Wasit Journal for Pure Science

Journal Homepage: https://wjps.uowasit.edu.iq/index.php/wjps/indexe-1SSN: 2790-5241 p-ISSN: 2790-5233

Three Classes of Soft Functions Via Soft S_p -Open Sets and Soft S_p -Closed Sets

Payman M. Mahmood¹¹, Hardi A. Shareef ², Halgwrd M. Darwesh³

¹Department of Mathematics, College of Education for Pure Sciences, University of Kirkuk, IRAQ ^{2, 3}Department of Mathematics, College of Science, University of Sulaimani, Kurdistan-region, IRAQ

*Corresponding Author: Payman M. Mahmood

DOI: https://doi.org/ 10.31185/wjps.288

Received 10 December 2023; Accepted 03 January 2024; Available online 30 March 2024

ABSTRACT: This paper introduces novel concepts of soft functions known as soft S_p -irresolute, soft S_p -open, and soft S_p -closed function as well as some of their properties. The interrelationships of this newly defined soft functions with other types of soft functions are investigated, and the behaviors of soft S_p -irresolute (respectively, soft S_p -open, and soft S_p -closed) functions under soft composition are studied. Finally, using soft S_p -open sets, the concepts of soft S_p -Hausdorff space are introduced and investigated.

Keywords: soft S_p -open set, soft S_p -closed set, soft S_p -irresolute function, soft S_p -Hausdorff space, soft S_p -open function, soft S_p -closed function.

1. INTRODUCTION AND PRELIMINARIES

To deal with ambiguous items, Molodtsov provided the following definition of soft sets [1]: Assume X is a universe set, P(X) is the power set of X, and \mathcal{P} is a set of parameters. A pair $(A,\mathcal{P})=\{(e,A(e))\colon e\in\mathcal{P},A(e)\in P(X)\}$ is known as a soft set over X, where $A\colon\mathcal{P}\to P(X)$ is a function. The family of all soft sets over the universal set X with the set of parameters \mathcal{P} is indicated by $\tilde{S}S(X,\mathcal{P})$. In particular, (X,\mathcal{P}) is indicated by \tilde{X} . By Maji et al. [2], was defined a null soft set, indicated by $\tilde{\emptyset}$, if $A(e)=\emptyset$, $\forall e\in\mathcal{P}$ and an absolute soft set, indicated by \tilde{X} , if $A(e)=X, \forall e\in\mathcal{P}$ and the soft complement of a soft set (A,\mathcal{P}) is indicated by $\tilde{X}\setminus (A,\mathcal{P})=(A^c,\mathcal{P})$ where $A^c\colon\mathcal{P}\to P(X)$ is a function defined as $A^c(e)=X\setminus A(e), \forall e\in\mathcal{P}$. The soft union of $(A_{\vartheta},\mathcal{P})\in \tilde{S}S(X,\mathcal{P})$, $\forall \vartheta\in \aleph$ is a soft set $(A,\mathcal{P})\in \tilde{S}S(X,\mathcal{P})$, where $A(e)=\tilde{U}_{\vartheta\in\aleph}A_{\vartheta}(e), \forall e\in\mathcal{P}$, \aleph is a random collection of index and the soft intersection of $(A_{\vartheta},\mathcal{P})\in \tilde{S}S(\tilde{X})$, $\forall \vartheta\in \aleph$ is a soft set $(A,\mathcal{P})\in \tilde{S}S(X,\mathcal{P})$, where $A(e)=\tilde{U}_{\vartheta\in\aleph}A_{\vartheta}(e)$, $\forall e\in\mathcal{P}$, were defined in [3]. A soft point [3] [4] (A,\mathcal{P}) is a soft set defined as $A(e)=\{x\}$ and $A(e)=\emptyset$, $\forall e\in\mathcal{P}\setminus \{e\}$, we indicated by \tilde{e}_x such that $\tilde{e}_x=(e,\{x\})$, where $x\in X$ and $x\in\mathcal{P}$. $x\in\mathcal{E}$ and $x\in\mathcal{P}$ and $x\in\mathcal{E}$ and x

The concept of soft topological space $(\tilde{S}TS)$ over X was defined in [4] is $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ (simply, \tilde{X}), where $\tilde{\tau} \subseteq \tilde{S}S(X, \mathcal{P})$ is known as soft topology on \tilde{X} , if $\tilde{\emptyset}, \tilde{X} \in \tilde{\tau}$, and $\tilde{\tau}$ is closed under finite soft intersection and arbitrary soft union. The members of $\tilde{\tau}$ are referred to as soft open sets. The soft complements of every soft open or members of $\tilde{\tau}^c$ are known as soft closed sets [5]. A soft set (A, \mathcal{P}) that is both soft open and soft closed is referred to as a soft clopen set. The family of all soft clopen sets in \tilde{X} is indicated by $\tilde{S}CO(\tilde{X})$. The triple $(\tilde{Z}, \tilde{\tau}_{\tilde{Z}}, \mathcal{P})$ is a soft subspace of a $\tilde{S}TS$ $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ where $Z \subseteq X$, $\tilde{\tau}_Z = \{(A_Z, \mathcal{P}) = \tilde{Z} \cap (A, \mathcal{P}); (A, \mathcal{P}) \in \tilde{\tau}\}$ is known as the soft relative topology on \tilde{Z} , and $A_Z(e) = \tilde{Z} \cap A(e)$, for all $e \in \mathcal{P}$ [4].

In the context of soft classes, Athar Kharal and B. Ahmad [6] defined a soft mapping and investigated some characteristics of soft set images and inverse images. The references ([7], [8] [9], [10], [11], [12], [13]) introduced and

studied various types of soft functions, such as: soft irresolute, soft semi-open (closed), soft open (closed), soft α -open (closed), soft pre-open (closed), soft β -open (closed), and soft β _c-open.

However, The structure of this paper is as follows:

In Section 2, we define and introduce soft S_p -irresolute functions via soft S_p -(respectively, open [14] and closed [15]) sets. Some of its basic properties and relationships with some other types of soft functions are given, and we study the behavior of soft S_p -irresolute functions under soft composition. In addition to these, we introduce the notions of soft S_p -Hausdorff space, and study their topological properties.

In Section 3, we use soft S_p -open [14] (respectively, soft S_p -closed [15]) sets to define and study new types of soft functions known as soft S_p -open (respectively, soft S_p -closed) as a strong form of soft semi-open (respectively, soft semi-closed) function. Some of its basic properties and relationships with some other types of soft functions are given, and we study the behavior of soft S_p -open (respectively, soft S_p -closed) functions under soft composition.

Throughout the paper, $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ and $(\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ or simply \tilde{X} and \tilde{Y} denoted soft topological spaces on which no separation axioms are assumed unless mentioned. $\tilde{s}cl(A, \mathcal{P})$ (respectively, $\tilde{s}int(A, \mathcal{P})$) is soft closure (respectively, soft interior) of (A, \mathcal{P}) .

Further important terms and results are pointed out in the coming sections.

Definition 1.1. A $(A, \mathcal{P}) \subseteq (\tilde{X}, \tilde{\tau}, \mathcal{P})$ is known as a soft semi- [7] (respectively, pre- [16], α - [9], b- [10], β - [17], and regular [16]) open set, if $(A, \mathcal{P}) \subseteq \tilde{s}cl(\tilde{s}int(A, \mathcal{P}))$ (respectively, $(A, \mathcal{P}) \subseteq \tilde{s}int(\tilde{s}cl(A, \mathcal{P}))$, $(A, \mathcal{P}) \subseteq \tilde{s}int(\tilde{s}cl(\tilde{s}int(A, \mathcal{P})))$, $(A, \mathcal{P}) \subseteq \tilde{s}cl(\tilde{s}int(\tilde{s}cl(A, \mathcal{P})))$, and $(A, \mathcal{P}) = \tilde{s}int(\tilde{s}cl(A, \mathcal{P}))$.

The family of all soft semi- (respectively, pre-, α -, b-, β -, and regular) open sets in \tilde{X} is indicated by $\tilde{S}SO(\tilde{X})$ (respectively, $\tilde{S}PO(\tilde{X})$, $\tilde{S}AO(\tilde{X})$, $\tilde{S}BO(\tilde{X})$, $\tilde{S}BO(\tilde{X})$ and $\tilde{S}RO(\tilde{X})$).

Definition 1.2. The soft complement of a soft semi- (respectively, pre-, α -, b-, β -, and regular) open set is known as soft semi- [7] (respectively, pre- [16], α - [9], b- [10], β - [17], and regular [18]) closed. The family of all soft semi-(respectively, pre-, α -, b-, β -, and regular) closed sets in \tilde{X} is indicated by $\tilde{S}SC(\tilde{X})$ (respectively, $\tilde{S}PC(\tilde{X})$, $\tilde{S}\alpha C(\tilde{X})$, $\tilde{S}\beta C(\tilde{X})$, and $\tilde{S}RC(\tilde{X})$).

Definition 1.3. A $\tilde{S}TS$ $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ and $(A, \mathcal{P}) \cong (\tilde{X}, \tilde{\tau}, \mathcal{P})$ is known as a soft S_p -open [14] (respectively, $\tilde{S}S_c$ -open [19], and soft β_c -open [13]) set, if $(A, \mathcal{P}) \in \tilde{S}SO(\tilde{X})$ (respectively, $\tilde{S}SO(\tilde{X})$, and $\tilde{S}\betaO(\tilde{X})$) and $\forall \tilde{e_x} \in (A, \mathcal{P})$, there is $(W, \mathcal{P}) \in \tilde{S}PC(\tilde{X})$ (respectively, $\tilde{\tau}^c$, and $\tilde{\tau}^c$) such that $\tilde{e_x} \in (W, \mathcal{P}) \cong (A, \mathcal{P})$. The family of all soft S_p - (respectively, $\tilde{S}S_c$ -, and soft β_c -) open subsets of \tilde{X} is indicated by $\tilde{S}S_pO(\tilde{X})$ (respectively, $\tilde{S}S_cO(\tilde{X})$).

