On Structure Fuzzy Fibration

Bushra Zidan Khalaf ¹*, Daher Al Baydli ²

¹Department of Mathematics, College of Education for Pure Science, University of Wasit, IRAQ
²Department of Mathematics, College of Education for Pure Science, University of Wasit, IRAQ

*Corresponding Author: Bushra Zidan Khalaf

DOI: https://doi.org/10.31185/wjps.292
Received 01 December 2023; Accepted 10 February 2024; Available online 30 March 2024

ABSTRACT: The Fuzzy Homotopy Lifting Property (FHLP) is a fundamental concept in algebraic topology, providing a framework for understanding continuous mappings between topological spaces. This property extends the classical notion of homotopy lifting to a more flexible and versatile setting, allowing for a nuanced analysis of maps that may not strictly preserve exact topological structures. This abstract explores the essence of the Fuzzy Homotopy Lifting Property, delving into its theoretical underpinnings, applications, and significance in contemporary mathematics. Beginning with a concise definition of FHLP, we elucidate its key features and establish connections to related concepts such as homotopy theory and topological invariance. We then survey prominent results and developments in the field, highlighting the interplay between FHLP and various areas of mathematics, including differential geometry, category theory, and algebraic topology. Moreover, we discuss practical implications of FHLP in diverse mathematical contexts, ranging from the study of fiber bundles to the analysis of topological data. By examining concrete examples and illustrating fundamental theorems, we illustrate the utility of FHLP in solving theoretical problems and addressing real-world challenges. Furthermore, we explore open questions and avenues for future research, envisioning potential extensions and refinements of FHLP theory to enrich our understanding of topological spaces and mappings.

Keywords: Fuzzy set, Fuzzy covering space, Fuzzy Homotopy Lifting Property, Fuzzy fiber structure, Fuzzy Fibration and Fuzzy lifting function

1. INTRODUCTION AND PRELIMINARIES

The field of fuzzy topology extends classical set theory and topology to accommodate degrees of membership and uncertainty. Fuzzy sets, introduced by Lotfi A. Zadeh in 1965, provide a mathematical framework to handle imprecision and vagueness in data representation. Fuzzy sets generalize classical sets by assigning membership values between 0 and 1, allowing elements to belong to a set to varying degrees [1].

Building upon the notion of fuzzy sets, the concept of fuzzy covering spaces emerges as a natural extension of classical covering space theory. In traditional topology, covering spaces play a pivotal role in understanding the fundamental group and homotopy theory. Fuzzy covering spaces extend this framework to incorporate fuzzy sets, enabling a more flexible treatment of topological structures and mappings [2][3].

Central to the study of fuzzy covering spaces is the notion of fuzzy lifting, which generalizes the classical lifting property in covering space theory. A fuzzy lifting function assigns fuzzy sets to points in the base space, capturing the uncertainty inherent in the mapping between spaces. This concept serves as a cornerstone in defining the Fuzzy Homotopy Lifting Property (FHLP) [4].

The Fuzzy Homotopy Lifting Property, with respect to a fuzzy measure μ, extends the classical homotopy lifting property to fuzzy settings. In essence, FHLP ensures that homotopies between fuzzy maps lift to fuzzy maps in the covering space, preserving the fuzzy structures induced by the mappings. This property is essential for studying the behavior of fuzzy mappings under continuous deformations and holds significant implications for understanding the topology of fuzzy spaces [4].

In the context of fuzzy topology, fibrations play a crucial role in capturing the local and global structure of spaces. A fuzzy fibration generalizes the notion of a fibration to fuzzy settings, providing a framework to analyze the behavior of mappings between fuzzy spaces. Various propositions and theorems characterize the properties of fuzzy fibrations, shedding light on the interplay between fuzzy maps, fuzzy covering spaces, and fuzzy lifting functions [2].
In summary, the concepts of fuzzy sets, fuzzy covering spaces, fuzzy lifting, FHLP, and fuzzy fibrations form the basis of fuzzy topology, offering a versatile framework to study topological spaces in the presence of uncertainty and imprecision. These concepts bridge the gap between classical topology and fuzzy mathematics, opening avenues for exploring the rich interplay between structure and fuzziness in mathematical modeling and analysis.

Definition (1.1): [5][6][7] A fuzzy set in X is a function with domain X and the codomain is values in $I = [0, 1]$, that is an element of I^X. The membership is denoted by: $\mu_A : \{x \in X\} \rightarrow I$.

