MIXED SERRE FIBRATION

Zahraa Yassin Habeeb

College of Education for pure sciences, Wasit University

E-mails: zahraaya1101@uowasit.edu.iq

Daher Al Baydli

College of Education for pure sciences, Wasit University

E-mails: daheralbaydli@uowasit.edu.iq

Abstract:- In this paper we introduce and study new concept the mixed Serre fibration (M-Serre fibration) on CW-complex space, and Mixed path lifting property (by short M-PLP). Most of theorems which are valid for Serre fibration be also valid for M-Serre fibration.

Keywords: M-Serre fibration, CW-complex space, M-path lifting property, M-Covering Homotopy Property.

1 Introduction

The following problem is one of the problems in algebraic topology. Let $f: E \to X$ be a Serre fibration (Jean-Pierre Serre, born 15 September 1926) of CW-complex space. In this study, we looked at Serre fibration at the functions of the numbers of Serre fibration one and two, to become the function $f_i: E_i \to X$ (Mixed Serre fibration).

We use the following notation for the closed unit m-disk, the open unit m-disk and the unit (m-1)-sphere

$$D^{m} = \{x \in \mathbb{R}^{m} : ||x|| = 1\},$$

$$int(D^{m}) = \{x \in \mathbb{R}^{m} : ||x|| < 1\},$$

$$S^{m-1} = \{x \in \mathbb{R}^{m} : ||x|| = 1\}$$

where $\|\cdot\|$ is the standard norm, $\|(x^1, x^2, ..., x^m)\| = \sqrt{x_1^2 + x_2^2 + ... + x_m^2}$

2 Preliminaries

Definition 2.1. [9] [8]

An m - cell, $m \ge 0$ is a topological space that is homeomorphic to the open m-disk $int(D^m)$.

Definition 2.2. [8][9]

Let X be a topological space and the cell-decomposition of X is a family $\omega = \{e_t | t \in I\}$ of subspace of X such that each e_t is a cell and $X = \coprod_{t \in I} e_t$ which disjoint union of sets, the m- skeleton of X is the subspace $X = \coprod_{t \in I, \dim(e_t) \le m} e_t$

Definition 2.3. [8]

A pair (X, ω) consisting of a Hausdorff space X and a cell-dcomposition ω of X is called a CW-space if the following are satisfied:

- For each $m-cell\ e\in \omega$ there is a map $\psi_e\colon D^m\to X$ restricting to a homeomorphism $\psi_e|int(D^m)\colon int(D^m)\to e$ and taking S^{m-1} into X^{m-1} , which is called Characteristic Maps.
- For any cell $e \in \omega$ the closure \bar{e} intersects only a finite number of other cells in ω , which is called Closure Finiteness.
- A subset $A \subseteq X$ is closed iff $A \cap \bar{e}$ is closed in X for each $e \in \omega$, which is called Weak Topology

The restrictions $\psi|_{\partial D^m}$ are called the attaching maps.

Notice that we can recover X (up to homeomorphism) from a knowledge of X^0 and the attaching maps. The recovery is described in as follows:

- 1. If we start with a discrete set X^0 , whose points are regarded as 0-cell.
- 2. From X^{m-1} by attaching m-cells e^m_t by $maps\ \psi_t: S^{m-1} \to X^{m-1}$, we get form the m-skeleton X^m . The quotient space of the disjoint union $X^{m-1} \coprod_t D^m_t$ of X^{m-1} with a collection of m-disks D^m_t under the identifications $X \sim \psi_t(x)$ for $x \in \partial D^m_t$. Thus as a set $X^m = X^{m-1} \coprod_t e^m_t$ where each e^m_t is an open m-cell.
- 3. Setting X = X^m for some $n < \infty$, setting $X = \bigcup_m X^m$. In the latter case X is given the weak topology: A set $A \subset X$ is open (or closed) iff $A \cap X^m$ is open (or closed) in X^m for each m.

So we have,

$$X^0 \subset X^1 \subset X^2 \subset ... \subset X^m \subset ...$$

If there exist an integer m such that $X^m = X$ then X is called finite dimensional.

Definition 2.4. [3]

A CW-space is said to be regular if all its attaching maps are homeomorphisms.

