')$ are both $p \hat{\delta}$ -continuous function then $gof: (\mathbb{X}, \mathbb{T}, \mathbb{I}) \to (\mathbb{W}, \mathbb{T}'', \mathbb{I}'')$ is a $p\hat{\delta}$ -continuous function.

Proof. If $\mathcal{A} \subseteq \mathbb{W}$ is a pre- $\hat{\delta}$ -open. Then $g^{-1}(\mathcal{A})$ is a pre- $\hat{\delta}$ -open in \mathbb{Y} .

Then $f^{-1}(g^{-1}(\mathcal{A}))$ is a pre- $\hat{\delta}$ -open in \mathbb{X} ,

since g and f are $p\hat{\delta}$ -continuous.

Thus $(g \circ f)^{-1}(\mathcal{A}) = f^{-1}(g^{-1}(\mathcal{A}))$ is a pre- $\hat{\delta}$ -open in \mathbb{X} .

Then gof is a $p\hat{\delta}$ -continuous function.

Proposition 3.6.

If $f: (\mathbb{X}, \mathbb{T}, \mathbb{I}) \to (\mathbb{Y}, \mathbb{T}', \mathbb{I}')$ and $g: (\mathbb{Y}, \mathbb{T}', \mathbb{I}') \to (\mathbb{W}, \mathbb{T}'', \mathbb{I}'')$ are both $\hat{\delta}$ -irresolute functions then $g \circ f: (\mathbb{X}, \mathbb{T}, \mathbb{I}) \to (\mathbb{W}, \mathbb{T}'', \mathbb{I}'')$ is a $\hat{\delta}$ -irresolute functions.

Proof. If $A \subseteq \mathbb{W}$ is a $\hat{\delta}$ -open. Then $g^{-1}(A)$ is a $\hat{\delta}$ -open in \mathbb{Y} .

Then $f^{-1}(g^{-1}(\mathcal{A}))$ is a $\hat{\delta}$ -open in \mathbb{X} ,

since g and f are $\hat{\delta}$ -irresolute functions.

Thus $(g \circ f)^{-1}(\mathcal{A}) = f^{-1}(g^{-1}(\mathcal{A}))$ is a $\hat{\delta}$ -open in \mathbb{X} .

Then gof is a $\hat{\delta}$ -irresolute function.

Proposition 3.7.

Let X, Y and W be any ideal spaces for any $p\hat{\delta}$ -continuous function

 $f: \mathbb{X} \to \mathbb{Y}$ and any strongly $p \, \hat{\delta}$ -continuous function $g: \mathbb{Y} \to \mathbb{W}$ then composition $g \circ f: \mathbb{X} \to \mathbb{W}$ is strongly $p \hat{\delta}$ -continuous function.

Proof. Let $\mathcal{A} \subseteq \mathbb{W}$ be a $\hat{\delta}$ -open. Then $g^{-1}(\mathcal{A})$ is a pre- $\hat{\delta}$ -open in \mathbb{Y} ,

since g is strongly $p\hat{\delta}$ -continuous function, by the $p\hat{\delta}$ -continuous of f.

 $f^{-1}(g^{-1}(\mathcal{A}))$ is a pre- $\hat{\delta}$ -open in \mathbb{X} . But $(g\circ f)^{-1}(\mathcal{A})=f^{-1}(g^{-1}(\mathcal{A}))$.

Hence $(gof)^{-1}(\mathcal{A})$ is a pre- $\hat{\delta}$ -open in \mathbb{X} .

Then gof is a strongly $p\hat{\delta}$ -continuous function.

Proposition 3.8.

Let X , Y and W be any ideal spaces for any $\hat{\delta}$ -irresolute function

 $f: \mathbb{X} \to \mathbb{Y}$ and any $\hat{\delta}$ -continuous function $g: \mathbb{Y} \to \mathbb{W}$ then composition $g \circ f: \mathbb{X} \to \mathbb{W}$ is a $\hat{\delta}$ -continuous function.

Proof. Let $\mathcal{A} \subseteq \mathbb{W}$ be a pre- $\hat{\delta}$ -open. Then $g^{-1}(\mathcal{A})$ is a $\hat{\delta}$ -open in \mathbb{Y} ,

since g is a $\hat{\delta}$ -continuous function. By the $\hat{\delta}$ -irresolute function of f.

 $f^{-1}(g^{-1}(A))$ is a $\hat{\delta}$ -open in X. But $(g \circ f)^{-1}(A) = f^{-1}(g^{-1}(A))$.

Hence $(gof)^{-1}(\mathcal{A})$ is a $\hat{\delta}$ -open in \mathbb{X} .

Then gof is a $\hat{\delta}$ -continuous function.

Remark 3.1.[18]

Let (X, T) be a topological space if every dense is open then every pre-open set is open set.

Remark 3.2.