Definition 1.4. The soft complement of a soft S_p -open set is known as soft S_p -closed [15]. The family of all soft S_p -closed sets in \tilde{X} is indicated by $\tilde{S}S_pC(\tilde{X})$.

Definition 1.5. Let $(A, \mathcal{P}) \cong (\tilde{X}, \tilde{\tau}, \mathcal{P})$. Then:

- (1) $\tilde{s}S_p cl(A, \mathcal{P}) = \tilde{\cap} \{(C, \mathcal{P}): (C, \mathcal{P}) \in \tilde{S}S_p C(\tilde{X}), (A, \mathcal{P}) \subseteq (C, \mathcal{P})\}$. Clearly, $\tilde{s}S_p cl(A, \mathcal{P})$ is the smallest soft S_p -closed set contains (A, \mathcal{P}) [15].
- (2) $\tilde{s}S_pint(A,\mathcal{P}) = \tilde{U}\{(0,\mathcal{P}): (0,\mathcal{P}) \in \tilde{S}S_pO(\tilde{X}), (0,\mathcal{P}) \subseteq (A,\mathcal{P})\}$. Clearly, $\tilde{s}S_pint(A,\mathcal{P})$ is the largest soft S_p -open set contained in (A,\mathcal{P}) [15].
- (3) $\tilde{s}S_nBd(A,\mathcal{P}) = \tilde{s}S_ncl(A,\mathcal{P}) \cap \tilde{s}S_ncl(\tilde{X}\tilde{\setminus}(A,\mathcal{P}))$ [15].
- $(4) \ \tilde{s}Bd(A,\mathcal{P}) = \tilde{s}cl(A,\mathcal{P}) \ \widetilde{\cap} \ \tilde{s}cl(\tilde{X}\backslash (A,\mathcal{P})) \ [5].$

Definition 1.6. A $\tilde{S}TS$ (\tilde{X} , $\tilde{\tau}$, \mathcal{P}) is known as:

- (1) Soft extremally disconnected [20], if $\tilde{s}cl(A, \mathcal{P}) \in \tilde{\tau}$, $\forall (A, \mathcal{P}) \in \tilde{\tau}$. Or, $\tilde{s}int(A, \mathcal{P}) \in \tilde{\tau}^c$, $\forall (A, \mathcal{P}) \in \tilde{\tau}^c$.
- (2) Soft locally indiscrete [21], if $(A, \mathcal{P}) \in \tilde{\tau}^c$, $\forall (A, \mathcal{P}) \in \tilde{\tau}$. Or, $(A, \mathcal{P}) \in \tilde{\tau}$, $\forall (A, \mathcal{P}) \in \tilde{\tau}^c$.
- (3) Soft submaximal [16], if each soft dense subset of \tilde{X} is soft open set.
- (4) Soft T_1 -space [22], if $\widetilde{e_x}$, $\widetilde{e_y} \in \widetilde{SP}(\widetilde{X})$ such that $\widetilde{e_x} \neq \widetilde{e_y}$, there are (A_1, \mathcal{P}) , $(A_2, \mathcal{P}) \in \widetilde{\tau}$ such that $\widetilde{e_x} \in (A_1, \mathcal{P})$, $\widetilde{e_y} \notin (A_1, \mathcal{P})$ and $\widetilde{e_y} \in (A_2, \mathcal{P})$, $\widetilde{e_x} \notin (A_2, \mathcal{P})$.

- (5) Soft T_2 -space or soft Hausdorff space [22], if $\widetilde{e_x}$, $\widetilde{e_y} \in \widetilde{SP}(\widetilde{X})$ such that $\widetilde{e_x} \neq \widetilde{e_y}$, there are (A_1, \mathcal{P}) , $(A_2, \mathcal{P}) \in \widetilde{\tau}$ such that $\widetilde{e_x} \in (A_1, \mathcal{P})$, $\widetilde{e_y} \in (A_2, \mathcal{P})$, and $(A_1, \mathcal{P}) \cap (A_2, \mathcal{P}) = \emptyset$.
- (6) Soft semi- T_2 -space or soft semi-Hausdorff space [23], if $\widetilde{e_x}, \widetilde{e_y} \in \widetilde{SP}(\widetilde{X})$ such that $\widetilde{e_x} \neq \widetilde{e_y}$, there are $(A_1, \mathcal{P}), (A_2, \mathcal{P}) \in \widetilde{SSO}(\widetilde{X})$ such that $\widetilde{e_x} \in (A_1, \mathcal{P}), \widetilde{e_y} \in (A_2, \mathcal{P})$, and $(A_1, \mathcal{P}) \cap (A_2, \mathcal{P}) = \widetilde{\emptyset}$.
- (7) Soft regular space [22], if $(C, \mathcal{P}) \in \tilde{\tau}^c$ and $\tilde{e_x} \in \tilde{SP}(\tilde{X})$ such that $\tilde{e_x} \notin (C, \mathcal{P})$, there exist $(A_1, \mathcal{P}), (A_2, \mathcal{P}) \in \tilde{\tau}$ such that $\tilde{e_x} \in (A_1, \mathcal{P}), (C, \mathcal{P}) \subseteq (A_2, \mathcal{P})$ and $(A_1, \mathcal{P}) \cap (A_2, \mathcal{P}) = \emptyset$.
- (8) Soft semi-regular space [24], if $\forall (A, \mathcal{P}) \in \tilde{\tau}$ and $\forall \tilde{e_x} \in (A, \mathcal{P})$, there is $(0, \mathcal{P}) \in \tilde{S}RO(\tilde{X})$ such that $\tilde{e_x} \in (0, \mathcal{P}) \subseteq (A, \mathcal{P})$.

Definition 1.7. Let $\tilde{S}S(X,\mathcal{P})$, $\tilde{S}S(Y,\hat{\mathcal{P}})$ be the families of all soft sets, $u: X \to Y$ and $p: \mathcal{P} \to \hat{\mathcal{P}}$ be functions. Then, a soft function $\tilde{f}_{pu}: \tilde{S}S(X,\mathcal{P}) \to \tilde{S}S(Y,\hat{\mathcal{P}})$ is defined as:

(1) If $(A, \mathcal{P}) \in \tilde{S}S(X, \mathcal{P})$, the soft image of (A, \mathcal{P}) under \tilde{f}_{pu} , written as $\tilde{f}_{pu}(A, \mathcal{P}) = (\tilde{f}_{pu}(A), p(\mathcal{P})) \in \tilde{S}S(Y, \hat{\mathcal{P}})$, $\forall \beta \in \hat{\mathcal{P}}$ defined as:

$$\tilde{f}_{pu}(A)(\beta) = \begin{cases}
u(\bigcup_{\alpha \in p^{-1}(\beta) \cap \mathcal{P}} A(\alpha)), & \text{if } p^{-1}(\beta) \cap \mathcal{P} \neq \emptyset \\
\widetilde{\emptyset}, & \text{otherwise}
\end{cases} [6], \text{ so if } \widetilde{e_x} \in \widetilde{S}P(\widetilde{X}), \text{ then } \widetilde{f}_{pu}(\widetilde{e_x}) = p(e)_{u(x)}$$
[25].

(2) If $(B, \acute{\mathcal{P}}) \in \widetilde{S}S(Y, \acute{\mathcal{P}})$, the soft inverse image of $(B, \acute{\mathcal{P}})$ under f_{pu} , written as $\widetilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}) = (\widetilde{f}_{pu}^{-1}(B), p^{-1}(\acute{\mathcal{P}})) \in \widetilde{S}S(X, \mathcal{P}), \forall \alpha \in \mathcal{P} \text{ defined as:}$

$$\tilde{f}_{pu}^{-1}(B)(\alpha) = \begin{cases} u^{-1}\left(B(p(\alpha))\right), & p(\alpha) \in \mathcal{P} \\ \widetilde{\emptyset}, & otherwise \end{cases} [6], \text{ so if } \widetilde{e_y} \widetilde{\in} \widetilde{S}P(\widetilde{Y}) \text{ and } \widetilde{f}_{pu} \text{ is soft bijective, then } \widetilde{f}_{pu}^{-1}\left(\widetilde{e_y}\right) = p^{-1}(\acute{e})_{u^{-1}(y)} [25].$$

The soft function \tilde{f}_{pu} : $\tilde{S}S(X, \mathcal{P}) \to \tilde{S}S(Y, \hat{\mathcal{P}})$ is known as soft injective (respectively, soft surjective, soft bijective) if u, p are both injective (respectively, surjective, bijective) functions [26].