Definition 2.5. [1]

A triple (E, p, B) called a fiber structure consisting of two space E, B and a continuous onto map $p: E \to B$. The total space is E (or fibered) space the projection is p. The base space is called B, the space for each $b_0 \in B$, the set $F = p^{-1}(b_0)$ and F is called fiber over b_0 . We refer to (E, p, B) as a fiber structure over B.

51

Definition 2.6. [4] [1]

Let $p: E \to B$ be a map, we say that p has Covering Homotopy Property (C.H.P.by short) with respect to X iff given a map $f: X \to E$ and $h_t: X \to B$ is homotopy such that $p \circ f = h_0$. Then there exist a homotopy $h_t^*: X \to E$ such that (1) $h_0^* = f$. (2) $p \circ h_t^* = h_t$, for all $x \in X$ and $t \in I$.

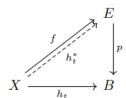


Figure 1: Covering Homotopy Property

Definition 2.7.

The map *p* is siad to be (Hurewicz) Fibration if it has covering homotopy property w.r.t all space.

3 M-Serre Fibration

In this section we introduce and study a new concept which is namely Mixed Serre fibration M-Serre Fibration . we start with following definition.

Definition 3.1.

(1) Let E_1 , E_2 and X be three topological spaces, let $E_i = \{E_1, E_2\}$, $f_i = \{f_1, f_2\}$ where $f_1: E_1 \to X$, $f_2: E_2 \to X$ are two maps, and $\alpha: E_2 \to E_1$ such that $f_1 \circ \alpha = f_2$ then $\{E_i, f_i, X, \alpha\}$ is a M-fiber space (Mixed-fiber space).

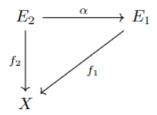


Figure 2: M-fiber space

If $E_1 = E_2 = E$, $\alpha = identity$, $= f_1 = f_2 = f$ then (E, F, X) is the usual fiber space.

(2) Let $\{E_i, f_i, X, \alpha\}$ be a M-fiber space, let $x_0 \in X$ then $f = \{f_i^{-1}(x_0)\}$ is the M-fiber over x_0 .

Definition 3.2. [4] [6]

Let $p: E \to B$ be a continuous map of spaces, p has the covering homotopy property (C.H.P) with respect to a CW-complex space X is called Serre Fibration.

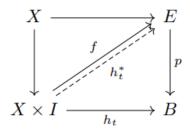


Figure 3: Serre Fibration

Definition 3.3.

Let $\{E_i, f_i, X, \alpha\}$ be a Mixed fiber structure, where i=1,2. Let X, B be a CW-complex spaces and $h_t \colon B \to X$ be map. A continuous $k_1 \colon B \to E_1$ and $k_2 \colon B \to E_2$ such that $f_1 \circ k_1 = h_t$ and $f_2 \circ k_2 = h_t$, where $K_i = \{k_1, k_2\}$ is called a Mixed-covering (M-covering) of h_t .

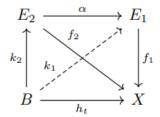


Figure 4: M-covering

Definition 3.4.

Let Y be a CW-complex space , $f_1\colon E_1\to Y$, $f_2\colon E_2\to Y$, $\alpha\colon E_2\to E_1$ are maps of a spaces such that $f_1\circ\alpha=f_2$, let $E_i=\{E_1,E_2\}$ where i = 1, 2. $f_i=\{f_1,f_2\}$, the quartic $\{E_i$, f_i , Y, $\alpha\}$ has the Mixed covering homotopy property (M-CHP) w.r.t a CW-space X iff given a map $k\colon X\to E_2$ and a homotopy $h_t:X\to Y$ such that $f_2\circ k=h_0$, then exists a homotopy $g_t\colon X\to E_1$ such that (1) $f_1\circ g_t=h_t$. (2) $\alpha\circ k=g_0$.

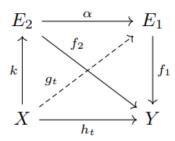


Figure 5: M-Serre Fibration

M-fiber space is called M-Serre fibration, is it has the (MCHP) with respect to all CW-complex.

Theorem 3.5. Every Serre fibration is a Mixed Serre fibration.

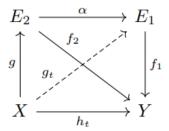
Proof:

Let $\{E, f, Y, \alpha\}$ is fiber space such that $E = E_1 = E_2$, $\alpha = I_d$ (identity), $f = f_1 = f_2$.