Let (X,T,I) be an ideal space, and since every pre-open set is open set by (Remark 3.1) then every $\hat{\delta}$ -closed is pre- $\hat{\delta}$ -closed.

Definition 3.2.

Let (X,T,I) be an ideal space is said to be a $\mathbb{T}_{P\widehat{\delta}}$ -space if every $\widehat{\delta}$ -open subset of X is pre- $\widehat{\delta}$ -open.

Theorem 3.1.

Let $f: (\mathbb{X}, \mathbb{T}, \mathbb{I}) \to (\mathbb{Y}, \mathbb{T}', \mathbb{I}')$ be a function if \mathbb{Y} is a $\mathbb{T}_{P\hat{\delta}}$ -space then f is a strongly $p\hat{\delta}$ -continuous function if and only if it is a $p\hat{\delta}$ -continuous function.

Proof. Suppose \mathbb{Y} is a $\mathbb{T}_{P\hat{\delta}}$ -space and f is a $p\hat{\delta}$ -continuous function.

Let \mathcal{V} be a $\hat{\delta}$ -open set in \mathbb{Y} . Then \mathcal{V} is a pre- $\hat{\delta}$ -open set,

since \mathbb{Y} is a $\mathbb{T}_{P\widehat{\delta}}$ -space. Then $f^{-1}(\mathcal{V})$ is a pre- $\widehat{\delta}$ -open set in \mathbb{X} , since f is a p $\widehat{\delta}$ -continuous function.

Then f is a strongly $p\hat{\delta}$ -continuous function.

Converse is obvious (Proposition 3.1).

Theorem 3.2.

Let $f: (\mathbb{X}, \mathbb{T}, \mathbb{I}) \to (\mathbb{Y}, \mathbb{T}', \mathbb{I}')$ be a function if X is a $\mathbb{T}_{P\hat{\delta}}$ -space then f is a strongly p $\hat{\delta}$ -continuous function if and only if it is a $\hat{\delta}$ -irresolute function.

Proof. Suppose X is a $\mathbb{T}_{P\hat{\delta}}$ -space and f is a $\hat{\delta}$ -irresolute function.

Let \mathcal{V} be a $\hat{\delta}$ -open set in \mathbb{Y} . Then $f^{-1}(\mathcal{V})$ is a $\hat{\delta}$ -open set in \mathbb{X} .

Then $f^{-1}(\mathcal{V})$ is a pre- $\hat{\delta}$ -open set in \mathbb{X} .

Then f is a strongly $p\hat{\delta}$ -continuous function.

Converse is obvious (Proposition 3.2).

Theorem 3.3.

Let $f: (\mathbb{X}, \mathbb{T}, \mathbb{I}) \to (\mathbb{Y}, \mathbb{T}', \mathbb{I}')$ be a function if \mathbb{Y} is a $\mathbb{T}_{P\widehat{\delta}}$ -space then f is a $\hat{\delta}$ -irresolute function if and only if it is a $\hat{\delta}$ -continuous function.

Proof. Suppose \mathbb{Y} is a $\mathbb{T}_{P\widehat{\delta}}$ -space and f is a $\widehat{\delta}$ -continuous function.

Let \mathcal{V} be a $\hat{\delta}$ -open set in \mathbb{Y} . Then \mathcal{V} is a pre- $\hat{\delta}$ -open set in \mathbb{Y} .

Then $f^{-1}(\mathcal{V})$ is a $\hat{\delta}$ -open set in \mathbb{X} . Then f is a $\hat{\delta}$ -irresolute function.

Converse is obvious (Proposition 3.3).

Theorem 3.4.

Let $f: (\mathbb{X}, \mathbb{T}, \mathbb{I}) \to (\mathbb{Y}, \mathbb{T}', \mathbb{I}')$ be a function if \mathbb{X} is a $\mathbb{T}_{P\widehat{\delta}}$ -space then f is a p $\hat{\delta}$ -continuous function if and only if it is a $\hat{\delta}$ -continuous function.

Proof. Suppose X is a $\mathbb{T}_{P\hat{\delta}}$ -space and f is a $\hat{\delta}$ -continuous function.

Let \mathcal{V} be a pre- $\hat{\delta}$ -open set in \mathbb{Y} .

Then $f^{-1}(\mathcal{V})$ is a $\hat{\delta}$ -open set in \mathbb{X} . Then $f^{-1}(\mathcal{V})$ is a pre- $\hat{\delta}$ -open set in \mathbb{X} .

Then f is a p $\hat{\delta}$ -continuous function.

Converse is obvious (Proposition 3.4).

Theorem 3.5.

Let $f: (\mathbb{X}, \mathbb{T}, \mathbb{I}) \to (\mathbb{Y}, \mathbb{T}', \mathbb{I}')$ be a function if \mathbb{X} and \mathbb{Y} are a $\mathbb{T}_{p\widehat{\delta}}$ -spaces then f is a strongly p $\hat{\delta}$ -continuous function if and only if it is a $\hat{\delta}$ -continuous function.