Theorem 1.8. ([6] [3] [26]) Let \tilde{f}_{pu} : $\tilde{S}S(X,\mathcal{P}) \to \tilde{S}S(Y,\hat{\mathcal{P}})$ be a soft function, the following are true:

- (1) $\tilde{f}_{pu}((A_1, \mathcal{P}) \cap (A_2, \mathcal{P})) \subseteq \tilde{f}_{pu}(A_1, \mathcal{P}) \cap \tilde{f}_{pu}(A_2, \mathcal{P}), \forall (A_1, \mathcal{P}), (A_2, \mathcal{P}) \in \tilde{SS}(X, \mathcal{P}),$ the equality holds if \tilde{f}_{pu} is soft injective.
- (2) $\tilde{Y} \setminus \tilde{f}_{pu}(A, \mathcal{P}) \cong \tilde{f}_{pu}(\tilde{X} \setminus (A, \mathcal{P})), \forall (A, \mathcal{P}) \cong \tilde{S}S(X, \mathcal{P}), \text{ the equality holds if } \tilde{f}_{pu} \text{ is soft surjective.}$
- $(3) \quad \tilde{f}_{pu}^{-1}(\tilde{Y} \tilde{\setminus} (B, \mathcal{P})) = \tilde{X} \tilde{\setminus} \tilde{f}_{pu}^{-1}(B, \mathcal{P}), \, \forall \, (B, \mathcal{P}) \, \tilde{\in} \, \tilde{S}S(\tilde{Y}, \mathcal{P}).$
- (4) $\tilde{f}_{pu}(\tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}})) \cong (B, \acute{\mathcal{P}}), \forall (B, \acute{\mathcal{P}}) \approx \tilde{S}S(\tilde{Y}, \acute{\mathcal{P}})$, the equality holds if \tilde{f}_{pu} is soft surjective.
- (5) $(A, \mathcal{P}) \cong \tilde{f}_{pu}^{-1}(\tilde{f}_{pu}(A, \mathcal{P})), \forall (A, \mathcal{P}) \in \tilde{SS}(X, \mathcal{P}),$ the equality holds if \tilde{f}_{pu} is soft injective.

Definition 1.9. A soft function \tilde{f}_{pu} : $(\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ is known as soft continuous [3] (respectively, soft semi-continuous [7], soft pre-continuous [9], soft α-continuous [9], soft β-continuous [12], soft b-continuous [10], soft perfectly continuous [27], soft RC-continuous [27], $\tilde{S}S_c$ -continuous [19], and soft S_p -continuous [28]), if $\tilde{f}_{pu}^{-1}(B, \hat{\mathcal{P}}) \in \tilde{\tau}$ (respectively, $\tilde{S}SO(\tilde{X})$, $\tilde{S}PO(\tilde{X})$, $\tilde{S}AO(\tilde{X})$, $\tilde{S}BO(\tilde{X})$, $\tilde{S}BO(\tilde{X})$, $\tilde{S}RC(\tilde{X})$, $\tilde{S}S_cO(\tilde{X})$, \tilde

Definition 1.10. A soft function $\tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ is known as:

- (1) Soft homeomorphism [8] if \tilde{f}_{pu} is soft bijective and \tilde{f}_{pu} , \tilde{f}_{pu}^{-1} are soft continuous.
- (2) Soft irresolute [7] if $\tilde{f}_{pu}^{-1}(B, \mathcal{P}) \in \tilde{S}SO(\tilde{X}), \forall (B, \mathcal{P}) \in \tilde{S}SO(\tilde{Y}).$

Definition 1.11. A soft function \tilde{f}_{pu} : $(\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ is known as soft open [8] (respectively, soft semi-open [7], soft α-open [9], soft pre-open [9], soft b-open [10], soft β-open [11], and soft β_c -open [13]), if $\tilde{f}_{pu}(A, \mathcal{P}) \in \tilde{\sigma}$ (respectively, $\tilde{S}SO(\tilde{Y})$, $\tilde{S}AO(\tilde{Y})$, $\tilde{S}BO(\tilde{Y})$, $\tilde{S}BO(\tilde{Y})$, $\tilde{S}BO(\tilde{Y})$, and $\tilde{S}\beta_cO(\tilde{Y})$, $\tilde{S}BO(\tilde{Y})$, $\tilde{S}BO(\tilde{Y$

Definition 1.12. A soft function \tilde{f}_{pu} : $(\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ is known as soft closed [8] (respectively, soft semi-closed [7], soft α-closed [9], soft pre-closed [9], soft b-closed [10], and soft β-closed [11]), if $\tilde{f}_{pu}(A, \mathcal{P}) \in \tilde{\sigma}^c$ (respectively, $\tilde{S}SC(\tilde{Y})$, $\tilde{S}\alpha C(\tilde{Y})$, $\tilde{S}bC(\tilde{Y})$, $\tilde{S}bC(\tilde{Y})$, and $\tilde{S}\beta C(\tilde{Y})$), $\forall (A, \mathcal{P}) \in \tilde{\tau}^c$.

Definition 1.13. A soft function $\tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ is known as soft irresolute open [29] (respectively, soft irresolute closed [29]), if $\tilde{f}_{pu}(A, \mathcal{P}) \in \tilde{SSO}(\tilde{Y})$ (respectively, $\tilde{SSC}(\tilde{Y})$), $\forall (A, \mathcal{P}) \in \tilde{SSO}(\tilde{X})$ (respectively, $\tilde{SSC}(\tilde{X})$).

Definition 1.14. A soft function \tilde{f}_{pu} : $(\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ is known as soft almost open [30] (respectively, soft almost semi-open [24], soft almost α-open [31], soft almost pre-open [32], soft almost b-open [33], and soft almost β-open [34]) if $\tilde{f}_{pu}(A, \mathcal{P}) \in \tilde{\sigma}$ (respectively, $\tilde{S}SO(\tilde{Y})$, $\tilde{S}aO(\tilde{Y})$, $\tilde{S}PO(\tilde{Y})$, $\tilde{S}bO(\tilde{Y})$, and $\tilde{S}\betaO(\tilde{Y})$, $\forall (A, \mathcal{P}) \in \tilde{S}RO(\tilde{X})$.

Definition 1.15. [26] Let $\tilde{S}S(X,\mathcal{P})$, $\tilde{S}S(Y,\hat{\mathcal{P}})$, and $\tilde{S}S(W,\hat{\mathcal{P}})$ be the families of all soft sets, \tilde{f}_{pu} : $\tilde{S}S(X,\mathcal{P}) \to \tilde{S}S(Y,\hat{\mathcal{P}})$ and \tilde{g}_{av} : $\tilde{S}S(Y,\hat{\mathcal{P}}) \to \tilde{S}S(W,\hat{\mathcal{P}})$ be two soft functions. Then,

- (1) soft composition is a soft function $\tilde{g}_{qv} \circ \tilde{f}_{pu} : \tilde{S}S(X,\mathcal{P}) \to \tilde{S}S(W,\mathcal{P})$ is defined as $(\tilde{g}_{qv} \circ \tilde{f}_{pu})(A,\mathcal{P}) = \tilde{g}_{qv}(\tilde{f}_{pu}(A,\mathcal{P})), \ \forall \ (A,\mathcal{P}) \in \tilde{S}S(X,\mathcal{P}) \text{ where } u: X \to Y, \ p: \mathcal{P} \to \mathcal{P}, \ v: Y \to W, \ \text{and} \ q: \mathcal{P} \to \mathcal{P}.$
- (2) $(\tilde{g}_{qv} \circ \tilde{f}_{pu})^{-1}(A, \ddot{\mathcal{P}}) = \tilde{f}_{pu}^{-1}(\tilde{g}_{qv}^{-1}(A, \ddot{\mathcal{P}}))$, $\forall (A, \ddot{\mathcal{P}}) \in \tilde{S}S(W, \ddot{\mathcal{P}})$, if $\tilde{g}_{qv} \circ \tilde{f}_{pu}: \tilde{S}S(X, \mathcal{P}) \to \tilde{S}S(W, \ddot{\mathcal{P}})$ is a soft composition function.

Proposition 1.16. [23] Let $(A, \mathcal{P}) \subseteq (\tilde{X}, \tilde{\tau}, \mathcal{P})$. Then, $(A, \mathcal{P}) \in \tilde{S}SO(\tilde{X})$ iff there is $(0, \mathcal{P}) \in \tilde{\tau}$ such that $(0, \mathcal{P}) \subseteq (A, \mathcal{P}) \subseteq \tilde{s}cl(0, \mathcal{P})$.

Proposition 1.17. Let \tilde{f}_{pu} : $(\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ be a soft function. Then:

- (1) \tilde{f}_{pu} is soft continuous iff $\tilde{f}_{pu}(\tilde{s}cl(A,\mathcal{P})) \cong \tilde{s}cl(\tilde{f}_{pu}(A,\mathcal{P})), \forall (A,\mathcal{P}) \cong \tilde{X}$ [35].
- (2) \tilde{f}_{pu} is soft homeomorphism iff \tilde{f}_{pu} is soft bijective, soft continuous and soft open [8].
- (3) \tilde{f}_{pu} is soft homeomorphism iff $\tilde{f}_{pu}(\tilde{s}cl(A,\mathcal{P})) = \tilde{s}cl(\tilde{f}_{pu}(A,\mathcal{P})), \forall (A,\mathcal{P}) \subseteq \tilde{X}$ [8].

Proposition 1.18. [14] Let $(A, \mathcal{P}), (B, \mathcal{P}) \cong (\tilde{X}, \tilde{\tau}, \mathcal{P})$. Then:

- (1) $(A, \mathcal{P}) \in \tilde{S}S_{v}O(\tilde{X})$ iff $(A, \mathcal{P}) = \widetilde{U}(B_{\vartheta}, \mathcal{P})$, where $(A, \mathcal{P}) \in \tilde{S}SO(\tilde{X})$, and $(B_{\vartheta}, \mathcal{P}) \in \tilde{S}PC(\tilde{X})$, $\forall \vartheta \in \mathfrak{K}$.
- (2) $(A, \mathcal{P}) \in \tilde{S}S_p O(\tilde{X})$ iff $\forall \tilde{e_x} \in (A, \mathcal{P})$, there is $(B, \mathcal{P}) \in \tilde{S}S_p O(\tilde{X})$ such that $\tilde{e_x} \in (B, \mathcal{P}) \subseteq (A, \mathcal{P})$.