Let $g: X \to E_2$ and homotopy $h_t: X \to Y$ such that $f_2 \circ g = h_0$, then there exist $g_t: X \to E_1$ such that $g_0 = \alpha \circ g$ and $f_1 \circ g_t = h_t$ for all $x \in X$ and $t \in I$

Then f has M-CHP w.r.t space CW-complex.

Therefore *f* has M-Serre fibration.

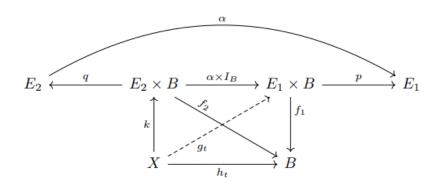


Proposition 3.6.

Mixed Serre fibration may not be a Serre fibration. As show by the following example

Example: Let E_1 , E_2 , B be a three CW-complex spaces , and $E_1 \neq E_2$, $f_1 : E_1 \times B \to B$ be the projection defined as $f_1(e_1, b) = b$, $f_2 : E_2 \times B \to B$ be the projection defined as $f_2(e_2, b) = b$, $\alpha : E_2 \to E_1$ be any map , $\hat{E_1} = E_1 \times B$, $\hat{E_2} = E_2 \times B$, $E_i = \{\hat{E_1}, \hat{E_2}\}$, $f_i = \{f_1, f_2\}$.

Let $p: E_1 \times \mathbb{B} \to E_1$ be the projection defined as $p(e_1, b) = e_1$ for all $(e_1, b) \in E_1 \times \mathbb{B}$, $q: E_2 \times \mathbb{B} \to E_2$ be the projection defined as $q(e_2, b) = e_2$ for all $(e_2, b) \in E_2 \times \mathbb{B}$. Let $k: X \to E_2 \times \mathbb{B}$ be any map, and $h_t: X \to \mathbb{B}$ be any homotopy such that $f_2 \circ k = h_0$.



Define $g_t: X \to E_1 \times B$ as follows $g_t(x) = \{\alpha \circ q \circ k(x), h_t(x)\}$, the g_t satisfy $(1)f_{\mathbf{f}} \circ g_t = h_t \quad \forall t \in I$ (2) $g_0 = (\alpha \times I_B) \circ k$ Therefore $f_i: E_i \times B \to B$ is M-Serre fibration, which is not Serre fibration.

Definition 3.7.

Let (X_i, f_i, Y, α) be M-fiber structure X_i be a CW-complex, and $g: Y' \to Y$ be any continuous map into base Y.

Let
$$X_1' = \{(x_1, y') \in X_1 \times Y' : f_1(x_1) = g(y')\}$$
, and $X_2' = \{(x_2, y') \in X_2 \times Y' : f_2(x_2) = g(y')\}$, then

 $X_i' = \{X_1', X_2'\}$ is called a M-pullback of f_i by g and $f_i' = \{f_1', f_2'\} : X' \to Y'$ is called induced M-function of f_i by g.

Define $\alpha': X_2' \to X_1'$ by $\alpha'(x_2, y') = (\alpha(x_2), y')$.

To show α' is continuous .

Since $\alpha' = \alpha \times I_{\nu'}$, α is continuous and $I_{\nu'}$ is continuous then α' is continuous .

To show is commutative.

$$f_1' \circ \alpha'(x_2, y') = f_1'(\alpha(x_2), y') = y'. \ f_2'(x_2, y') = y'.$$

Therefore $f_1' \circ \alpha' = f_2'$.

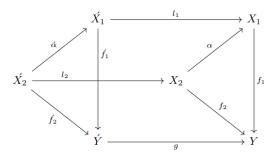


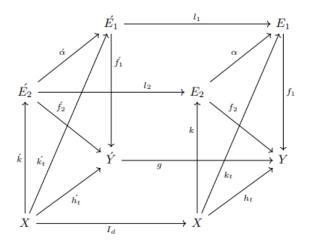
Figure 6: M-Pullback

Theorem 3.8.

