#### Wasit Journal for Pure Science

Journal Homepage: <a href="https://wjps.uowasit.edu.iq/index.php/wjps/indexe-188N">https://wjps.uowasit.edu.iq/index.php/wjps/indexe-188N</a>: 2790-5241 p-ISSN: 2790-5233



## The Core of Inner ideal of Real Four-Dimensional Lie Algebra with One Dimensional Derived

### Jaafar Sadiq Hamood<sup>1</sup>, Hasan M. Shlaka<sup>2</sup>

<sup>1,2</sup>Faculty of Computer Science and Mathematics, University of Kufa, IRAQ

\*Corresponding Author: Jaafar Sadiq Hamood

DOI: https://doi.org/ 10.31185/wjps.387

Received 01 April 2024; Accepted 29 March 2024; Available online 30 March 2024

**ABSTRACT:** Suppose that V is any inner ideal of L. The core of V is an inner ideal of L with special requirement. In this paper we prove. If L is a 4-dimension Lie algebra a with 1-dimensional derived, then the core of every inner ideal of L is zero. Moreover L containing a sandwich element if  $L' \nsubseteq Z$  and every element in L is sandwich if  $L' \subseteq Z$ .

**Keywords:** Lie algebras, The  $core_L(V)$ , Sandwich element, four dimensional



#### 1. INTRODUCTION

The idea of inner ideals was initially introduced in 1976 by American scientist Georgia Benkart [1]. According to Benkart, an inner ideal or (simply I - ideal) is a subspace V of a Lie algebra L such that  $[V, [V, L]] \subseteq V$ . If [V, V] = 0, then an inner ideal V is said to be commutative. Inner ideals of the Lie subalgebra of simple associative rings were studied in [1] and fully classified in 2009 by Benkart and Fernandiz Lopez in [2]. In 2016, Brox, Fernandez Lopez, and Gomez Lozano examined the case of centrally closed prime rings with involution of characteristic not equal 2, 3, or 5 [3].

Premet explains in [4] and [5] that the inner ideals of Lie algebras perform a similar role to the one-sided ideal of algebras of associative relations; hence, by taking into account the inner ideals of Lie algebras, one can provide instruction for Artinian theory for Lie algebras. Lie algebra is called Artinian if and only if it possesses a descending chain of inner ideals [6]. Shlaka, and Mousa, in 2023 study inner ideals of the special linear Lie algebras of associative simple finite dimensional algebras (see [7]). It is demonstrated in [8, Proposition 2] that each one-sided ideal of a finite dimensional associative algebra A accepts a Levi decomposition and, under certain minimal circumstances, can be created by an idempotent. Baranov and Shlaka achieve the same results for inner ideals in [8], demonstrating that each inner ideal of the Lie algebra [A, A] permits Levi decomposition and may be created by a pair of idempotent elements (if it satisfies some minimal conditions) [9].

Additional incentive to study inner ideals arises from [10], where Fernández López et al demonstrated that when L is any non-degenerate Lie algebra over an abelian ring F, equipped with two and three invertible elements, then every nonzero commutative inner ideal V of finite length in L is complemented by a commutative inner ideal [10].

In 2023, Shlaka and Saeed [11] studied inner ideal of the four-dimensional Lie algebras depending on Schobel classification of Lie algebras in [15]. Shlaka, and Kareem, described abelian non-Jordan-Lie inner ideals of the orthogonal finite dimensional Lie algebras in [13]. The notion of core of an inner ideal is introduced in [9] by Baranov and Shlaka. Let V be an inner ideal of a Lie algebra L. It is well-known that [V, [V, L]] is also an I - ideal of L. Take  $V_0 = V$  and consider the following I - ideal of  $L: V_n = [V_{n-1}, [V_{n-1}, L]] \subseteq V$ , for all integers  $n \ge 1$ . Then  $V = V_0 \supseteq V$ 

 $V_1 \supseteq V_2 \supseteq \cdots$ . As L is finite dimension, this series terminates, so there is an integer n such that  $V_n = V_{n+1}$ . Such  $V_n$  is said to be the core of V, is denoted by  $core_L(V)$ .

In this paper, we study the  $core_L$  (V) of the 4- dimensional Lie algebras with 1-dimensional derived. We also study sandwich elements of the four-dimensional Lie algebras with 1-dimensional derived. In section two, we start with some preliminary information about inner ideal (or simply I -ideal), the  $cor_L(V)$  of I-ideal, sandwich elements. The third section we state basic concept about 4-dimensional Lie algebra with a 1-dimensional derived. In section four, we showed that  $core_L$  (V) = 0 for every I-ideal of a real 4-dimensinal Lie algebra with a 1-dimensional derived. Section five we proved that if L is a 4-dimensinal Lie algebra with a 1-diensional derived then L contain sandwich element if  $L' \nsubseteq Z$ . Moreover, every element in L is sandwich elements if  $L' \subseteq Z$ .

#### 2. PRELIMINARIES

In this section we state some definitions about I-ideal, the  $cor_L(V)$  of inner ideal, extremal and zero divisor or (sandwich)element.

**Definition 2.1** [8]: Suppose that V is a subspace of L. Then V is said to be an I-ideal of L when  $[V,[V,L]] \subseteq V$ . We denoted by I-ideal to be an inner ideal of L. The I-ideal is said to be commutative if [V,V] = 0.