Definition (1.2): [8][9] Let μ_X and μ_Y be a fuzzy topological spaces and $P : \mu_X \rightarrow \mu_Y$ be a fuzzy continuous mapping. A fuzzy set $A \subseteq \mu_Y$ is said to be evenly fuzzy covered by P if A is fuzzy connected and open fuzzy set, and each fuzzy component of $P^{-1}(A)$ is an open set that is mapped fuzzy homeomorphically onto A by P.

Definition (1.3): A fuzzy fiber structure is a triple (μ_X, P, μ_Y) consisting of two fuzzy topological spaces μ_X, μ_Y and a fuzzy continuous surjection $P : \mu_X \rightarrow \mu_Y$. The space μ_X is called fuzzy total [or fuzzy fibered] space. P is termed the projection, and μ_Y is a fuzzy base space for each $\alpha \in \mu_Y$. Then $F = P^{-1}(y)$ and F is called fuzzy fiber over y. We refer to (μ_X, P, μ_Y) as a fuzzy fiber structure over P.

Definition (1.4): Let $P : \mu_X \rightarrow \mu_Y$ be a fuzzy map. We say that P has Fuzzy Homotopy Lifting Property (F.H.L.P) with respect to μ_Y if and only if given a fuzzy map $u : \mu_X \rightarrow \mu_Y$ and a fuzzy homotopy $h : \mu_Y \rightarrow \mu_Y$ such that $P \circ u = h_0$. Then there exists a fuzzy homotopy $h^\ast : \mu_X \rightarrow \mu_X$ such that:

\begin{align*}
 h_0^\ast &= u \\
 P \circ h_0^\ast &= h_t & \forall y \in \mu_Y \text{ and } t \in I
\end{align*}

Definition (1.5): Let μ_X, μ_Y be two fuzzy topological spaces. A fuzzy fiber structure (μ_X, P, μ_Y) is called fuzzy fiber space or "fuzzy fibration" for class \mathcal{R} of fuzzy spaces if P has the "fuzzy homotopy lifting property" (F.H.L.P) for each $\mu_Y \in \mathcal{R}$.

Example (1.6): Let $P : \mu_Y \times F \rightarrow \mu_Y$ be a fuzzy projection. Then P is a fuzzy fibration. Moreover for $y \in \mu_Y$, the fuzzy fiber over μ_Y is a fuzzy homeomorphic to F. A fuzzy fibration can be used to fuzzy lift a fuzzy path in μ_Y to a fuzzy in μ_X as the following theorem shows.

Theorem (1.7): Let μ_X, μ_Y be two fuzzy topological spaces. If $P : \mu_X \rightarrow \mu_Y$ is a fuzzy fibration, then any fuzzy path u in μ_Y with $u(0) \in P(\mu_X)$ can be fuzzy lifted to a fuzzy path in μ_X.

Proof: Suppose that P is one fuzzy point space. We regard u as a fuzzy homotopy $u : \mathcal{P} \times C \rightarrow \mu_Y$ where a fuzzy point $x \in \mu_X$ such that $P(x) = u(0)$ corresponds to a fuzzy map $p : \mathcal{P} \rightarrow \mu_X$ such that $p(u(\alpha)) = u(\alpha, 0)$, where $\alpha \in \mathcal{P}$. Since P is a fuzzy fibration, it has the fuzzy homotopy lifting property and so there exists a fuzzy path v in μ_X such that $v(0) = x$ and $pv = u$. Hence, v is a fuzzy lifting of u.

FIGURE 1. Fuzzy Fiber Structure

FIGURE 2. Fuzzy Homotopy Lifting Property
2. THE CONCEPT OF UNIQUE FUZZY PATH LIFTING

Definition (2.1): A fuzzy map \(P: \mu_X \to \mu_Y \) is said to have unique fuzzy path lifting if for a fuzzy paths \(u \) and \(v \) in \(\mu_X \) such that \(Pu = Pv \) and \(u(0) = v(0) \),we have \(u = v \).

Lemma (2.2): A fuzzy covering map has unique fuzzy path lifting. This result was proven in the second chapter from lemma (2.6.3).

Lemma (2.3): Suppose that \(P: \mu_X \to \mu_Y \) has unique fuzzy path lifting. Then \(P \) has the unique fuzzy lifting property for fuzzy path connected spaces.