Proposition 1.19. Let $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ be a $\tilde{S}TS$. Then:

- (1) $\tilde{S}S_nO(\tilde{X}) \cong \tilde{S}SO(\tilde{X})$ [14].
- (2) $\tilde{S}S_nC(\tilde{X}) \cong \tilde{S}SC(\tilde{X})$ [15].
- (3) $\tilde{S}RC(\tilde{X}) \cong \tilde{S}S_pO(\tilde{X})$ [14].
- (4) $\tilde{S}CO(\tilde{X}) \cong \tilde{S}S_pO(\tilde{X})$ [14].
- (5) $\tilde{S}S_pO(\tilde{X}) \cong \tilde{S}\beta C(\tilde{X})$ (respectively, $\tilde{S}bC(\tilde{X})$) [14].

Proposition 1.20. [14] If a $\tilde{S}TS$ $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ is soft locally indiscrete, then

- (1) $\tilde{S}SO(\tilde{X}) = \tilde{S}S_cO(\tilde{X}) = \tilde{S}S_nO(\tilde{X}).$
- (2) $\tilde{\tau} = \tilde{S}S_n O(\tilde{X}) = \tilde{S}SO(\tilde{X}).$
- (3) $\tilde{S}\alpha O(\tilde{X}) = \tilde{S}S_p O(\tilde{X})$.
- (4) $\tilde{S}S_nO(\tilde{X}) \cong \tilde{S}PO(\tilde{X})$.
- (5) $\tilde{S}S_pO(\tilde{X}) \cong \tilde{S}\beta_cO(\tilde{X})$ (respectively, $\tilde{S}b_cO(\tilde{X})$).

Proposition 1.21. If a $\tilde{S}TS$ $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ is a soft T_1 -space, then

- (1) $\tilde{S}SO(\tilde{X}) = \tilde{S}S_cO(\tilde{X}) = \tilde{S}S_pO(\tilde{X})$ [14].
- (2) $\tilde{S}SC(\tilde{X}) = \tilde{S}S_{c}C(\tilde{X}) = \tilde{S}S_{n}C(\tilde{X})$ [15].
- (3) $\tilde{\tau} \cong \tilde{S}S_p O(\tilde{X})$ [14].
- (4) $\tilde{S}\alpha O(\tilde{X}) \cong \tilde{S}S_p O(\tilde{X})$ [14].

Proposition 1.22. [15] If a $\tilde{S}TS$ ($\tilde{X}, \tilde{\tau}, \mathcal{P}$) is soft locally indiscrete, then:

- $(1) \quad \tilde{S}SC(\tilde{X}) = \tilde{S}S_{c}C(\tilde{X}) = \tilde{S}S_{p}C(\tilde{X}).$
- (2) $\tilde{S}S_nC(\tilde{X}) = \tilde{\tau}^c$.
- $(3) \quad \tilde{S}S_{p}C(\tilde{X}) = \tilde{S}\alpha C(\tilde{X}).$
- $(4) \quad \tilde{S}S_{p}C(\tilde{X}) \cong \tilde{S}PC(\tilde{X}).$

Proposition 1.23. If $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ is a soft regular space, then:

- (1) $\tilde{\tau} \cong \tilde{S}S_p O(\tilde{X})$ [14].
- (2) $\tilde{\tau}^c \subseteq \tilde{S}S_pC(\tilde{X})$ [15].

Proposition 1.24. A $\tilde{S}TS$ $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ is soft extremally disconnected iff

- (1) $\tilde{S}S_pO(\tilde{X}) \cong \tilde{S}PO(\tilde{X})$ (respectively, $\tilde{S}\alpha O(\tilde{X})$) [14].
- (2) $\tilde{S}S_pC(\tilde{X}) \cong \tilde{S}PC(\tilde{X})$ (respectively, $\tilde{S}\alpha C(\tilde{X})$) [15].

Proposition 1.25. [14] If $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ is a soft submaximal space, then $\tilde{S}S_pO(\tilde{X}) \cong \tilde{S}\beta_cO(\tilde{X})$.

Corollary 1.26. [14] If a $\tilde{S}TS$, $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ is soft extremally disconnected and soft T_1 -space, then $\tilde{S}\alpha O(\tilde{X}) = \tilde{S}S_n O(\tilde{X})$.

Proposition 1.27. [28] Let $(\tilde{Z}, \tilde{\tau}_{\tilde{Z}}, \mathcal{P})$ be a soft subspace of a $\tilde{S}TS$ $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ and $\tilde{Z} \in \tilde{\tau}$ (respectively, $\tilde{S}CO(\tilde{X})$). If $(A, \mathcal{P}) \in \tilde{S}S_pO(\tilde{X})$, then $(A, \mathcal{P}) \cap \tilde{Z} \in \tilde{S}S_pO(\tilde{Z})$.

Theorem 1.28. [15] For any $(A, \mathcal{P}) \subseteq (\tilde{X}, \tilde{\tau}, \mathcal{P})$, we have

- (1) $(A, \mathcal{P}) \in \tilde{S}S_p O(\tilde{X}) \text{ iff } (A, \mathcal{P}) = \tilde{s}S_p int(A, \mathcal{P}).$
- (2) $(A, \mathcal{P}) \in \tilde{S}S_p\mathcal{C}(\tilde{X}) \text{ iff } (A, \mathcal{P}) = \tilde{s}S_pcl(A, \mathcal{P}).$
- $(3) \quad \tilde{s}S_p cl(A,\mathcal{P}) = (A,\mathcal{P}) \ \widetilde{\cup} \ \tilde{s}S_p Bd(A,\mathcal{P}).$

Theorem 1.29. [28] A soft function $\tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ is soft S_p -continuous iff

- $(1) \ \ \tilde{f}^{-1}_{pu}(B,\dot{\mathcal{P}}) \widetilde{\in} \tilde{S}S_p O(\tilde{X}), \forall \ (B,\dot{\mathcal{P}}) \widetilde{\in} \tilde{\sigma}.$
- $(2) \ \ \tilde{f}_{pu}^{-1}(C,\acute{\mathcal{P}}) \ \widetilde{\in} \ \tilde{S}S_pC(\tilde{X}), \ \forall (C,\acute{\mathcal{P}}) \ \widetilde{\in} \ \tilde{\sigma}^c.$

Proposition 1.30. [28] Let \tilde{f}_{pu} : $(\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ be a soft continuous, and soft open function. If $(B, \hat{\mathcal{P}}) \in \tilde{S}S_p O(\tilde{Y})$, then $\tilde{f}_{pu}^{-1}(B, \hat{\mathcal{P}}) \in \tilde{S}S_p O(\tilde{X})$.

Proposition 1.31. Let $\tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ be a soft continuous and soft open function. If $(A, \mathcal{P}) \in \tilde{S}SO(\tilde{X})$, then $\tilde{f}_{pu}(A, \mathcal{P}) \in \tilde{S}SO(\tilde{Y})$.

Proof. Since $(A, \mathcal{P}) \in \tilde{S}SO(\tilde{X})$, then by Proposition 1.16, there exists $(O, \mathcal{P}) \in \tilde{\tau}$ such that $(O, \mathcal{P}) \subseteq (A, \mathcal{P}) \subseteq \tilde{s}cl(O, \mathcal{P})$. So, $\tilde{f}_{pu}(O, \mathcal{P}) \subseteq \tilde{f}_{pu}(A, \mathcal{P}) \subseteq \tilde{f}_{pu}(\tilde{s}cl(O, \mathcal{P}))$. Since \tilde{f}_{pu} is soft open, then $\tilde{f}_{pu}(O, \mathcal{P}) \in \tilde{\sigma}$. By the soft continuity of \tilde{f}_{pu} and Proposition 1.17(1), then $\tilde{f}_{pu}(\tilde{s}cl(O, \mathcal{P})) \subseteq \tilde{s}cl(\tilde{f}_{pu}(O, \mathcal{P}))$. Hence, we obtain that $\tilde{f}_{pu}(O, \mathcal{P}) \subseteq \tilde{f}_{pu}(A, \mathcal{P}) \subseteq \tilde{s}cl(\tilde{f}_{pu}(O, \mathcal{P}))$. Therefore, by Proposition 1.16, $\tilde{f}_{pu}(A, \mathcal{P}) \subseteq \tilde{s}SO(\tilde{Y})$.

Proposition 1.32. Let $\tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ be soft homeomorphism. If $(C, \mathcal{P}) \in \tilde{SPC}(\tilde{X})$, then $\tilde{f}_{pu}(C, \mathcal{P}) \in \tilde{SPC}(\tilde{Y})$.

Proof. Since $(C, \mathcal{P}) \in \tilde{S}PC(\tilde{X})$, then $\tilde{s}cl(\tilde{s}int(C, \mathcal{P})) \subseteq (C, \mathcal{P})$ and $\tilde{f}_{pu}(\tilde{s}cl(\tilde{s}int(C, \mathcal{P}))) \subseteq \tilde{f}_{pu}(C, \mathcal{P})$. Since \tilde{f}_{pu} is soft homeomorphism, so Proposition 1.17(3) $\tilde{s}cl(\tilde{s}int(\tilde{f}_{pu}(C, \mathcal{P}))) = \tilde{f}_{pu}(\tilde{s}cl(\tilde{s}int(C, \mathcal{P}))) \subseteq \tilde{f}_{pu}(C, \mathcal{P})$. Therefore, $\tilde{f}_{pu}(C, \mathcal{P}) \in \tilde{S}PC(\tilde{Y})$.