Let V be an inner ideal of L. Then  $[V, [V, L]] \subseteq V$ . It's widely recognized  $[V, [V, L]] \subseteq V$  is an I-ideal of L (see [11, Lemma 1.1]). Take  $V_0 = V$  and suppose that the following I - ideals of  $: V_n = [V_{n-1}, [V_{n-1}, L]] \subseteq V_{n-1}$  for all  $n \ge 1$ . Then  $= V_0 \supseteq V_1 \supseteq V_2 \supseteq \cdots$ . As L is finite dimension, this series terminates. This motivates the following definition.

**Definition 2.2.** [9]: let V be an I-ideal of L and L as a finite dimension Lie algebra. Then there is an integer N such that  $N_n = N_{n-1}$ . Thus  $N_n$  is called the core of N, denoted by  $core_L(V)$ .

**Definition 2.3.**[14]: Let  $x \in L$  be non zero element, then x is called extremal if  $[x, [x, L]] \subseteq Fx$ , where  $Fx = span\{x \mid x \in L\}$ .

The element x is said to be zero-divisor (sandwich) if  $\{x \in L \mid [x, [x, L]] = 0\}$ .

### 3. BASIC CONCEPT OF REAL FOUR-DIMENSIONAL LIE ALGEBRA WITH 1-DIMENSIONAL DERIVED

In this paper  $p \ge 0$ , L, V and Z are field of any characteristic, the characteristic of R. Lie algebra over R. Inner ideal of L, and the center of L, respectively. Recall that the center of L.  $Z_n$  n-dimensional center. We denoted by  $U_2$  is two-dimensional Lie algebra with the following property  $[u_1, u_2] = u_1$ , where is a basis for  $U_2$ .  $H_j$  is j-dimensional Lie algebra with the following property  $[h_2, h_3] = [h_4, h_5] = \cdots = [h_{j-1}, h_j] = h_1$ , and  $[h_n, h_m] = 0$  otherwise, where  $h_1, h_2, \ldots h_j$  are a basis for  $H_j$ .

Let L be a four-dimensional. The dimension of L' may be 1,2 3 or 4. In [15] Schöbel classified the real four-dimensional Lie algebra by relating the dimension of L'. Suppose that the dimensional of L' is 1. Then we have the following result. For the proof see [15].

**Theorem 3.1.** [15]: Consider L as a real n-dimensional Lie algebra with a 1-dimensional derived. Then L is one of the following:

```
1. If L' \nsubseteq Z, then L = U_2 \oplus Z_{n-2}.
2. If L' \subseteq Z, then L = H_j \oplus Z_{n-j} ( j = 2m-1, m \ge 2 ).
```

Where in the case (1) we have  $L' \nsubseteq Z$ , while in the case (2) we have  $L' \subseteq Z$ ,

**Proposition 3.4.** [11]: If  $L = U_2 \oplus Z_2$  and  $L' \nsubseteq Z$ , then

- 1. *L* contains a 1-dimensional I-ideal.
- 2. L contains a 2-dimensional non-commutative I-ideal.

3. L contains a 3-dimensional non commutative I-ideal.

**Remark 3.5.** According to [11], if L is a real 4-dimensinal with 1-dimensional derived and  $L' \nsubseteq Z$ , then L has basis  $\{u_1, u_2, z_1, z_2\}$  and the Lie multiplication of this basis is  $[u_1, u_2] = u_1$  and otherwise is zero. Thus

- 1.  $span\{u_1\}$ ,  $span\{z_1\}$  and  $span\{z_2\}$  are all 1-dimensional I-ideal. However,  $span\{u_2\}$  is un I-ideal as proved in [11, Remark 3.3].
- 2. The only non-commutative I-ideal of a 2-dimensional I-ideal of L is  $span\{u_1, u_2\}$ .
- 3. The only non-commutative I-ideal of L are span  $\{u_1, u_2, z_1\}$  and  $span\{u_1, u_2, z_2\}$ .

**Proposition 3.6.** [11]: Let  $L = H_3 \oplus Z_1$  and  $L' \subseteq Z$ . Then every 1-dimensional subspace of L is an I-ideal.

**Proposition 3.7.** [11] Let  $L = H_3 \oplus Z_1$  and  $L' \subseteq Z$ . Then every 2-dimensional subspace of L is an I-ideal.

**Proposition 3.8.** [11] Let  $L = H_3 \oplus Z_1$  and  $L' \subseteq Z$ . Then every 3-dimensional subspace of L is an I-ideal.

# 4. THE CORE OF THE REAL FOUR-DIMENSIONAL LIE ALGEBRA WITH ONE-DIMINSIONAL DERIVED

In this section we show that, if L is a real 4-dimensitional with 1-dimensional derived. Then L has a  $core_L(V) = 0$  for every I-ideal.

**Proposition 4.1.** Let  $L = U_2 \oplus Z_2$  and  $L' \nsubseteq Z$ , then

- 1.  $co r_L(V) = 0$  for every 1-dimensional I-ideal.
- 2.  $co r_L(V) = 0$  for every 2-dimensional I-ideal.
- 3.  $co r_L(V) = 0$  for every 3-dimensional I-ideal.

