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Abstract:- In this paper, a new class of                         called                      
            in                    are introduced and studied. Also some of their properties have been 

investigated. We also introduce                                , and studied the relationship be-

tween                and some space in                    as well discuss some properties, theo-

rem, corollary and examples. 
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1     Introduction 

The concepts of                were introduced and studied by Levin [1] in 1963, and in 

1970, Levin [2] began and studied                         and                       
as a                of             and          . a Dunham [3] came up with the concept 

of                     using Levine                         and explained their proper-

ties. The investigation of                         has led to many interesting concepts in 

topology.  Recently, topologists have studied diverse and closed generalized      in 

                  .  In 1982, Mashhour, Abdul-Moncef and Deeb [4] identified conquest 

         and                         .  The class of previously 

                        that were used to obtain properties of                  was 

introduced by Maki, Umehara and Noiri [5] in 1996. In 1986, D. Andrijevic [6] studied 

               in         .  Later, many authors studied these previously      
          and             and                                 . In 1995, 

Dontchev [7] identified                           .  Mackey introduced the concepts 

of                and                 in a similar way in [8].  These concepts are 

                of             and have been studied by Dontchev and Maki [9] leading 

to a new decomposition of               . In this paper, our goal is to introduce new 

types of                  in the                   called                      
            and study the relationship between them and some      in the 

                  and verify their basic properties. 
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2    Preliminaries 

 

Definition 2.1 

Let ((   ) be a                  , A subset   of   is called: 

1.               (briefly,       )if there is an            in   such 

that           ( ) , the complement of               is                 (briefly, 

        ).[10] 

2.          or                   (briefly,       ) if      ( )
 
 , the family of all 

              in a space   is denoted by P.O. ( ) and the complement of              
is a                and denoted by P.C.( )  .[11] 

3.                   (briefly,        ) if      (( ) )   , The complement of 

                  is a                     (briefly,          ) and represent that  

((  ))        .[12] 

4.                      (briefly,       ) if  ( )    , whenever      and   is a 

closed set. The complement of            is a                        (briefly, 

        ).[13] 

 

Remark 2.2    

1. Every            (        ) is a          (      ) set, but the converse does not 

necessary to be true.[10] 

2. Every            (        ) is a          (      )    , but the converse does not 

necessary to be true.[11] 

3. Every            (        ) is a           (       )    , but the converse does 

not necessary to be true.[12] 

4. Every            (        ) is a          (      )    , but the converse does not 

necessary to be true.[13] 

 

Remark 2.3 

1. The intersection of all                  of   which is containing   is said to be a 

          of   and it is denoted by  
 
 .[10] 

2. The intersection of all                  of   which is containing   is said to be 

a           of   and it is denoted by  
 
 .[14] 
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3. The intersection of all                   of   which is containing   is said to be a 

           of   and is denoted by  
  

.[12] 

4. We can write the relationship between           of  ,            of   and         

of   :  
  
  

 
   .[12] 

 

Corollary 2.4   

Let (   ) be a                   and let       , if     then ( )
  
  ( )

  
 .[16] 

 

Theorem 2.5  

Let  (   )  be a                  ,         then    is a                     if and only 

if     ( )
  

.[16]                        

  

Proof: 

Let     be a                  of      

  It is clear that      ( )
  

  …..(1)           [ 2.2(3)] 

 Since     is a                

 So  ( )
  
        …..(2) 

 From  (1)  and  (2)  we get  ( )
  
     

 Conversely 

 Suppose that  ( )
  
     

 Since  ( )
  
 is a                

 So    is a                      

   

Theorem 2.6    

Let (   ) be a                  , the singleton  * + is an          or          
         .[12] 

   

Proof : 

Let          

So * +      is singleton set 
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So either * +     or  * +                                                                                                                                         

If  * +     then  (* + )     and  ((* + ))    

Therefor  ((* + ))    * +  

Hence  * + is a                

If  * +      

Then  * +  * +   

Hence  * + is an         .   

 

 

Theorem 2.7 

Let (   ) be a                   and let     then    is the intersection of                  
with           if   is a            .[17-22] 

 

 Proof : 

 Suppose that       such that   is a            and   is           such that 

 ( )
 
 ( )

 
  And since     ( )

 
 ( )

 
  

 So     ( )
 
 

 Hence   is a            . 