2. Soft S_p-Irresolute Functions

Definition 2.1. Let $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ and $(\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ be two $\tilde{S}TS$ and $u: X \to Y$, $p: \mathcal{P} \to \hat{\mathcal{P}}$ be functions. A soft function $\tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ is known as soft S_p -irresolute at a soft point $\tilde{e}_{\tilde{x}} \in \tilde{S}P(\tilde{X})$, if $\forall (B, \hat{\mathcal{P}}) \in \tilde{S}S_pO(\tilde{Y})$ in \tilde{Y} containing $\tilde{f}_{pu}(\tilde{e}_{\tilde{x}})$, there exists $\tilde{e}_{\tilde{x}} \in (A, \mathcal{P}) \in \tilde{S}S_pO(\tilde{X})$ such that $\tilde{f}_{pu}(A, \mathcal{P}) \subseteq (B, \hat{\mathcal{P}})$. If \tilde{f}_{pu} is soft S_p -irresolute at every soft point $\tilde{e}_{\tilde{x}} \in \tilde{S}P(\tilde{X})$, then it is called a soft S_p -irresolute function.

Theorem 2.2. A soft function $\tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ is soft S_p -irresolute iff $\tilde{f}_{pu}^{-1}(B, \hat{\mathcal{P}}) \in \tilde{S}S_pO(\tilde{X}), \forall (B, \hat{\mathcal{P}}) \in \tilde{S}S_pO(\tilde{Y})$.

Proof. Let \tilde{f}_{pu} be soft S_p -irresolute and $(B, \hat{\mathcal{P}}) \in \tilde{S}S_pO(\tilde{Y})$. To prove that $\tilde{f}_{pu}^{-1}(B, \hat{\mathcal{P}}) \in \tilde{S}S_pO(\tilde{X})$. If $\tilde{f}_{pu}^{-1}(B, \hat{\mathcal{P}}) = \tilde{\emptyset}$, then $\tilde{f}_{pu}^{-1}(B, \hat{\mathcal{P}}) \in \tilde{S}S_pO(\tilde{X})$. If not, let $\tilde{f}_{pu}^{-1}(B, \hat{\mathcal{P}}) \neq \tilde{\emptyset}$ and $\tilde{e}_{\tilde{x}} \in \tilde{f}_{pu}^{-1}(B, \hat{\mathcal{P}})$, we have $\tilde{f}_{pu}(\tilde{e}_{\tilde{x}}) \in (B, \hat{\mathcal{P}})$. Since \tilde{f}_{pu} is soft S_p -

irresolute, there is $\widetilde{e_x} \in (A, \mathcal{P}) \in \widetilde{SS}_p O(\widetilde{X})$ such that $\widetilde{f}_{pu}(A, \mathcal{P}) \subseteq (B, \mathcal{P})$. Hence, $\widetilde{e_x} \in (A, \mathcal{P}) \subseteq \widetilde{f}_{pu}^{-1}(B, \mathcal{P})$ and therefore, by Proposition 1.18(2), $\widetilde{f}_{pu}^{-1}(B, \mathcal{P}) \in \widetilde{SS}_p O(\widetilde{X})$.

Conversely, let $\tilde{e_x} \in \tilde{S}P(\tilde{X})$ and $(B, \dot{\mathcal{P}}) \in \tilde{S}S_pO(\tilde{Y})$ containing $\tilde{f}_{pu}(\tilde{e_x})$. Then, $\tilde{e_x} \in \tilde{f}_{pu}^{-1}(B, \dot{\mathcal{P}}) \in \tilde{S}S_pO(\tilde{X})$ and $(A, \mathcal{P}) = \tilde{f}_{pu}^{-1}(B, \dot{\mathcal{P}})$ such that $\tilde{f}_{pu}(A, \mathcal{P}) = \tilde{f}_{pu}(\tilde{f}_{pu}^{-1}(B, \dot{\mathcal{P}})) \subseteq (B, \dot{\mathcal{P}})$. Therefore, \tilde{f}_{pu} is soft S_p -irresolute.

Proposition 2.3. A soft function $\tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ is soft S_p -irresolute iff $\tilde{f}_{pu}^{-1}(B, \hat{\mathcal{P}}) \in \tilde{S}S_p\mathcal{C}(\tilde{X}), \forall (B, \hat{\mathcal{P}}) \in \tilde{S}S_p\mathcal{C}(\tilde{Y})$.

Proof. Obvious.

Proposition 2.4. A soft function $\tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ is soft S_p -irresolute iff $\tilde{f}_{pu}(\tilde{s}S_pcl(A, \mathcal{P})) \cong \tilde{s}S_pcl(\tilde{f}_{pu}(A, \mathcal{P})), \forall (A, \mathcal{P}) \cong \tilde{X}$.

Proof. Let \tilde{f}_{pu} be soft S_p -irresolute and $(A, \mathcal{P}) \subseteq \tilde{X}$. Then, $\tilde{f}_{pu}(A, \mathcal{P}) \subseteq \tilde{Y}$. Since $\tilde{f}_{pu}(A, \mathcal{P}) \subseteq \tilde{s}S_p cl(\tilde{f}_{pu}(A, \mathcal{P}))$ and $\tilde{s}S_p cl(\tilde{f}_{pu}(A, \mathcal{P})) \in \tilde{S}S_p C(\tilde{Y})$. By hypothesis and Proposition 2.3, $\tilde{f}_{pu}^{-1}(\tilde{s}S_p cl(\tilde{f}_{pu}(A, \mathcal{P}))) \in \tilde{S}S_p C(\tilde{X})$ and so $\tilde{s}S_p cl(A, \mathcal{P}) \subseteq \tilde{f}_{pu}^{-1}(\tilde{s}S_p cl(\tilde{f}_{pu}(A, \mathcal{P})))$. Hence, $\tilde{f}_{pu}(\tilde{s}S_p cl(A, \mathcal{P})) \subseteq \tilde{s}S_p cl(\tilde{f}_{pu}(A, \mathcal{P}))$.

Conversely, let $(B, \acute{\mathcal{P}}) \in \tilde{S}S_p\mathcal{C}(\tilde{Y})$. Then, $\tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}) \subseteq \tilde{X}$. By hypothesis, $\tilde{f}_{pu}(\tilde{s}S_pcl(\tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}))) \subseteq \tilde{s}S_pcl(\tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}})) \subseteq \tilde{s}S_pcl(\tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}})) \subseteq \tilde{s}S_pcl(\tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}})) \subseteq \tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}})$ so that $\tilde{s}S_pcl(\tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}})) = \tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}})$. By Theorem 1.28(2), $\tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}) \in \tilde{S}S_p\mathcal{C}(\tilde{X})$. Thus by Proposition 2.3, \tilde{f}_{pu} is soft S_p -irresolute.

Proposition 2.5. A soft function $\tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ is soft S_p -irresolute iff $\tilde{s}S_p cl(\tilde{f}_{pu}^{-1}(B, \hat{\mathcal{P}})) \cong \tilde{f}_{pu}^{-1}(\tilde{s}S_p cl(B, \hat{\mathcal{P}})), \forall (B, \hat{\mathcal{P}}) \cong \tilde{Y}$.

Proof. Let \tilde{f}_{pu} be soft S_p -irresolute and $(B, \acute{\mathcal{P}}) \cong \tilde{Y}$. Then, $\tilde{s}S_p cl(B, \acute{\mathcal{P}}) \cong \tilde{S}S_p C(\tilde{Y})$, so that $\tilde{f}_{pu}^{-1}(\tilde{s}S_p cl(B, \acute{\mathcal{P}})) \cong \tilde{S}S_p C(\tilde{X})$, and so $\tilde{s}S_p cl(\tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}})) \cong \tilde{f}_{pu}^{-1}(\tilde{s}S_p cl(B, \acute{\mathcal{P}}))$.

Conversely, let $(B, \acute{\mathcal{P}}) \in \tilde{S}S_p\mathcal{C}(\tilde{Y})$. Then, $\tilde{s}S_p\mathcal{C}l(B, \acute{\mathcal{P}}) = (B, \acute{\mathcal{P}})$. By hypothesis, $\tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}) \subseteq \tilde{s}S_p\mathcal{C}l(\tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}))$ $\subseteq \tilde{f}_{pu}^{-1}(\tilde{s}S_p\mathcal{C}l(B, \acute{\mathcal{P}})) = \tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}})$, and so $\tilde{s}S_p\mathcal{C}l(\tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}})) = \tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}})$. Hence by Theorem 1.28(2), $\tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}) \in \tilde{S}S_p\mathcal{C}(\tilde{X})$. Thus by Proposition 2.3, \tilde{f}_{pu} is soft S_p -irresolute.

Proposition 2.6. A soft bijective function $\tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ is soft S_p -irresolute iff $\tilde{s}S_pint(\tilde{f}_{pu}(A, \mathcal{P})) \subseteq \tilde{f}_{pu}(\tilde{s}S_pint(A, \mathcal{P})), \forall (A, \mathcal{P}) \subseteq \tilde{X}$.

Proof. Let \tilde{f}_{pu} be soft S_p -irresolute and $(A, \mathcal{P}) \subseteq \tilde{X}$. Then, $\tilde{f}_{pu}(A, \mathcal{P}) \subseteq \tilde{Y}$. Since $\tilde{s}S_p int(\tilde{f}_{pu}(A, \mathcal{P})) \subseteq \tilde{f}_{pu}(A, \mathcal{P})$ and $\tilde{s}S_p int(\tilde{f}_{pu}(A, \mathcal{P})) \in \tilde{S}S_p O(\tilde{Y})$. By hypothesis and Theorem 2.2, $\tilde{f}_{pu}^{-1}(\tilde{s}S_p int(\tilde{f}_{pu}(A, \mathcal{P}))) \in \tilde{S}S_p O(\tilde{X})$ and $\tilde{f}_{pu}^{-1}(\tilde{s}S_p int(\tilde{f}_{pu}(A, \mathcal{P}))) \subseteq \tilde{f}_{pu}^{-1}(\tilde{f}_{pu}(A, \mathcal{P}))$. Since \tilde{f}_{pu} is a soft bijective function, so $\tilde{f}_{pu}^{-1}(\tilde{s}S_p int(\tilde{f}_{pu}(A, \mathcal{P}))) \subseteq \tilde{s}S_p int(A, \mathcal{P})$. Also, since \tilde{f}_{pu} is a soft bijective function, so $\tilde{s}S_p int(\tilde{f}_{pu}(A, \mathcal{P})) \subseteq \tilde{f}_{pu}(\tilde{s}S_p int(A, \mathcal{P}))$.