*Proof. By Theorem 3.1 L* has basis  $\{u_1, u_2, z_1, z_2\}$  such that  $[u_1, u_2] = u_1$  and otherwise is zero, and by Proposition 3.2, if  $L = U_2 \oplus Z_2$  and  $L' \nsubseteq Z$ , then L contain a 1, 2 and 3-dimensional I-ideal. Suppose that  $y \in L$ . Then  $y = \lambda u_1 + \mu u_2 + \alpha z_1 + \beta z_2$  for some  $\lambda, \mu, \alpha, \beta \in R$ .

1. Let V be a 1-dimensional I-ideal of L. Then by Remark 3.5  $V = span\{u_1\}$  or  $V = span\{z_1\}$  or  $V = span\{z_2\}$ . Since  $z_1, z_2 \in Z(L)$ , it is clear that  $core_L(V) = 0$  if  $V = span\{z_1\}$  or  $span\{z_2\}$ . It remains to  $V = span\{u_1\}$ . We need to show  $cor_L(V) = 0$ . Let  $x \in cor_L(V)$ ,  $a, b \in V$ . Then  $a = \lambda_1 u_1$  and  $b = \mu_1 u_1$  for some  $\lambda_1$ ,  $\mu_1 \in R$ .

Since 
$$x = [a, [b, y]] = [\lambda_1 u_1, [\mu_1 u_1, \lambda u_1 + \mu u_2 + \alpha z_1 + \beta z_2]]$$
  

$$= [\lambda_1 u_1, \mu_1 \lambda [u_1, u_1] + \mu_1 \mu [u_1, u_2] + \mu_1 \alpha [u_1, z_1] + \mu_1 \beta [u_1, z_2]]$$

$$= [\lambda_1 u_1, \mu_1 \mu u_1] = \lambda_1 \mu_1 \mu [u_1, u_1] = 0,$$
so  $co \ r_L(V) = 0$ .

2. Let V be a 2-dimensional I-ideal of L. Then by Remark 3.5  $V = span\{u_1, u_2\}$  is only non-commutative I-ideal of L. We claim that  $co\ r_L\ (V\ ) = span\{u_1\}$  and  $co\ r_L\ (V\ ) \subseteq V_1$ , we need to show  $V_1\subseteq co\ r_L\ (V\ )$ .

$$V_1 = [V, [V, L]]$$

let  $x \in V_1$ , then there exists  $a,b \in V$  and  $y \in L$ . Then  $a = \alpha_1 u_1 + \beta_1 u_2$ ,  $b = \alpha_2 u_1 + \beta_2 u_2$  and  $y = \lambda u_1 + \mu u_2 + \alpha z_1 + \beta z_2$  for some  $\alpha_1$ ,  $\alpha_2$ ,  $\beta_1$ ,  $\beta_2$ ,  $\lambda$ ,  $\mu$ ,  $\alpha$ ,  $\beta \in R$ .

Thus

$$x = [a, [b, y]]$$

```
 = [ \alpha, [ \alpha_2 u_1 + \beta_2 u_2, \lambda u_1 + \mu u_2 + \alpha z_1 + \beta z_2 ] ] 
 = [ \alpha_1 u_1 + \beta_1 u_2, \alpha_2 \mu u_1 - \beta_2 \lambda u_1 ] 
 = \alpha_1 \alpha_2 [ u_1, u_1 ] - \alpha_1 \beta_2 [ u_1, u_1 ] + \beta_1 \alpha_2 [ u_2, u_1 ] - \beta_1 \beta_2 \lambda [ u_2, u_1 ] 
 = -\beta_1 \alpha_2 u_1 + \beta_1 \beta_2 \lambda u_1 = (\beta_1 \beta_2 \lambda - \beta_1 \alpha_2) u_1 \in span\{ u_1 \}.
```

and

$$V_2 = [V_1, [V_1, L]].$$

Let  $x_1 \in V_2$ , then there exists  $a_1$ ,  $b_1 \in V_1$  and  $y \in L$ . Then  $a_1 = \alpha_1 u_1$ ,  $b_1 = \alpha_2 u_1$  and  $y = \lambda u_1 + \mu u_2 + \alpha z_1 + \beta z_2$  for some  $\alpha_1$ ,  $\beta_1$ ,  $\lambda$ ,  $\mu$ ,  $\alpha$ ,  $\beta \in R$ .

Thus

$$\begin{aligned} x_1 &= [\ a_1 \ , [\ b_1 \ , y\ ]\ ] \\ &= [\ \alpha_1 \ u_1 \ , [\ \beta_1 \ u_1 \ , \lambda \ u_1 \ + \ \mu \ u_2 \ + \ \alpha \ z_1 \ + \ \beta \ z_2\ ]\ ] \\ &= [\ \alpha_1 \ u_1 \ , \beta_1 \ \mu \ u_1\ ] \ = \ \alpha_1 \ \beta_1 \ [\ u_1 \ , u_1\ ] \ = \ 0, \\ \text{so } co \ r_L \ (\ V\ ) \ = \ 0. \end{aligned}$$