Proof. Suppose \mathbb{X} and \mathbb{Y} are a $\mathbb{T}_{P\hat{\delta}}$ -spaces and f is a $\hat{\delta}$ -continuous

function. Let \mathcal{V} be a $\hat{\delta}$ -open set in \mathbb{Y} .

Let \mathcal{V} be a pre- $\hat{\delta}$ -open set in \mathbb{Y} . Then $f^{-1}(\mathcal{V})$ is a $\hat{\delta}$ -open set in \mathbb{X} .

Then $f^{-1}(\mathcal{V})$ is a pre- $\hat{\delta}$ -open set in \mathbb{X} .

Then f is a strongly $p\hat{\delta}$ -continuous function.

Converse is obvious (Corollary 3.1).

4 Conclusion

In this work, several properties of $p \, \hat{\delta}$ -continuous, $\hat{\delta}$ -irresolute, $\hat{\delta}$ -continuous, strongly $p \, \hat{\delta}$ -continuous functions were studied and the relationship between $p \, \hat{\delta}$ -continuous and $\hat{\delta}$ -continuous, strongly $p \, \hat{\delta}$ -continuous and $(p \, \hat{\delta}$ -continuous, $\hat{\delta}$ -continuous, $\hat{\delta}$ -irresolute) also between $\hat{\delta}$ -irresolute and $\hat{\delta}$ -continuous in ideal topological spaces, as well as the relationship between them in $\mathbb{T}_{p\hat{\delta}}$ -space.

5 References

- [1] Kannan, K. On $\hat{\beta}$ -Generalized closed sets and open sets in topological spaces, Int. Journal of Math. Analysis, Vol.6, 2012, No.57, 2819-2828.
- [2] Stone, M. Application of the theory of Boolian rings to general topology, Trans. Ameer. Math. Soc., 41(1937), 374-481.
- [3] Levine, N. Semi-open sets and semi-continuity in topological spaces. Ameer Math. Monthly, 70 (1963), 36-41.
- [4] Veera Kumar, M.K.R.S. *ĝ-closed sets in topological spaces*, Bull. Allah. Math. Soc, 18(2003), 99-112.
- [5] Dontchev, J. and M. Ganster. On δ-generalized closed sets and T_{3/4}-spaces, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 17(1996), 15-31.
- [6] Nagaveni, N. Studies on generalizations of homeomorphisms in topological spaces, Ph. D., Thesis, Bharathiar University. Coimbatore (1999).
- [7] Bhattacharya, P. and B. K. Lahiri. *Semi-generalized closed sets in topology*, Indian J. Math., 29(1987), 375-382.
- [8] Velicko, N.V. *H-closed topological spaces*, Amer. Math. Soc. Transl., 78(1968), 103-118.
- [9] Lellis Thivagar, M, B. Meera Devi and E. Hatir. $\delta \hat{g}$ -closed sets in topological spaces, Gen. Math. Notes, Vol.1, No.2(2010), 17-25.
- [10] N. Levine. *Generalized closed sets in topology*, Rend. Del Circ. Mat. Di Palermo, vol. 19, no. 1, pp. 89-96, 1970.
- [11] Maki, H., J. Umehara, and K. Yamamura. *Characterizations of* $T_{1/2}$ -spaces using generalized v-sets, Indian Journal of pure and applied Mathematics, Vol. 19, No.7, PP 634-640,1988.
- [12] Jiling Cao, M. Ganster, C. Konstadilaki, Ivan L. Reilly. *On preclosed sets and their generalizations*, Houston Journal of Mathematics, 28 (4), 771-780, 2002.
- [13] Ravi, O., S. Tharmar, M. Sangeetha, J. Antony Rex Rodrigo. *g-closed sets in ideal topological spaces, Jordan Journal of Mathematics and statistics (JJMS) 6(1), 2013 PP.1-13.
- [14] Umit Karabiyik, Aynur Keskin Kaymakci. *Some New Regular Generalized Closed Sets in Ideal Topological Spaces*, European Journal of Pure and Applied Mathematics, Vol. 9, No. 4, 2016, 434-442, 2016.
- [15] Kuratowski, K. Topology, Vol.1, Academic Press, New York, NY, USA, 1966.
- [16] M. Navaneethakrishnan, P. Periyasamy, S. Pious Missier. $\hat{\delta}$ -closed sets in ideal

- topological spaces, IOSR Journal of mathematics Vol. 11 Issue 1 Ver. II, pp. 01-12,2015.
- [17] Sabiha. I. Mahmood. *On generalized Regular Continuous Function in Topological Spaces*, Ibn Al-Haithatham Journal for Pure and Applied Science, 25; (2012), 377-385.
- [18] I.L. Reilly and M. K. Vamanamurthy. *On some questions concerning preopen sets*, Kyungpook Mathematical JOUTllal Volume 30, Number 1, June, 1990.