Conversely, let $(B, \acute{\mathcal{P}}) \in \tilde{S}S_pO(\tilde{Y})$. Then, $\tilde{s}S_pint(B, \acute{\mathcal{P}}) = (B, \acute{\mathcal{P}})$ and $\tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}) \subseteq \tilde{X}$. By hypothesis and \tilde{f}_{pu} is a soft bijective function, $(B, \acute{\mathcal{P}}) = \tilde{s}S_pint(\tilde{f}_{pu}(\tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}))) \subseteq \tilde{f}_{pu}(\tilde{s}S_pint(\tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}})))$, and so $\tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}) = \tilde{s}S_pint(\tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}))$. Hence by Theorem 1.28(1), $\tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}) \in \tilde{S}S_pO(\tilde{X})$. Thus by Theorem 2.2, \tilde{f}_{pu} is soft S_p -irresolute.

Proposition 2.7. A soft function $\tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ is soft S_p -irresolute iff $\tilde{f}_{pu}^{-1}(\tilde{s}S_pint(B, \hat{\mathcal{P}})) \subseteq \tilde{s}S_pint(\tilde{f}_{pu}^{-1}(B, \hat{\mathcal{P}}))$, $\forall (B, \hat{\mathcal{P}}) \subseteq \tilde{Y}$.

Proof. Let \tilde{f}_{pu} be soft S_p -irresolute and $(B, \hat{\mathcal{P}}) \subseteq \tilde{Y}$. Then, $\tilde{s}S_pint(B, \hat{\mathcal{P}}) \in \tilde{S}S_pO(\tilde{Y})$ so that $\tilde{f}_{pu}^{-1}(\tilde{s}S_pint(B, \hat{\mathcal{P}})) \in \tilde{S}S_pO(\tilde{X})$ and $\tilde{f}_{pu}^{-1}(\tilde{s}S_pint(B, \hat{\mathcal{P}})) \subseteq \tilde{f}_{pu}^{-1}(B, \hat{\mathcal{P}})$. But $\tilde{s}S_pint(\tilde{f}_{pu}^{-1}(B, \hat{\mathcal{P}}))$ is the largest soft S_p -open set contained in $\tilde{f}_{pu}^{-1}(B, \hat{\mathcal{P}})$, so $\tilde{f}_{pu}^{-1}(\tilde{s}S_pint(B, \hat{\mathcal{P}})) \subseteq \tilde{s}S_pint(\tilde{f}_{pu}^{-1}(B, \hat{\mathcal{P}}))$.

Conversely, let $(B, \hat{\mathcal{P}}) \in \tilde{S}S_p\mathcal{O}(\tilde{Y})$. Then, $\tilde{s}S_pint(B, \hat{\mathcal{P}}) = (B, \hat{\mathcal{P}})$. By hypothesis, $\tilde{f}_{pu}^{-1}(B, \hat{\mathcal{P}}) = \tilde{f}_{pu}^{-1}(\tilde{s}S_pint(B, \hat{\mathcal{P}}))$ $\subseteq \tilde{s}S_pint(\tilde{f}_{pu}^{-1}(B, \hat{\mathcal{P}}))$, and so $\tilde{f}_{pu}^{-1}(B, \hat{\mathcal{P}}) = \tilde{s}S_pint(\tilde{f}_{pu}^{-1}(B, \hat{\mathcal{P}}))$. Hence by Theorem 1.28(1), $\tilde{f}_{pu}^{-1}(B, \hat{\mathcal{P}}) \in \tilde{S}S_p\mathcal{O}(\tilde{X})$. Thus by Theorem 2.2, \tilde{f}_{pu} is soft S_p -irresolute.

Proposition 2.8. Let $\tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ be soft continuous and soft open. Then, \tilde{f}_{pu} is soft S_p -irresolute.

Proof. Let $(B, \mathcal{P}) \in \tilde{S}S_p O(\tilde{Y})$. Then by Proposition 1.30, $\tilde{f}_{pu}^{-1}(B, \mathcal{P}) \in \tilde{S}S_p O(\tilde{X})$. Thus by Theorem 2.2, \tilde{f}_{pu} is a soft S_p -irresolute.

Remark 2.9. Soft S_p -irresolute functions are independent of soft irresolute and soft S_p -continuous functions, as shown in the following examples.

Example 2.10. Let $X = \{x_1, x_2\}$, $Y = \{y_1, y_2\}$, $\mathcal{P} = \{e_1, e_2\}$, and $\hat{\mathcal{P}} = \{\hat{e}_1, \hat{e}_2\}$. Let $\tilde{\tau} = \{\tilde{\emptyset}_X, \tilde{X}, (A_1, \mathcal{P}), (A_2, \mathcal{P}), (A_3, \mathcal{P}), (A_4, \mathcal{P}), (A_5, \mathcal{P}), (A_6, \mathcal{P}), (A_7, \mathcal{P})\}$ and $\tilde{\sigma} = \{\tilde{\emptyset}_Y, \tilde{Y}, (B, \hat{\mathcal{P}})\}$ be soft topology on \tilde{X} and \tilde{Y} respectively, where $\tilde{\emptyset}_X = \{(e_1, \emptyset), (e_2, \emptyset)\}$, $\tilde{X} = \{(e_1, X), (e_2, X)\}$, $(A_1, \mathcal{P}) = \{(e_1, \{x_1\}), (e_2, \emptyset)\}$, $(A_2, \mathcal{P}) = \{(e_1, \{x_2\}), (e_2, \emptyset)\}$, $(A_3, \mathcal{P}) = \{(e_1, X), (e_2, \emptyset)\}$, $(A_4, \mathcal{P}) = \{(e_1, \emptyset), (e_2, \{x_2\})\}$, $(A_5, \mathcal{P}) = \{(e_1, \{x_1\}), (e_2, \{x_2\})\}$, $(A_6, \mathcal{P}) = \{(e_1, \{x_2\}), (e_2, \{x_2\})\}$, $(e_2, \{x_2\})\}$, $(e_2, \{x_2\})\}$, $(e_3, \{x_2\})\}$, and $(e_3, \{x_2\})\}$, and $(e_3, \{x_2\})\}$, $(e_3, \{x_2\})\}$, $(e_3, \{x_2\})\}$, and $(e_3, \{x_3\})$, and $(e_3, \{x_3\})$, and an $(e_3, \{x_3\})$, and an (

Example 2.11. Let $X = \{x_1, x_2\}$ and $\mathcal{P} = \{e_1, e_2\}$ with the soft topology $\tilde{\tau} = \{\widetilde{\emptyset}, \widetilde{X}, (A_1, \mathcal{P}), (A_2, \mathcal{P}), (A_3, \mathcal{P}), (A_4, \mathcal{P}), (A_5, \mathcal{P}), (A_6, \mathcal{P}), (A_7, \mathcal{P})\}$ where $\widetilde{\emptyset} = \{(e_1, \emptyset), (e_2, \emptyset)\}$, $\widetilde{X} = \{(e_1, X), (e_2, X)\}$, $(A_1, \mathcal{P}) = \{(e_1, \{x_1\}), (e_2, \emptyset)\}$ and $(A_2, \mathcal{P}) = \{(e_1, \{x_2\}), (e_2, \emptyset)\}$, $(A_3, \mathcal{P}) = \{(e_1, X), (e_2, \emptyset)\}$, $(A_4, \mathcal{P}) = \{(e_1, \emptyset), (e_2, \{x_2\})\}$, $(A_5, \mathcal{P}) = \{(e_1, \{x_1\}), (e_2, \{x_2\})\}$, $(A_6, \mathcal{P}) = \{(e_1, \{x_2\}), (e_2, \{x_2\})\}$, $(A_7, \mathcal{P}) = \{(e_1, X), (e_2, \{x_2\})\}$. Thus, $(\widetilde{X}, \widetilde{\tau}, \mathcal{P})$ is a $\widetilde{S}TS$ over X. Now define the soft function \widetilde{f}_{pu} : $(\widetilde{X}, \widetilde{\tau}, \mathcal{P}) \to (\widetilde{X}, \widetilde{\tau}, \mathcal{P})$, where p and q are identity functions on \mathcal{P} and q and q respectively. The soft function \widetilde{f}_{pu} is soft S_p -irresolute, but it is not soft S_p -continuous. Since $(A_1, \mathcal{P}) \in \widetilde{\tau}$, while $\widetilde{f}_{pu}^{-1}(A_1, \mathcal{P}) = (A_1, \mathcal{P}) \notin \widetilde{S}S_p(0, \widetilde{X})$.