3. Let V be a 3-dimensional I-ideal of L. Then by Remark 3.5  $V = span\{u_1, u_2, z_1\}$  and  $V = span\{u_1, u_2, z_2\}$  are only non-commutative I-ideal of L. We claim that  $co\ r_L\ (V) = span\{u_1\}$  and  $co\ r_L\ (V) \subseteq V_1$ , we need to show  $V_1 \subseteq co\ r_L\ (V)$ . Since

$$V_1 = [V, [V, L]]$$

let  $x \in V_1$ , then there exists  $a,b \in V$  and  $y \in L$ . Then  $a = \alpha_1 u_1 + \beta_1 u_2 + \gamma_1 z_1$ ,  $b = \alpha_2 u_1 + \beta_2 u_2 + \gamma_2 z_1$  and  $y = \lambda u_1 + \mu u_2 + \alpha z_1 + \beta z_2$  for some  $\alpha_1$ ,  $\alpha_2$ ,  $\beta_1$ ,  $\beta_2$ ,  $\gamma_1$ ,  $\gamma_2$ ,  $\lambda$ ,  $\mu$ ,  $\alpha$ ,  $\beta \in R$ .

Thus

and

$$V_2 = [V_1, [V_1, L]].$$

Let  $x_1 \in V_2$ , then there exists  $a_1$ ,  $b_1 \in V$  and  $y \in L$ . Then  $a_1 = \alpha_1 u_1$ ,  $b_1 = \alpha_2 u_1$  and  $y = \lambda v_1 + \mu v_2 + \alpha z_1 + \beta z_2$  for some  $\alpha_1$ ,  $\beta_1$ ,  $\lambda$ ,  $\mu$ ,  $\alpha$ ,  $\beta \in R$ .

Thus

$$x_{1} = [a_{1}, [b_{1}, y]]$$

$$= [\alpha_{1} u_{1}, [\beta_{1} u_{1}, \lambda u_{1} + \mu u_{2} + \alpha z_{1} + \beta z_{2}]]$$

$$= [\alpha_{1} u_{1}, \beta_{1} \mu u_{1}] = \alpha_{1} \beta_{1} [u_{1}, u_{1}] = 0,$$
so  $co r_{L}(V) = 0.$ 

**Proposition 4.2.** Let  $L = H_3 \oplus Z_1$  and  $L' \subseteq Z$ . Then every 1-dimensional subspace of L has cor  $e_L(V) = 0$  for every 1-ideal.

*Proof.* Let V be a 1-dimensional subspace of L and let  $v \in V$  be a nonzero. Then  $\{v\}$  from a basis of V. We extend  $\{v\}$  to form a basis  $\{h_1, h_2, h_3, v\}$ , where  $h_1, h_2, h_3 \in H_3$  such that the Lie multiplication of this basis satisfy the condition of Theorem 3.1 and by Proposition 3.4 let  $L = H_3 \oplus Z_1$  and  $L' \subseteq Z$ . Then every 1-dimensional subspace of L is an I-ideal, we need to show  $cor\ e_L(V) = 0$ . Let  $x \in cor\ e_L(v)$ ,  $a,b \in V$  and  $y \in L$ . Then  $a = \lambda v, b = \mu v$  and  $y = \alpha h_1 + \beta h_2 + \gamma h_3 + \delta v$  fore some  $\lambda, \mu, \alpha, \beta, \gamma, \delta \in R$ . Then

$$x = [a, [b, y] (1)]$$

By Theorem 3.1 we need to consider four cases dependent on the multiplication of  $h_1$ ,  $h_2$ ,  $h_3$  and v whether  $[h_1, h_2] = h_1, v \in Z_1$ , or  $[h_2, h_3] = v$ ;  $h_1 \in Z_1$  or  $[v, h_3] = h_1$ ,  $h_2 \in Z_1$  or  $[h_2, v] = h_1$ ,  $h_3 \in Z_1$ .

Case 1. Suppose initially that  $V \in Z_1$  and  $\begin{bmatrix} h_2 \\ h_3 \end{bmatrix} = h_1$ , otherwise is zero. By Equation 1  $x = \begin{bmatrix} a, [b, y] \end{bmatrix} = \begin{bmatrix} a, [\mu v, \alpha h_1 + \beta h_2 + \gamma h_3 + \delta v] \end{bmatrix} = \begin{bmatrix} a, \mu \alpha [v, h_1] + \mu \beta [v, h_2] + \mu \gamma [v, h_3] + \mu \delta [v, v] \end{bmatrix} = \begin{bmatrix} a, 0 \end{bmatrix} = 0$ , so cor L(V) = 0.

Suppose now that  $h_1 \in Z_1$  and  $[h_2, h_3] = v$ , otherwise is zero. By Equation 1 x = [a, [b, y]] = [a, 0] = 0, so  $cor\ e\ L\ (V\ ) = 0$ .

Suppose Next that  $h_2 \in Z_3$  and  $[v, h_3] = h_1$ , otherwise is zero. By Equation 1

Finally let  $h_3 \in Z_1$  and  $[h_2, v] = h_1$ , otherwise is zero. By Equation 1  $x = [a, [b, y]] = [\lambda v, [\mu v, \alpha h_1 + \beta h_2 + \gamma h_3 + \delta v]]$  $= [\lambda v, -\mu \beta h_1] = -\lambda \mu \beta [v, h 1] = 0,$ so  $cor\ e_L(V) = 0$ .

**Proposition 4.3.** Let  $L = H_3 \oplus Z_1$  and  $L' \subseteq Z$ . Then every 2-dimensional subspace of L has cor  $e_L(V) = 0$  for every I-ideal.