The M-pullback of M-Serre fibration is also M-Serre fibration.

proof:

Let $k': X \to E_2'$ and $k: X \to E_2$. Define a homotopy $h_t: X \to Y$ such that $h_0 = f_2 \circ k$, since f_i is M-Serre fibration,



then there exist $k_t: X \to E_1$ such that $f_1 \circ k_t = h_t$ and $k_0 = \alpha \circ k$.

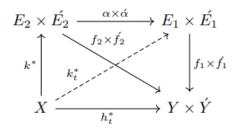
Define $h'_t: X \to Y'$ as $g \circ h'_t = f_1 \circ k_t$ and $h'_0 = f'_2 \circ k'$, then there exist $k'_t: X \to E'_1$, where $k'_t(x) = (k_t(x), h'_t(x))$. Hence $f'_1 \circ k'_t = h'_t$ and $k'_0 = \alpha' \circ k'$. there for $f'_i: E_i \to Y'$ is M-Serre fibration .

Proposition 3.9.

Let $f_i': E_i' \to Y$ be two M-Serre fibration then $f_i \times f_i': E_i \times E_i' \to Y \times Y'$ is also M-Serre fibration.

Proof:

Let X be a CW-complex space Let $K^*: X \to E_2 \times E_2'$ be a map, where $K^*(x) = (k(x), k'(x))$ such that $k: X \to E_2$ and $k': X \to E_2'$ and $h_t^*: X \to Y \times Y'$ define as $h_t^*(x) = \{h_t(x), h_t'(x)\}$ and $(f_2 \times f_2') \circ k^* = h_0$.



Such that $h_t: X \to Y$ and $h'_t: X \to Y'$ since f_i , f'_i are M-Serre fibretion, then there exists a homotopy $k_t: X \to E_1$ such that $f_1 \circ k_t = h_t$, $k_0 = \alpha \circ k$ and a homotopy $k'_t: X \to E'_1$ such that $f'_1 \circ k'_t = h'_t$, $k'_0 = \alpha' \circ k'$.

Now, for h_t^* there exist $K_t^*\colon X\to E_1\times E_1'$ define as $K_t^*(x)=\{\,k_1(x),k_t'(x)\,\}$ such that $(f_i\times f_i')\circ K_t^*(x)=h_t^*(x)$ and $K_0^*=(\alpha\times\alpha^1)\circ K^*$ since X be a CW-complex. Therefore $f_i\times f_i'\colon E_i\times E_i'\to Y\times Y'$ is M-Serre fibration.

Definition 3.10. [4]

Let $p : E \to B$ be a map is said to be have the bundle property (BP) for each $b \in B$, if there exists a space X such that, there is an open neighborhood V of b in B together with a homeomorphism,

$$Q_V: V \times X \rightarrow p^{-1} (V)$$

satisfying the condition

$$P_{O_{V}}(v,x) = v$$
, $(v \in V, x \in X)$

In this case , "the space E is called a bundle space over the base space B relative to the projection $p: E \to B$ " . "The space X will be called a director space . The open sets V and the homeomorphisms Q_V will be called the decomposing neighborhoods and the decomposing functions respectively" . If $p: E \to B$ has the bundle property (BP), then it has the paraCHP.

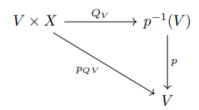


Figure 7: Bundle Property

Definition 3.11.

Let $p: E_1 \to A$ and $q: E_2 \to B$ be a maps said to have the M-bundle property (MBP) if there exists a space X such that, for each $a \in A$ and $b \in B$, have an open neighborhood U,V of b in B together with a homeomorphism,

$$Q_U = U \times X \rightarrow p^{-1} (U)$$

satisfying the condition, $P_{Q_U}(\mu, x) = \mu$, $(\mu \in U, x \in X)$.

And
$$N_V = V \times X \rightarrow q^{-1} (V)$$

satisfying the condition $G_{N_V}(\varepsilon, x) = \varepsilon$, $(\varepsilon \in V, x \in X)$.

The space E_i , where i=1,2 is called a M-bundle space over the base spaces B, A relative to the projection $p:E_1\to A$ and $q:E_2\to B$. The space D will be called a director space . The open sets U, V and the homeomorphisms Q_U , N_V will be called the decomposing neighborhoods and the decomposing functions respectively . If the maps have the M-BP, then its have the M-paraCHP

4 The path lifting propert

In this section we speaking, let $p: E \to B$ be a map and is said to have the path lifting property (PLP by short) if, each path $f: I \to B$ with f(0) = p(e), for each $e \in E$, there exists a path $\omega: I \to E$ such that $\omega(0) = e$, $p\omega = f$, and that ω depends continuously on e and f. For a precise definition, let Ω_p denote the subspace of the product space $E \times B^I$ defined by $\Omega_p = \{(e, f) \in E \times B^I \mid p(e) = f(0)\}$.