Example 2.12. Let $X = \{x_1, x_2, x_3\}$, $\mathcal{P} = \{e_1, e_2\}$, $\tilde{\tau} = \{\widetilde{\emptyset}, \widetilde{X}, (A_1, \mathcal{P}), (A_2, \mathcal{P}), (A_3, \mathcal{P})\}$, and $\tilde{\sigma} = \{\widetilde{\emptyset}, \widetilde{X}, (A_3, \mathcal{P})\}$ be two soft topologies on \widetilde{X} , where $\widetilde{\emptyset} = \{(e_1, \emptyset), (e_2, \emptyset)\}$, $\widetilde{X} = \{(e_1, X), (e_2, X)\}$, $(A_1, \mathcal{P}) = \{(e_1, \{x_1\}), (e_2, \{x_3\})\}$, $(A_2, \mathcal{P}) = \{(e_1, \{x_3\}), (e_2, \{x_1\})\}$, and $(A_3, \mathcal{P}) = \{(e_1, \{x_1, x_3\}), (e_2, \{x_1, x_3\})\}$. Thus, $(\widetilde{X}, \widetilde{\tau}, \mathcal{P})$ and $(\widetilde{X}, \widetilde{\sigma}, \mathcal{P})$ are $\widetilde{S}TS$ over X. Now define the soft function \widetilde{f}_{pu} : $(\widetilde{X}, \widetilde{\tau}, \mathcal{P}) \to (\widetilde{X}, \widetilde{\sigma}, \mathcal{P})$, where p and u are identity functions on \mathcal{P} and X, respectively. The soft function \widetilde{f}_{pu} is soft S_p -continuous, but it is neither soft irresolute nor soft S_p -irresolute. Since $(A_2, \mathcal{P}) \in \widetilde{S}S_p\mathcal{O}(\widetilde{X}, \widetilde{\sigma}, \mathcal{P})$, while

```
\begin{split} \tilde{f}_{pu}^{-1}(A_2,\mathcal{P}) &= \{(e_1,u^{-1}(A_2(p(e_1)))),(e_2,u^{-1}(A_2(p(e_2))))\} \\ &= \{(e_1,u^{-1}(A_2(e_1))),(e_2,u^{-1}(A_2(e_2)))\} \\ &= \{(e_1,u^{-1}(\{x_3\})),(e_2,u^{-1}(\{x_1\}))\} = \{(e_1,\{x_3\}),(e_2,\{x_1\})\} \ \widetilde{\notin} \ \tilde{S}S_pO(\tilde{X},\tilde{\tau},\mathcal{P}). \end{split}
```

Proposition 2.13. Let $\tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ be a soft function from a $\tilde{S}TS$ $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ to soft locally indiscrete $(\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$. Then,

- (1) \tilde{f}_{pu} is soft S_p -irresolute iff \tilde{f}_{pu} is soft S_p -continuous.
- (2) \tilde{f}_{pu} is soft S_p -irresolute, if \tilde{f}_{pu} is soft RC-continuous (respectively, soft perfectly continuous).
- (3) \tilde{f}_{pu} is soft β -continuous (respectively, soft b-continuous), if \tilde{f}_{pu} is soft S_p -irresolute.

Proof. (1) Let $(B, \mathcal{P}) \in \tilde{\sigma}$. Since $(\tilde{Y}, \tilde{\sigma}, \mathcal{P})$ is soft locally indiscrete, then by Proposition 1.20(2), $(B, \mathcal{P}) \in \tilde{S}S_pO(\tilde{Y})$. Since \tilde{f}_{pu} is soft S_p -irresolute, then $\tilde{f}_{pu}^{-1}(B, \mathcal{P}) \in \tilde{S}S_pO(\tilde{X})$. Thus by Theorem 1.29(1), \tilde{f}_{pu} is soft S_p -continuous.

Conversely, let $(B, \mathcal{P}) \in \tilde{S}S_pO(\tilde{Y})$. Since $(\tilde{Y}, \tilde{\sigma}, \mathcal{P})$ is soft locally indiscrete, then by Proposition 1.20(2), $(B, \mathcal{P}) \in \tilde{\sigma}$. Since \tilde{f}_{pu} is soft S_p -continuous, then $\tilde{f}_{pu}^{-1}(B, \mathcal{P}) \in \tilde{S}S_pO(\tilde{X})$. Thus by Theorem 2.2, \tilde{f}_{pu} is soft S_p -irresolute.

- (2) Let $(B, \mathcal{P}) \in \tilde{S}S_pO(\tilde{Y})$. Since $(\tilde{Y}, \tilde{\sigma}, \mathcal{P})$ is soft locally indiscrete, then by Proposition 1.20(2), $(B, \mathcal{P}) \in \tilde{\sigma}$. Since \tilde{f}_{pu} is soft RC-continuous (respectively, soft perfectly continuous), then $\tilde{f}_{pu}^{-1}(B, \mathcal{P}) \in \tilde{S}RC(\tilde{X})$ (respectively, $\tilde{S}CO(\tilde{X})$). So by Proposition 1.19(3, 4), $\tilde{f}_{pu}^{-1}(B, \mathcal{P}) \in \tilde{S}S_pO(\tilde{X})$. Thus by Theorem 2.2, \tilde{f}_{pu} is soft S_p -irresolute.
- (3) Let $(B, \mathcal{P}) \in \tilde{S}S_pO(\tilde{Y})$. Since $(\tilde{Y}, \tilde{\sigma}, \mathcal{P})$ is soft locally indiscrete, then by Proposition 1.20(2), $(B, \mathcal{P}) \in \tilde{\sigma}$. Since \tilde{f}_{pu} is soft S_p -continuous, then $\tilde{f}_{pu}^{-1}(B, \mathcal{P}) \in \tilde{S}S_pO(\tilde{X})$ and so by Proposition 1.19(5), $\tilde{f}_{pu}^{-1}(B, \mathcal{P}) \in \tilde{S}\beta O(\tilde{X})$ (respectively, $\tilde{S}bO(\tilde{X})$). Thus, \tilde{f}_{pu} is soft β -continuous (respectively, soft β -continuous).

Proposition 2.14. Let \tilde{f}_{pu} : $(\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ be a soft function. If $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ and $(\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ are soft locally indiscrete, then:

- (1) \tilde{f}_{pu} is soft S_p -irresolute iff \tilde{f}_{pu} is soft irresolute.
- (2) \tilde{f}_{pu} is soft S_p -irresolute iff \tilde{f}_{pu} is $\tilde{S}S_c$ -continuous (respectively, soft α -continuous).
- (3) \tilde{f}_{pu} is soft S_p -irresolute iff \tilde{f}_{pu} is soft semi-continuous.
- (4) \tilde{f}_{pu} is soft pre-continuous, if \tilde{f}_{pu} is soft S_p -irresolute.

Proof. (1) Let $(B, \acute{\mathcal{P}}) \in \tilde{S}SO(\tilde{Y})$. Since $(\tilde{Y}, \tilde{\sigma}, \acute{\mathcal{P}})$ is soft locally indiscrete, then by Proposition 1.20(1), $(B, \acute{\mathcal{P}}) \in \tilde{S}S_pO(\tilde{Y})$. Since \tilde{f}_{pu} is soft S_p -irresolute, then $\tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}) \in \tilde{S}S_pO(\tilde{X})$. So by Proposition 1.19(1), $\tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}) \in \tilde{S}SO(\tilde{X})$. Thus, \tilde{f}_{pu} is soft irresolute.

Conversely, let $(B, \acute{\mathcal{P}}) \in \tilde{S}S_p\mathcal{O}(\tilde{Y})$. Then, $(B, \acute{\mathcal{P}}) \in \tilde{S}S\mathcal{O}(\tilde{Y})$. Since \tilde{f}_{pu} is soft irresolute, then $\tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}) \in \tilde{S}S\mathcal{O}(\tilde{X})$. Since \tilde{X} is soft locally indiscrete, then by Proposition 1.20(1), $\tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}) \in \tilde{S}S_p\mathcal{O}(\tilde{X})$. Thus by Theorem 2.2, \tilde{f}_{pu} is soft S_p -irresolute.

(2) Let $(B, \mathcal{P}) \in \tilde{\sigma}$. Since $(\tilde{Y}, \tilde{\sigma}, \mathcal{P})$ is soft locally indiscrete, then by Proposition 1.20(2), $(B, \mathcal{P}) \in \tilde{S}S_p O(\tilde{Y})$. Since \tilde{f}_{pu} is soft S_p -irresolute, then $\tilde{f}_{pu}^{-1}(B, \mathcal{P}) \in \tilde{S}S_p O(\tilde{X})$. Since \tilde{X} is soft locally indiscrete, then by Proposition 1.20(1) (respectively, Proposition 1.20(3)), $\tilde{f}_{pu}^{-1}(B, \mathcal{P}) \in \tilde{S}S_c O(\tilde{X})$ (respectively, $\tilde{S}\alpha O(\tilde{X})$). Thus, \tilde{f}_{pu} is $\tilde{S}S_c$ - continuous (respectively, soft α -continuous).

Conversely, let $(B, \acute{\mathcal{P}}) \ \widetilde{\in} \ \widetilde{S}S_pO(\ \widetilde{Y})$. Since $(\widetilde{Y}, \widetilde{\sigma}, \acute{\mathcal{P}})$ is soft locally indiscrete, then by Proposition 1.20(2), $(B, \acute{\mathcal{P}}) \ \widetilde{\in} \ \widetilde{\sigma}$. Since \widetilde{f}_{pu} is $\widetilde{S}S_c$ -continuous (respectively, soft α -continuous), then $\widetilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}) \ \widetilde{\in} \ \widetilde{S}S_cO(\ \widetilde{X})$ (respectively, $\widetilde{S}\alpha O(\ \widetilde{X})$). Since \widetilde{X} is soft locally indiscrete, then by Proposition 1.20(1) (respectively, Proposition 1.20(3)), $\widetilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}) \ \widetilde{\in} \ \widetilde{S}S_pO(\ \widetilde{X})$. Thus by Theorem 2.2, \widetilde{f}_{pu} is soft S_p -irresolute.