*Proof.* Let V be a two-dimension subspace of L, and let  $v_1$ ,  $v_2 \in V$  be a non-zero. Then  $\{v_1, v_2\}$  from a basis of V. We extend  $\{v_1, v_2\}$  to form a basis  $\{h_1, h_2, v_1, v_2\}$  such that the Lie multiplication of this basis satisfies the condition of Theorem 3.1 and by Proposition 3.5 let  $L = H_3 \oplus Z_1$  and  $L' \subseteq Z$ . Then every 2-dimensional subspace of L is an I-ideal. We need to show that  $cor\ e_L(v) = 0$ .

Let  $x \in cor\ e_L\ (V\ )$ ,  $a,b \in V$  and  $y \in L$ . Then  $a = \lambda_1\ v_1 + \mu_1\ v_2$ ,  $b = \lambda_2\ v_1 + \mu_2\ v_2$  and  $y = \alpha\ h_1 + \beta\ h_2 + \gamma\ v_1 + \delta\ v_2$  for  $some\ \lambda_1\ ,\lambda_2\ ,\mu_1\ ,\mu_2\ ,\alpha\ ,\beta\ ,\gamma\ ,\delta\ \in\ R$ . Then

$$x = [a, [b, y](2)]$$

By Theorem 3.1 we need to consider six cases depending on the multiplication of  $h_1$ ,  $h_2$ ,  $v_1$  and  $v_2$  whether  $[v_2, h_1] = v_1$ ;  $h_2 \in Z_1$  or  $[h_1, v_2] = v_1$ ;  $h_2 \in Z_1$  or  $[h_1, h_2] = v_1$ ;  $v_2 \in Z_1$  or  $[v_1, v_2] = h_1$ ;  $h_2 \in Z_1$  or  $[v_1, h_2] = h_1$ ;  $v_2 \in Z_1$  or  $[v_1, v_2] = h_1$ ;  $v_2 \in Z_1$  or  $[v_1, v_2] = h_2$ ;  $v_2 \in Z_1$  or  $[v_1, v_2] = h_2$ ;  $v_2 \in Z_2$  or  $[v_1, v_2] = h_2$ ;  $v_2 \in Z_2$  or  $[v_1, v_2] = h_2$ ;  $v_2 \in Z_2$ 

Case 1. Suppose first that  $h_2 \in Z_1$  and  $[v_2, h_1] = v_1$ , otherwise is zero. By Equation 2 x = [a, [b, y]] =  $[a, [\lambda_2 v_1 + \mu_2 v_2, \alpha h_1 + \beta h_2 + \gamma v_1 + \delta v_2]]$  =  $\lambda 1 \mu 1 [v_1, v_1] + \lambda_1 \mu_2 \alpha [v_2, v_1] = 0$ , so  $co r_L(V) = 0$ .

Case 2. Suppose now that  $h_2 \in Z_1$  and  $[h_1, v_2] = v_1$ , otherwise is zero. By Equation 2  $x = [a, [b, y]] = [a, [\lambda_2 v_1 + \mu_2 v_2, \alpha h_1 + \beta h_2 + \gamma v_1 + \delta v_2]]$   $= [a, -\mu_2 \alpha v_1] = [\lambda_1 v_1 + \mu_1 v_2, -\mu_2 \alpha v_1]$   $= -\lambda_1 \mu_2 \alpha [v_1, v_1] - \mu_1 \mu_2 \alpha [v_2, v_1] = 0,$  $so\ cor\ e_1(V) = 0.$ 

Case 3. Suppose that  $v_2 \in Z_1$  and  $[h_1, h_2] = v_1$ , otherwise is zero. By Equation 2 x = [a, [b, y] = [a, 0] = 0, so  $cor\ e\ L\ (V\ ) = 0.$ 

Case 4. Suppose that  $h_2 \in Z_1$  and  $[v_1, v_2] = h_1$ , otherwise is zero. By Equation 2  $x = [a, [b, y] = [a, [\lambda_2 v_1 + \mu_2 v_2, \alpha h_1 + \beta h_2 + \gamma v_1 + \delta v_2]]$ =  $\lambda_1 \mu_2 [v_1, h_1] - \lambda_1 \mu_2 [v_1, h_1] - \mu_1 \mu_2 \delta [v_2, h_1] - \mu_1 \mu_2 \gamma [v_2, h_1] = 0$ , so  $cor\ e_L(V) = 0$ .

case 5. Suppose that  $v_2 \in Z_1$  and  $[v_1, h_2] = h_1$ , otherwise is zero. By Equation2  $x = [a, [b, y] = [a, [\lambda_2 v_1 + \mu_2 v_2, \alpha h_1 + \beta h_2 + \gamma v_1 + \delta v_2]]$   $= [a, \lambda_2 \alpha [v_1, h_1] + \lambda_2 \beta [v_1, h_2] + \lambda_2 \gamma [v_1, v_1] + \mu_2 \delta [v_1, v_2] + \mu_2 \alpha [v_2, h_1] + \mu_2 \beta [v_2, h_2]$   $+ \mu_2 \gamma [v_2, v_1] + \mu_2 \delta [v_2, v_2]$   $= [\lambda_1 v_1 + \mu_1 v_2, \lambda_2 \beta h_1]$   $= \lambda_1 \lambda_2 \beta [v_1, h_1] + \mu_1 \lambda_2 \beta [v_2, h_1] = 0,$   $so \ cor \ e \ L(V) = 0.$ 