 

Definition 2.8  

 Let (   ) be a                   and let     then the       is called 

                                 (                         ) if  ( )
  
   

whenever     and    is a                   (               ) in    and denoted 

by            (        ) set. 

 

Example 2.9 

Let   *         } and let    *    * + *   + *     ++ be a                     on  . 

Let   *   + and    *   +  be a        of    

It is clear that   is a                

since the               which contain   is: 
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  *     + *     + *       + *       + *       + *     + *   + and also, it contains  ( )
  
 

*   + 

and   is a              since the                     which contain   is: 

  *   + *       + *     + and it contains  ( )
  
 *   + 

 

Remark 2.10  

Every            (        ) is a                (        ), but the converse does 

not necessarily to be true for example: 

 

Example 2.11 

Let   *         } and let    *    * + *   + *     ++ be a             defined on  . 

Let   *     +  and   * + be a        of   . 

So   is a                but it is not            and   is a              but it is not 

          

 

Proposition 2.12 

Let (   )  be a                   and let     then   is a                if   is a 

               

 

Proof: 

Let     be a                   

And let    is a            in   

Such that (  
 
)      whenever        

So   is a               

Since every            is a             

So   is sp-open set 

And since  ( )
  
 (  

 
)  and  (  

 
)    

So  ( )
  
     whenever       

So    is a               . 

 

Proposition 2.13 
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Let (   )  be a                   and let    be a        of    then    is a     
           if     is a             and              . 

 

Proof: 

Let (   ) be a                   

And let   be an          in   

So   is a            in   

Since every            is             

So   is a             in    

Hence   is a             

let   be an          in    such that  (   )     whenever     

Since every          is            

So   is a            

And since  (  
 
)   (   )        [ 2.2 (4)] 

So  (  
 
)  (   )    

Hence  (  
 
)    whenever       and    is p-open set 

Since every p-open set is sp-open set 

So    is sp-open set in    

Therefor  (  
 
)     whenever        and   is a             

And since ( )
  
 (  

 
)               [ 2.2 (4)] 

So  ( )
  
    whenever      and   is a             

Hence   is a               . 

 

Proposition 2.14 

Let (   )  be a                   and let     if   is a               then   is a 

                

 

Proof: 

Suppose that   is a               in   

And let    is a             in     such that     
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Since   is a              , so  ( )
  
             [ 2.5] 

Hence  ( )
  
    

So   is a             

 

Definition 2.15 

Let  (   )  be a                  , then     is a                     if: 

1) every                in   be a                      

2) every singleton be a                     or              . 

 

Remark 2.16 

In definition (2.15) (1) and (2) are equivalent. 

 

Proof: 

Suppose that (1) is a verified 

We will prove (2) 

Let     be a                     and     

Let * + is not               

So     * + is not             

Hence   is a             which contain   and also  ( )
  
    

So   is a                

And by definition [(2.15) (1)], so   is a               

Hence * + is a             

And to proof conversely suppose that definition [(2.15) (2)] is verified. 

Assume that      be a                

We will prove that   is a               

That means  ( )
  
   

It is clear that     ( )
  

               … (*) 

Suppose that       and    ( )
  

 

So       * + 

And by definition [(2.15) (2)] then * + is a             or                
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So if * + is a             

Then   * + is a               

Since       * +, then  ( )
  
   (  * +)

  
         [2.4] 

Hence ( )
  
    * + 

And since   ( )
  
    * + , this means     * + and this is contradiction 

So     and hence ( )
  
                  … (**) 

From (*) and (**) we get ( )
  
   

Hence   is a               

Either if * +               

Then   * + is a             

And since      * + and   is a                

So  ( )
  
    * + 

And since    ( )
  
    * +, this means     * + and this is contradiction 

So       and hence ( )
  
               … (***) 

And from (*) and (***) we get  ( )
  
   

Hence    is a              . 

From theorem 2.6 and definition 2.15(2) and remark 2.2(3) we get the following corollary: 

 

Corollary 2.17 

Every                   be a                      . 

From this corollary and definition 2.15(1) and proposition 2.14 we can be writing the rela-

tionship between                as we will explain it through the following corollary: 

 

 

 

Corollary 2.18 

Let  (   )  be a                   and let       then   is a                if and on-

ly if   is a              . 
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Definition 2.19 [15] 

Let (   )  be a                  , we say that   is a                  if every 

          in   is an         , we can prove that   is a                  if and only if 

each             in   is an         . 