Proof: Let \(\mu_z \) be a fuzzy path connected. Let \(u, v; \mu_z \to \mu_X \) be a fuzzy maps such that \(Pu = P^*v \). Let \(z_0 \in \mu_z \) such that \(u(z_0) = v(z_0) \). We have to show that \(u = v \). Let \(z \) be an arbitrary fuzzy element of \(\mu_z \) and let \(h \) be a fuzzy path in \(\mu_z \) beginning and ending at \(z_0 \) and \(z \) respectively.

Consider the fuzzy paths \(uh \) and \(vh \) in \(\mu_X \). These are fuzzy lifting of the some fuzzy path in \(\mu_Y \) and have the same beginning. Since \(P \) has unique fuzzy path lifting, we observe that \(uh = vh \). Then \(u(z) = (uh)(1) = (vh)(1) = v(z) \). Since \(z \in \mu_z \) is a fuzzy arbitrary, \(u = v \). The following theorem shows certain connection between a fuzzy fibration and unique fuzzy path lifting.

Theorem (2.4): A fuzzy fibration has unique fuzzy path lifting if and only if every fuzzy fiber has no non-null fuzzy path.

Proof: Let \(\mu_X \) and \(\mu_Y \) be any fuzzy topological spaces. Let \(P: \mu_X \to \mu_Y \) be a fuzzy fibration with unique fuzzy path lifting. Let \(y \in \mu_Y \) and assume that \(u \) be a fuzzy path in the fuzzy fiber \(P^{-1}(y) \). Let \(v \) be a null fuzzy path in \(\mu_Y \) such that \(u(0) = v(0) \). Then \(Pu = Pv \) and this implies \(u = v \) and so \(u \) is a null fuzzy path.

Conversely: Suppose that \(P: \mu_X \to \mu_Y \) is a fuzzy fibration such that every fuzzy fiber has no non-null fuzzy path. Let \(u \) and \(v \) be a fuzzy path in \(\mu_X \) such that \(Pu = Pv \) and \(u(0) = v(0) \). For \(t \in C \), let \(h_t \) be the fuzzy path in \(\mu_X \) defined by:

\[
\begin{align*}
h_t &= \begin{cases}
 u((1 - 2x)t) & 0 \leq x \leq \frac{1}{2} \\
 v((2x - 1)t) & \frac{1}{2} \leq x \leq 1
\end{cases}
\end{align*}
\]

In this way obtain a fuzzy path \(h_t \) in \(\mu_X \) from \(u(t) \) to \(v(t) \) such that \(Ph_t \) becomes a closed fuzzy path in \(\mu_Y \) which is fuzzy homotopic relative to \(C \) to the null fuzzy path at \(P(u(t)) \). From the fuzzy homotopy lifting property of \(P \) we see that there is a fuzzy map \(F': C \times C \to \mu_X \) such that \(F'(t', 0) = h_t(0) \) and such that \(F' \) fuzzy maps \((0 \times C) \cup (C \times 1) \) to the fuzzy fiber \(P^{-1}(P(u(t))) \). By hypotheses, \(P^{-1}(P(u(t))) \) has no non-null fuzzy paths. Hence, \(F' \) fuzzy maps \(0 \times C, C \times 1 \) and \(1 \times C \) to a single fuzzy point and this implies that \(F'(0, 0) = F'(1, 0) \). Thus \(h_t(0) = \gamma_1(1) \) and \(u(t) = v(t) \). This proves the theorem.

Theorem (2.5): Let \((\mu_X, \mu_X, P, \mu_Y) \) and \((\mu_Y, q, \mu_Y, \mu_Y) \) be fuzzy fibration then \((\mu_X \times \mu_Y, P \times q, \mu_Y, \mu_Y) \) is also fuzzy fibration.

Proof: Let \(\mu_X, \mu_Y, \mu_Z, \mu_U \) and \(\mu_C \) be fuzzy topological spaces. Let \(u: \mu_Z \to \mu_X \) and \(u': \mu_Z \to \mu_Y \) be fuzzy maps. Define \(u': \mu_Z \to \mu_X \times \mu_Y \) be a fuzzy map by \(u'(z) = (u(z), u'(z)) \), and \(h_t: \mu_Z \to \mu_Y \) and \(h_t': \mu_Z \to \mu_Y \) be any fuzzy maps. Define \(h_t: \mu_Z \to \mu_Y \times \mu_C \) be \(h_t(z) = (h(z), h'(z)) \) and \((P \times q) \circ u' = h_0' \). Since \(P, q \) are fuzzy fibrations, then there exists \(u_t: \mu_Z \to \mu_X \) such that \(P \circ u_t = h_t \) and \(u_0 = u \) and \(u_t: \mu_Z \to \mu_Y \) such that \(q \circ u_t = h_t \) and \(u_0' = u' \). Now for \(h_t \) there exists \(u_t: \mu_Z \to \mu_X \times \mu_Y \) define as \(u_t(z) = (u(z), u'(z)) \) such that:

\[
\begin{align*}
 (P \times q) \circ u_0' &= h_0' \quad \text{(4)} \\
 u_0 = u' \quad \text{(5)}
\end{align*}
\]
Then \(P \times q; \mu_X \times \mu_L \to \mu_Y \times \mu_C \) has fuzzy homotopy lifting property with respect to \(\mu_Z \). Therefore \(P \times q \) is a fuzzy fibration.

Definition (2.6): Let \((\mu_X, P, \mu_Y)\) be a fuzzy fiber structure, and let \(\mu_Z: (\alpha: I \to \mu_Y) \to \mu_X \times \mu_Z \) be a fuzzy subspace \(\gamma_P = \{(x, \alpha) \in \mu_X \times \mu_Z | P(x) = \alpha(0)\} \) of the Cartesian product. A fuzzy lifting function for \((\mu_X, P, \mu_Y)\) is a fuzzy continuous map \(\lambda: \gamma_P \to \mu_Y \) such that \(\lambda(x, \alpha)(0) = x \) and \(P \circ \lambda(x, \alpha)(t) = \alpha(t) \) for each \((x, \alpha) \in \gamma_P \) and \(t \in I \), we say that \(\lambda \) is a fuzzy regular if \(\lambda(x, \alpha) \) is a constant fuzzy path whenever \(\alpha \) is a constant fuzzy path.

Theorem (2.8): The fuzzy fiber structure \((\mu_X, P, \mu_Y)\) is a fuzzy fibration if and only if a fuzzy lifting function exists.

Proof: If \(P \) is a fuzzy fibration. Let \(\mu_Z = \gamma_P \) and \(u: \gamma_P \to \mu_X \) and \(h: \gamma_P \to \mu_Y \), defined by \(u(x, \alpha) = x \) and \(h(t, x, \alpha) = \alpha(t) \) then \(h_0(x, \alpha) = \alpha(0) = P(x) = P \circ u(x, \alpha) \).

Remark (2.7): A fuzzy map \(P: \mu_X \to \mu_Y \) is a fuzzy fibration if and only if there exist a fuzzy lifting function for \(P \).

Theorem (2.8): The fuzzy fiber structure \((\mu_X, P, \mu_Y)\) is a fuzzy fibration if and only if a fuzzy lifting function exists.
There exist a fuzzy map $h^*_t: \gamma \rightarrow \mu_X$ be a fuzzy homotopy lifting such that $h^*_t(x, \alpha) = u(x, \alpha) = x$ and $P \circ h^*_t = h_t$. h^*_t defines a fuzzy lifting function λ for P by $\lambda(x, \alpha)(t) = h^*_t(x, \alpha)$. λ is a fuzzy lifting function which is whenever h^*_t is stationary with h_t.

Conversely: If P has a fuzzy lifting function. Let $u: \mu_Z \rightarrow \mu_X$ be given and $h_t: \mu_Z \rightarrow \mu_Y$ be a fuzzy homotopy such that $P \circ u = h_0$, for each $z \in \mu_Z$, let $\alpha_z: I \rightarrow \mu_Y$ be defined by $\alpha_z(t) = h_t(z)$. Defined a fuzzy map $h^*_t: \mu_Z \rightarrow \mu_X$ as follows:

$$h^*_t(z) = \lambda(u(z), \alpha_z(t))$$

(6)

$$P \circ h^*_t = h_t$$

(7)

Therefore P has a fuzzy fibration.

CONFLICTS OF INTEREST

In this paper we have some result as shown below: We illustrated the concept of fuzzy set and fuzzy covering space in homotopy theory. Also, we gave a new definition of fuzzy homotopy lifting property and fuzzy fibration. In additions we proved a fuzzy fibration has unique fuzzy path lifting. And we have a new definition of fuzzy lifting function and prove the fuzzy fiber structure is a fuzzy fibration.

REFERENCES