Case 6. Suppose that  $v_2 \in Z_1$  and  $[h_2, v_1] = h_1$ , otherwise is zero. By Equation 2  $x = [a, [b, y] = [a, [\lambda 2 v 1 + \mu 2 v 2, \alpha h 1 + \beta h 2 + \gamma v 1 + \delta v 2]]$   $= [a, \lambda_2 \alpha [v_1, h_1] + \lambda_2 \beta [v_1, h_2] + \lambda_2 \gamma [v_1, v_1] + \mu_2 \delta [v_1, v_2] + \mu_2 \alpha [v_2, h_1] + \mu_2 \beta [v_2, h_2] + \mu_2 \gamma [v 2, v 1] + \mu_2 \delta [v 2, v 2]$   $= [\lambda_1 v_1 + \mu_1 v_2, -\lambda_2 \beta h_1] = -\lambda_1 \lambda_2 \beta [v_1, h_1] - \mu_1 \lambda_2 \beta [v_2, h_1] = 0$ ,

so cor eL(V) = 0.

**Proposition 4.4.** Let  $L = H_3 \oplus Z_1$  and  $L' \subseteq Z$ . Then every 3-dimensional subspace of L has cor  $e_L(V) = 0$  for every I-ideal.

*Proof.* Let V be a 3-dimensinal subspace of L and  $\{v_1, v_2, v_3\}$  be a basis of V. we extend  $\{v_1, v_2, v_3\}$  to form a basis  $\{h_1, v_1, v_2, v_3\}$  such that the Lie multiplication of this basis satisfies the condition Theorem 3.1 and by Proposition prop 3.6 let  $L = H_3 \oplus Z_1$  and  $L' \subseteq Z$ . Then every 3-dimensional subspace of L is an I-ideal. We need to show  $cor\ e_L\ (V\ )=0$ . Let  $x\in cor\ e_L\ (v\ )$  ,  $a,b\in V$  and  $y\in L$ . Then  $a=\alpha_1\ v_1\ +\ \alpha_2\ v_2\ +\ \alpha_3\ v_3$  $\alpha_3 v_3$ ,  $b = \beta_1 v_1 + \beta_2 v_2 + \beta_3 v_3$  and  $y = \lambda_1 h_1 + \lambda_2 v_1 + \lambda_3 v_2 + \lambda_4 v_3$  for some  $\alpha_1$ ,  $\alpha_2$ ,  $\beta_1$ ,  $\beta_2$ ,  $\lambda_1$ ,  $\lambda_2$ ,  $\lambda_3$ ,  $\lambda_4 \in R$ . Then

$$x = [a, [b, y] (3)$$

By Theorem 3.1 we need to consider four cases depending on the multiplication of  $h_1$ ,  $v_1$ ,  $v_2$  and  $v_3$  whether  $[v_2, v_3] = v_1; h_1 \in Z_1 \text{ or } [v_2, h_1] = v_1; v_3 \in Z_1 \text{ or } [h_1, v_2] = v_1; v_3 \in Z_1 \text{ or } [v_1, v_2] = h_1; v_3 \in Z_1.$ 

Suppose first that  $v_1, v_2, v_3 \notin Z$ , and  $[v_2, v_3] = v_1$  otherwise is zero, and  $x_1 \in Z_1$ . By Equation 3

$$x = [a, [b, y]]$$

$$= [a, [\beta_1 v_1 + \beta_2 v_2 + \beta_3 v_3, \lambda_1 h_1 + \lambda_2 v_1 + \lambda_3 v_2 + \lambda_4 v_3]$$

$$= [a, \beta_1 \lambda_1 [v_1, h_1] + \beta_1 \lambda_2 [v_1, v_1] + \beta_1 \lambda_3 [v_1, v_2] + \beta_1 \lambda_4 [v_1, v_3] + \beta_2 \lambda_1 [v_2, h_1] + \beta_2 \lambda_2 [v_2, v_1]$$

$$+ \beta_2 \lambda_3 [v_2, v_2] + \beta_2 \lambda_4 [v_2, v_3] + \beta_3 \lambda_1 [v_3, h_1] + \beta_3 \lambda_2 [v_3, v_1] + \beta_3 \lambda_3 [v_3, v_2]$$

$$+ \beta_3 \lambda_4 [v_3, v_3]$$

$$= [\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3, \beta_2 \lambda_4 v_1 - \beta_3 \lambda_3 v_1]$$

$$= \alpha_1 \beta_2 \lambda_4 [v_1, v_1] - \alpha_1 \beta_3 \lambda_3 [v_1, v_1] + \alpha_2 \beta_2 \lambda_4 [v_2, v_1] - \alpha_2 \beta_3 \lambda_3 [v_1, v_1] + \alpha_3 \beta_3 \lambda_3 [v_3, v_1] = 0,$$

$$so cor. (V) = 0$$

so co  $r_L(V) = 0$ .