Define a map $q: E^I \to \Omega_p$. By taking $q(\omega) = (\omega(0), p\omega)$ for each $\omega: I \to E$ in E^I . Then $p: E \to B$ is said to have the PLP if there exists a map $\lambda: \Omega_p \to E^I$ such that $q\lambda$ is the identity map on Ω_p . It is well-known that a map $p: E \to B$ has the PLP iff it has the ACHP. The map λ in the above definition is called a lifting function for $p: E \to B$. If λ lifts constant paths to constant paths, then it is called a regular lifting function for $p: E \to B$ and the triple $\xi = (E, p, B)$ is called a regular serre fiber space.

Definition 4.1.

Let $(E_i,\ f_i,\mathrm{Y},\alpha)$ be M-fiber structure and $Y^I=\{\omega:\mathrm{I}\to\mathrm{Y}\}$, $\varOmega_{f_i}\subseteq E_i\times Y^I$ be the subspace , $\varOmega_f=(e,\omega)$ $\in E_i\times Y^I$ / $f_i(e)=\omega(0)$. A M-lifting function for $(E_i,\ f_i,\mathrm{Y},\alpha)$ is continuous map $\lambda_i:\ \varOmega_f\to E_i^I$ such that $\lambda_i\ (e,\omega)(0)=e$ and $f\circ\lambda_i\ (e,\omega)(t)=\omega(t)$ for each $(e,\omega)\in\varOmega_f$ and $t\in\mathrm{I}$ thus $\lambda_i=\{\lambda_1,\lambda_2\}$ and $\varOmega_{f_i}=\{\varOmega_{f_1}\ ,\varOmega_{f_2}\}$, where $\lambda_1\colon\varOmega_{f_1}\to E_1^I$ and $\lambda_2\colon\varOmega_{f_2}\to E_2^I$ defind as $\lambda_1\ (e_1,\omega)(0)=e_1$, $f_1\circ\lambda_1\ (e_1,\omega)(t)=\omega(t)$ and $\lambda_2\ (e_2,\omega)(0)=e_2$, $f_2\circ\lambda_2\ (e_2,\omega)(t)=\omega(t)$. Thus a M-lifting function therefore associates .

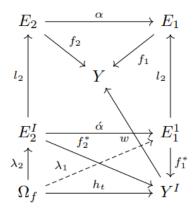


Figure 8: M-Lifting Function

With each $e \in E$, and each bath ω in Y starting at $f_i(e)$ a path λ_1 (e_1 , ω) in E_1 and λ_2 (e_2 , ω) in E_2 , starting at e_2 and e_1 , and is M-cover of ω since the c-topology used in E^I , the continuity of λ is equivalent to that of associated $\lambda_i : \Omega_f \times I \to E_i$.

Example 4.2.

A well-known example of a M-Serre fiber space is the $(E_i$, f_i , Y, α), $Y^I = \{\omega : I \to Y\}$ and $f_1(\omega) = \omega(1)$, $f_2(\omega') = \omega'(1)$, where ω , $\omega' : I \to Y$. A lifting functions $\lambda_1 : \Omega_{f_1} \to E_1^I$ for $f_1 : E_1 \to Y$ and $\lambda_2 : \Omega_{f_2} \to E_2^I$ for $f_2 : E_2 \to Y$, are defined as follows:

$$\lambda_{1}(\sigma,\omega)(t)(s) = \begin{cases} \sigma\left(\frac{4s}{1+t}\right) & \text{if } 0 \leq s \leq \frac{1+t}{4} \\ \omega(4s-t-1) & \text{if } \frac{1+t}{4} \leq s \leq \frac{2+t}{4} \end{cases}$$

$$\lambda_{2}(\sigma',\omega')(t)(s) = \begin{cases} \sigma'(4s-t-2) & \text{if } \frac{2+t}{4} \leq s \leq \frac{3+t}{4} \\ \omega'\left(\frac{4s-t-1}{1-t}\right) & \text{if } \frac{3+t}{4} \leq s \leq 1 \end{cases}$$

Note that this particular λ_1 , λ_2 are not regular.