 

Theorem 2.20 

Let (   ) be a                  , then   is a                  if every           in   

is an         .   

 

Proof: 

Suppose that (   ) be a                   

And let       such that     is a             

So        such that     is a           and   is an                     [2.7] 

Since   is a                  then   is an          

Thus    is an         . 

Conversely 

Assume that    is a           in   

So    ( )  

Since    is a          , so  ( )    

Hence    ( )  

( )  (( ) ) 

So    is a             

And by assumption   is an          

Hence   is a                 . 

 

Proposition 2.21 

Let (   ) be a                 , then every               in   is a           . 

 

Proof: 

Let     is a               

Then    is a             
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And since   be a                  

So    is an                             [ 2.20] 

Hence   is a           . 

Through the corollary 2.18 we clarify the relationship between                and 

              and from the above proposition 2.21 we can get the following result: 

 

Corollary 2.22 

Let (   ) be a                 , then every                in     be a             

 

Remark 2.23 

The intersection of two of                 is a               , as we will explain for 

the following theorem: 

 

Theorem 2.24 

Let (   ) be a                  , and let      are a                then      be a 

               in   . 

 

Proof: 

Since   is a                

So, for every               in    

Then if        then  ( )
  
     

And also, for     if        then    ( )
  
     

Suppose that          

We will prove that  (   )
  
    

Since          so          

So     is a             and      is a              

Also which is a                                 [ 2.18] 

So        is a             

And since     is a                and          

So  ( )
  
       

And in the same way we can prove that ( )
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Since (   )
  
  ( )

  
 ( )

  
                    [ 2.2(4)] 

So  (   )
  
 (    )   (    ) 

Suppose that    (   )
  

 

So    (    )  and    (    ) 

So      

Hence  (   )
  
   

So       is a               . 

 

Remark 2.25 

The union of two                does not necessarily to be                for exam-

ple: 

 

Example 2.26 

Let    *         }  and let    *    *     ++  be a             defined on   . 

And let    *   +  and    *   + 

So, the              which contain   and   is:   *     +  and also contain ( )
  

and  

( )
  

. 

Hence each of    and    are a                and since     *     + 

So  (   )
  
   

Hence     *     +  and  (   )
  
 *     + 

So       is not               . 

 

Theorem 2.27 

Let (   )  be a                   and let     is a                and     is a 

           then     is a               . 

 

Proof: 

Suppose that   is a                and   is a            in   

We will prove that     is a            

Let   be a             in   such that        
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We will prove that  (   )
  
    

Suppose that   (   )
  

 

Since (   )
  
 (   )  (((   ) ))               [15] 

So    (   )  (((   ) ))  

So   (   ) 

Hence (   )
  
      

But         [by assumption] 

So  (   )
  
   , hence      is a                

Or   (((   ) ))  

We will prove that (((   ) ))       

Since   is a                 

So   is a               

Hence ((( ) ))     

And since   is a           , so                       [16] 

So ((( ) ))              

But (((   ) ))   ((( ) ))         

Since   (((   ) ))  

So       

Hence (   )
  
      

Since        

So (   )
  
   

Thus     is a                 

 

Proposition 2.28 

Let (   ) be a                  , and let   is a                in  , if     ( )
  

 

then    is a                in   . 
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Proof: 

Suppose that      such that     is a             in    

We will prove that ( )
  
     

Since       so                       [by assumption     ] 

And also    is a                in    

So ( )
  
   

And since    ( )
  

 

So  ( )
  
 ( )

  
             [ 2.4] 

Hence  ( )
  
   

So     is a               . 

Through the remark 2.25 we clarify the union of two                is not necessarily 

              . 

As for the             , this is true as we will show from the following corollary: 

 

Corollary 2.29 

Let (   ) be a topological space, and let each of      are a               in   then  

     is a              in    . 

 

proof: 

let       are a              in    

So         are a                in    

Hence         is a                in            [ 2.24] 

So  (        )   is a              in    

Hence       is a              in   . 

 

Remark 2.30 

The intersection of two               does not necessarily to be             , for 

example: 
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Example 2.31 

Let   *     }  and let   *    *   ++ be a             defined on   

It is clear that *   + *   + is a             in    

but  *   +  *   +  * + is not             in   . 

 

Theorem 2.32 

Let (   )  be a                   and let     is a              and     is an 

         then     is a               
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