Suppose now that  $v_1, v_2 \notin Z$ , and  $[v_2, h_1] = v_1$  otherwise is zero, and  $v_3 \in Z_1$ . Then  $x = [a, [b, y]] = [\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3, \beta_2 \lambda_1 v_1]$  $= \alpha_1 \beta_2 \lambda_1 [v_1, v_1] + \alpha_2 \beta_2 \lambda_1 [v_2, v_1] + \alpha_3 \beta_2 \lambda_1 [v_3, v_1] = 0,$   $so \ co \ r_L (V) = 0.$ 

Suppose next that  $v_1, v_2 \notin Z$ , and  $[h_1, v_2] = v_1$  otherwise is zero, and  $v_3 \in Z_1$ . By Equation 3 x = [a, [b, y]]

$$= [\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3, -\beta_2 \lambda_1 v_1]$$

$$= [-\alpha_1 \beta_2 \lambda_1 [v_1, v_1] - \alpha_1 \beta_2 \lambda_1 [v_2, v_1] - \alpha_3 \beta_2 \lambda_1 [v_3, v_1] = 0,$$

$$so \ cor \ e_L (V) = 0.$$

Finally let  $v_1, v_2 \notin Z$ , and  $[v_1, v_2] = h_1$  otherwise is zero, and  $[v_1, v_2] = h_1$ . By Equation 3 x = [a, [b, y]]=  $[\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3, \beta_1 \lambda_3 h_1 - \beta_2 \lambda_2 h_1]$  $= \alpha_{1} \beta_{1} \lambda_{3} [v_{1}, h_{1}] - \alpha_{1} \beta_{2} \lambda_{2} [v_{1}, h_{1}] + \alpha_{2} \beta_{1} \lambda_{3} [v_{2}, h_{1}] - \alpha_{2} \beta_{2} \lambda_{2} [v_{2}, h_{1}] + \alpha_{3} \beta_{1} \lambda_{3} [v_{1}, h_{1}]$  $- \alpha_1 \beta_2 \lambda_2 [v_2, h_1] = 0,$ so cor  $e_L(V) = 0$ .

**Theorem 4.5.** Suppose that L is a real 4-dimansional Lie algebra with a 1-dimensional derived, then  $cor_L(V) = 0$  for every I-ideal.

Proof. Since L is 4-dimension with a 1-dimensional derived. Then by Theorem 3.1 either  $L = U_2 \oplus Z_2$  or  $L = H_3 \oplus Z_1$ . Suppose first that  $L = U_2 \oplus Z_2$ . Then by proposition 4.1.  $cor_L(V) = 0$  for every I-ideal. Suppose now that  $L = H_3 \oplus Z_1$ . Thus

- 1- By Proposition 4.2 every 1-dimensional subspace has  $core_I(V) = 0$  for every I-ideal.
- 2- By Proposition 4.3 every 2-dimensional subspace has  $core_L(V) = 0$  for every I-ideal.
- 3- By Proposition 4.4 every 3-dimensional subspace has  $core_L(V) = 0$  for every I-ideal.

## 5. SANDWICH ELEMENTS OF A REAL FOUR DIMENSIONAL LIE ALGEBRA WITH 1-DIMENSIONAL DERIVED

In this section we proved that if L is a 4-dimensinal Lie algebra with a 1-diensional derived then L contain sandwich element if  $L' \nsubseteq Z$ . Moreover every elements in L is sandwich elements if  $L' \subseteq Z$ .

**Proposition 5.1.** Let  $L = U_2 \oplus Z_2$  and  $L' \nsubseteq Z$ , then L contain a sandwich element.

*Proof.* By Theorem 3.1 L has basis  $\{u_1, u_2, z_1, z_2\}$  such that  $[u_1, u_2] = u_1$  and otherwise is zero.

Suppose that  $x \in L$ , and  $y \in L$ .

Then  $x = u_1$  and  $y = \lambda u_1 + \mu u_2 + \alpha z_1 + \beta z_2$  for some  $\lambda$ ,  $\mu$ ,  $\alpha$ ,  $\beta \in R$ .

Since

so  $u_1$  is a sandwich elements.

**Remark 5.2.** Proposition 5.1 is not true if we state let  $L = U_2 \oplus Z_2$  and  $L' \nsubseteq Z$ , then every elements in L is a sandwich element. As one can see in the following example.

**Example 5.3.** Consider  $x \in L$  and  $y \in L$ . Then  $x = u_2$  and  $y = \lambda u_1 + \mu u_2 + \alpha z_1 + \beta z_2$ . Since

$$[u_{2}, [u_{2}, y]] = [u_{2}, [u_{2}, \lambda u_{1} + \mu u_{2} + \alpha z_{1} + \beta z_{2}]]$$

$$= [u_{2}, \lambda [u_{2}, v_{1}] + \mu [u_{2}, v_{2}] + \alpha [u_{2}, z_{1}] + \beta [u_{2}, z_{2}]]$$

$$= [u_{2}, -\lambda u_{1}] = -\lambda [u_{2}, u_{1}]$$

$$= \lambda u_{1}.$$

Thus,  $u_2$  is non-sandwich elements.

**Proposition 5.4.** Let  $L = H_3 \oplus Z_1$  and  $L' \subseteq Z$ . Then every basis of L is a sandwich elements.

*Proof.* By Theorem 3.1 *L* has basis  $\{h_1, h_2, h_3, z\}$  such that  $[h_2, h_3] = h_1$  and otherwise is zero. Let  $y \in L$ . Then  $y = \alpha h_1 + \beta h_2 + \gamma h_3 + \delta z$ , we need to show that each basis element is sandwich. Since  $z \in Z(L)$  it is clear that z is sandwich element. It remain to show that  $h_1, h_2$  and  $h_3$  are all sandwich elements.