Definition 4.3.

We say that a space Y admit ϕ -function , if there exists a function $\phi: Y^I \to I$ such that $\phi(\omega) = 0$ iff ω is a constant path .

Proposition 4.4.

If a space Y admit a φ- function, then every M-Serre fiber space $\xi = (E_i, f_i, Y)$ is regular.

Proof:

Since Y admit a ϕ -function , there exists a function $\phi_1: Y^I \to I$ such that $\phi_1(\omega) = 0$ iff ω is constant , and $\phi_2: Y^I \to I$ such that $\phi_2(\sigma) = 0$ iff σ is constant .

Define a functions
$$g: Y^I \to Y^I$$
 by $g(\omega)(t) = u(\frac{t}{\phi_1(\omega)})$ for $t < \phi_1(\omega)$ and $g(\omega)(t) = \omega(1)$ for $\phi_1(\omega) \le t \le 1$, $h: Y^I \to Y^I$ by $h(\sigma)(t) = v(\frac{t}{\phi_2(\sigma)})$ for $t < \phi_2(\sigma)$ and $h(\sigma)(t) = \sigma(1)$ for $\phi_2(\sigma) \le t \le 1$.

Now if λ_i are any lifting function for (E_i, f_i, Y) , where i=1,2 define: $\lambda_1': \Omega_{f_1} \to E_1^I$ as follows:

$$\lambda_1'(e_1, \omega)(t) = \lambda_1(e_1, g(\omega))(\phi_1(\omega) \cdot t)$$
.

And define : $\lambda_2' \colon \Omega_{f_2} \to E_2^I$ as follows:

$$\lambda_2'(e_2, \sigma)(t) = \lambda_2(e_2, h(\sigma))(\phi_2(\sigma) \cdot t)$$
.

Then λ_i' are an regular lifting function for $(E_i$, p_i , X), where i=1,2 hence $\xi=(E_i$, p_i , X) is a regular M-Serre fiber space .

Corollary 4.5.

If X is metric space ,then every M-Serre fiber space (E_i , p_i , X) is regular.

Proof:

Define $\phi: X^I \to I$ as follows: $\phi(u) = \operatorname{diam}(u(I))$ where $u: I \to X$ and diam means diameter. It is easy to see that $\phi(u) = 0$ iff u is constant, hence B admit a ϕ -function, so by the above proposition, every M-serre fiber space (E_i, p_i, X) is regular.

5 Concolusion

- Every Serre fibration is a Mixed Serre fibration .
- Mixed Serre fibration may not be a Serre fibration.
- The M-pullback of M-Serre fibration is also M-Serre fibration.
- Two M-Serre fibration is also M-Serre fibration
- If the space Y admit a ϕ function, then every M-Serre fiber space $\xi = (E_i, f_i, Y)$ is regular.
- If X is metric ,then every M-Serre fiber space (E_i, p_i, X) is regular.

6 References

- [1] Daher W. Al Baydli, "New types of Fibration", M.S.C, Babylon University, 2003.
- [2] Hu, S.T, "Homotopy theory", Academic press,1959.
- [3] Allen Hatcher. "Algebraic topology", Cambridge University, Press, New York, NY, USA, 2010.
- [4] Mustafa, H.J," Some theorems on Fibration and Cofibration", Ph.Dr. Thesis , California University , Los Angeles , 1972.
- [5] Michael Cole, Mixing model structures, Journal of topology and its Applications 153 p1016–103,(2006).
- [6] Stephen A.Mitchell, "Notes on Serre fibration", website link internet, August 2001.

https://sites.math.washington.edu/~mitchell/Atopc/serre.pdf

- [7] Spanir, F,H. "Algebraic topology", Mc Graw-Hill, 1966.
- [8] Soren Hansen, "Lecture note on algebraic topology", website link internet, 2013. (http://www.math.ksu.edu/hansen/CWcomplex.pdf).
- [9] Bui Anh Tuan, Discrete Vector Fields and the Cohomology of Certain Arithmetic and Crystallographic Groups.,PhD thesis, National University of Ireland,Galway