Suppose first that  $h_1 \in L$  and  $y \in L$ . Then  $y = \alpha h_1 + \beta h_2 + \gamma h_3 + \delta z$  fore some  $\lambda$ ,  $\mu$ ,  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\delta \in R$ . Since

$$[h_1, [h_1, y]] = [h_1, [h_1, \alpha h_1 + \beta h_2 + \gamma h_3 + \delta z]$$
  
=  $[h_1, 0] = 0$ ,

so  $h_1$  is sandwich element.

Suppose now that  $h_2 \in L$  and  $y \in L$ . Then  $y = \alpha h 1 + \beta h 2 + \gamma h 3 + \delta z$  fore some  $\lambda$ ,  $\mu$ ,  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\delta \in R$ . Since

so  $h_2$  is sandwich elements and let

Finally let  $h_3 \in V$  and  $y \in L$ . Then  $y = \alpha h_1 + \beta h_2 + \gamma h_3 + \delta z$  fore some  $\lambda$ ,  $\mu$ ,  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\delta \in R$ . Since

$$[h_3, [h_3, y]] = [h_3, [h_3, \alpha h_1 + \beta h_2 + \gamma h_3 + \delta z]$$

$$= [h_3, \alpha [h_3, h_1] + \beta [h_3, h_2] + \gamma [h_3, h_3] + \delta [h_3, z]]$$

$$= [h_3, -\beta h_1] = -\beta [h_3, h_1] = 0,$$
so  $h_3$  is sandwich elements.

**Theorem 5.5.** Suppose that L is a real 4-dimansional Lie algebra with a1-dimensional derived, then L contain a sandwich element if  $L' \nsubseteq Z$  and every element in L is a sandwich if  $L' \subseteq Z$ .

Proof. Since L is 4-dimensional Lie algebra with a 1-dimensional derived. Then by Theorem 3.1 either  $L = U_2 \oplus Z_2$  or  $L = H_3 \oplus Z_1$ .

Suppose first that  $L = U_2 \oplus Z_2$ . Then by proposition 5.1. L contain a sandwich element.

Suppose now that  $L = H_3 \oplus Z_1$ . Then by Proposition 5.4. L has a sandwich element for every basis of L.

#### REFERENCES

- [1] G. Benkart, "The Lie inner ideal structure of associative rings," Journal of Algebra. 43 (2), 561 –584 (1976).
- [2] G. Benkart and A. Fernández López, "The Lie inner ideal structure of associative rings revisited," Communications in Algebra. 37 (11), 3833 –3850 (2009).
- [3] J. Brox, A. López and M. Gómez Lozano, "Inner ideals of Lie algebras of skew elements of prime rings with involution," Proceedings of the American Mathematical Society. 144 (7), 2741 –2751 (2016).
- [4] A. A. Premet, "Inner ideals in modular Lie algebras ," Vestsī Akad. Navuk BSSR Ser. Fīz. -Mat. Navuk, 5, 11 –15 (1986).
- [5] A. A. E. Premet, "Lie algebras without strong degeneration," Mathematics of the USSR-Sbornik. 57 (1), 151 (1987).
- [6] A. F. López, E. García and M. G. Lozano, "An Artinian theory for Lie algebras," Journal of Algebra. 319 (3), 938 951 (2008).
- [7] H. M. Shlaka, and D. A. Mousa, (2023) "Inner ideals of the special linear Lie algebras of associative simple finite dimensional algebras", AIP Conference Proceedings AIP Publishing LLC, 2414(1), 040070.
- [8] A.A. Baranov and H. Shlaka, "Jordan-Lie inner ideals of Finite dimensional associative algebras", Journal of Pure and Applied Algebra, vol. 224, no. 5, pp. 106189, 2020
- [9] H. M. Shlaka, "Generalization of Jordan-Lie of Finite Dimensional Associative Algebras," arXiv preprint arXiv:2107.00775 (2021).
- [10] A. F. López, E. García, M. G., Lozano and E. Neher, "A construction of gradings of Lie algebras," International Mathematics Research Notices. 2007 (9), rnm051 –rnm051 (2007).
- [11] Shlaka, H. S., & Saeed, H. S. (2023, December). Inner ideals of 4-dimensional lie algebras. In *AIP Conference Proceedings* (Vol. 2834, No. 1). AIP Publishing.
- [12] K. Erdmann and M. J. Wildon, "Introduction to Lie algebras," Springer Science & Business Media 1-23 (2006). [13] H. M. Shlaka, and F. S. Kareem, "Abelian Non-Jordan-Lie Inner Ideals of the Orthogonal Finite Dimensional Lie Algebras", Journal of Discrete Mathematical Sciences and Cryptography, vol. 25, no. 5, pp. 1547-1561, 2022.
- [14] Cohen, A.M. (2021). Inner ideals in Lie algebras and sphericalbuild- ings. Indagationes Mathematicae, 32(5), 1115-1138.
- [15] Schöbel, C. (1993). A classification of real finite dimensional Lie algebras with alow-dimensional derived algebra. Reports on Math- ematical Physics, 33(1-2), 175-186.