(3) Let $(B, \mathcal{P}) \in \tilde{\sigma}$. Since $(\tilde{Y}, \tilde{\sigma}, \mathcal{P})$ is soft locally indiscrete, then by Proposition 1.20(2), $(B, \mathcal{P}) \in \tilde{S}S_pO(\tilde{Y})$. Since \tilde{f}_{pu} is soft S_p -irresolute, then $\tilde{f}_{pu}^{-1}(B, \mathcal{P}) \in \tilde{S}S_pO(\tilde{X})$. So by Proposition 1.19(1), $\tilde{f}_{pu}^{-1}(B, \mathcal{P}) \in \tilde{S}SO(\tilde{X})$. Thus, \tilde{f}_{pu} is soft semi-continuous.

Conversely, let $(B, \acute{\mathcal{P}}) \ \widetilde{\in} \ \widetilde{S}S_pO(\widetilde{Y})$. Since $(\widetilde{Y}, \widetilde{\sigma}, \acute{\mathcal{P}})$ is soft locally indiscrete, then by Proposition 1.20(2), $(B, \acute{\mathcal{P}}) \ \widetilde{\in} \ \widetilde{\sigma}$. Since \widetilde{f}_{pu} is soft semi-continuous, then $\widetilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}) \ \widetilde{\in} \ \widetilde{S}SO(\widetilde{X})$. Since \widetilde{X} is soft locally indiscrete, then by Proposition 1.20(1), $\widetilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}) \ \widetilde{\in} \ \widetilde{S}S_pO(\widetilde{X})$. Thus by Theorem 2.2, \widetilde{f}_{pu} is soft S_p -irresolute.

(4) Let $(B, \mathcal{P}) \in \tilde{\sigma}$. Since $(\tilde{Y}, \tilde{\sigma}, \mathcal{P})$ is soft locally indiscrete, then by Proposition 1.20(2), $(B, \mathcal{P}) \in \tilde{S}S_pO(\tilde{Y})$. Since \tilde{f}_{pu} is soft S_p -irresolute, then $\tilde{f}_{pu}^{-1}(B, \mathcal{P}) \in \tilde{S}S_pO(\tilde{X})$. Since \tilde{X} is soft locally indiscrete, then by Proposition 1.20(4), $\tilde{f}_{pu}^{-1}(B, \mathcal{P}) \in \tilde{S}PO(\tilde{X})$. Thus, \tilde{f}_{pu} is soft pre-continuous.

Proposition 2.15. Let \tilde{f}_{nu} : $(\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ be a soft function. If $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ and $(\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ are soft T_1 -spaces, then:

- (1) \tilde{f}_{pu} is soft S_p -irresolute iff \tilde{f}_{pu} is soft irresolute.
- (2) \tilde{f}_{pu} is $\tilde{S}S_c$ -continuous (respectively, soft semi-continuous) if \tilde{f}_{pu} is soft S_p -irresolute.

Proof. (1) Let $(B, \mathcal{P}) \in \tilde{S}SO(\tilde{Y})$. Since $(\tilde{Y}, \tilde{\sigma}, \mathcal{P})$ is a soft T_1 -space, then by Proposition 1.21(1), $(B, \mathcal{P}) \in \tilde{S}S_pO(\tilde{Y})$. Since \tilde{f}_{pu} is soft S_p -irresolute, then $\tilde{f}_{pu}^{-1}(B, \mathcal{P}) \in \tilde{S}S_pO(\tilde{X})$. So by Proposition 1.19(1), $\tilde{f}_{pu}^{-1}(B, \mathcal{P}) \in \tilde{S}SO(\tilde{X})$. Thus, \tilde{f}_{pu} is soft irresolute.

Conversely, let $(B, \mathcal{P}) \in \tilde{S}S_pO(\tilde{Y})$. Then, $(B, \mathcal{P}) \in \tilde{S}SO(\tilde{Y})$. Since \tilde{f}_{pu} is soft irresolute, then $\tilde{f}_{pu}^{-1}(B, \mathcal{P}) \in \tilde{S}SO(\tilde{X})$. Since \tilde{X} is a soft T_1 -space, then by Proposition 1.21(1), $\tilde{f}_{pu}^{-1}(B, \mathcal{P}) \in \tilde{S}S_pO(\tilde{X})$. Thus by Theorem 2.2, \tilde{f}_{pu} is soft S_p -irresolute.

(2) Let $(B, \acute{\mathcal{P}}) \in \tilde{\sigma}$. Since $(\tilde{Y}, \tilde{\sigma}, \acute{\mathcal{P}})$ is a soft T_1 -space, then by Proposition 1.21(3), $(B, \acute{\mathcal{P}}) \in \tilde{S}S_pO(\tilde{Y})$. Since \tilde{f}_{pu} is soft S_p -irresolute, then $\tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}) \in \tilde{S}S_pO(\tilde{X})$. Since \tilde{X} is a soft T_1 -space, then by Proposition 1.21(1), $\tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}) \in \tilde{S}S_cO(\tilde{X})$ (respectively, $\tilde{S}SO(\tilde{X})$). Thus, \tilde{f}_{pu} is $\tilde{S}S_c$ -continuous (respectively, soft semi-continuous).

Proposition 2.16. Let $\tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ and $\tilde{g}_{qv}: (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}}) \to (\tilde{W}, \tilde{\mu}, \ddot{\mathcal{P}})$ be two soft functions. Then,

(1) $\tilde{g}_{qv} \circ \tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{W}, \tilde{\mu}, \dot{\mathcal{P}})$ is soft S_p -continuous, if \tilde{f}_{pu} is soft S_p -irresolute and \tilde{g}_{qv} is soft S_p -continuous.

- (2) $\tilde{g}_{qv} \circ \tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{W}, \tilde{\mu}, \dot{\mathcal{P}})$ is soft S_p -irresolute, if \tilde{f}_{pu} and \tilde{g}_{qv} are both soft S_p -irresolute functions.
- **Proof.** (1) Let $(C, \ddot{\mathcal{P}}) \in \tilde{\mu}$. Since \tilde{g}_{qv} is soft S_p -continuous, then $\tilde{g}_{qv}^{-1}(C, \ddot{\mathcal{P}}) \in \tilde{S}S_pO(\tilde{Y})$. Since \tilde{f}_{pu} is soft S_p -irresolute, then by Theorem 2.2, $(\tilde{g}_{qv} \circ \tilde{f}_{pu})^{-1}(C, \ddot{\mathcal{P}}) = \tilde{f}_{pu}^{-1}(\tilde{g}_{qv}^{-1}(C, \ddot{\mathcal{P}})) \in \tilde{S}S_pO(\tilde{X})$. Therefore, by Theorem 1.29(1), $\tilde{g}_{qv} \circ \tilde{f}_{pu}$ is soft S_p -continuous.
- (2) Let $(C, \ddot{\mathcal{P}}) \in \tilde{S}S_pO(\tilde{W})$. Since \tilde{g}_{qv} is a soft S_p -irresolute function, then by Theorem 2.2, $\tilde{g}_{qv}^{-1}(C, \ddot{\mathcal{P}}) \in \tilde{S}S_pO(\tilde{Y})$. Since \tilde{f}_{pu} is also soft S_p -irresolute, then by Theorem 2.2, $(\tilde{g}_{qv} \circ \tilde{f}_{pu})^{-1}(C, \ddot{\mathcal{P}}) = \tilde{f}_{pu}^{-1}(\tilde{g}_{qv}^{-1}(C, \ddot{\mathcal{P}})) \in \tilde{S}S_pO(\tilde{X})$. Therefore, by Theorem 2.2, $\tilde{g}_{qv} \circ \tilde{f}_{pu}$ is soft S_p -irresolute.

Definition 2.17. A $\widetilde{S}TS$ $(\widetilde{X}, \widetilde{\tau}, \mathcal{P})$ is known as a soft S_p -Hausdorff space (or soft S_p - T_2 -space) if whenever $\widetilde{e_x}$ and $\widetilde{e_y}$ are distinct soft points of \widetilde{X} there are disjoint soft S_p -open sets (A_1, \mathcal{P}) and (A_2, \mathcal{P}) with $\widetilde{e_x} \in (A_1, \mathcal{P})$ and $\widetilde{e_y} \in (A_2, \mathcal{P})$.

Remark 2.18. The definition indicates that every soft S_p -Hausdorff space is soft semi-Hausdorff. The following example shows that the converse is not true in general:

In the Example 2.11, $\tilde{S}SO(\tilde{X}) = \{\tilde{\emptyset}, \tilde{X}, (A_1, \mathcal{P}), (A_2, \mathcal{P}), (A_3, \mathcal{P}), (A_4, \mathcal{P}), (A_5, \mathcal{P}), (A_6, \mathcal{P}), (A_7, \mathcal{P}), (A_8, \mathcal{P}), (A_9, \mathcal{P}), (A_{10}, \mathcal{P}), (A_{11}, \mathcal{P}), (A_{12}, \mathcal{P}), (A_{13}, \mathcal{P})\}$ is soft semi-Hausdorff but $\tilde{S}S_pO(\tilde{X}) = \{\tilde{\emptyset}, \tilde{X}, (A_8, \mathcal{P}), (A_9, \mathcal{P}), (A_{10}, \mathcal{P}), (A_{11}, \mathcal{P}), (A_{12}, \mathcal{P}), (A_{13}, \mathcal{P})\}$ is not a soft S_p -Hausdorff space, where $(A_8, \mathcal{P}) = \{(e_1, \{x_2\}), (e_2, X)\}, (A_9, \mathcal{P}) = \{(e_1, \{x_2\}), (e_2, \{x_1\})\}, (A_{10}, \mathcal{P}) = \{(e_1, \{x_1\}), (e_2, \{x_1\})\}, (A_{11}, \mathcal{P}) = \{(e_1, X), (e_2, \{x_1\})\}, (A_{12}, \mathcal{P}) = \{(e_1, \{x_1\}), (e_2, X)\}, (A_{13}, \mathcal{P}) = \{(e_1, \emptyset), (e_2, X)\}.$

Proposition 2.19. Let $(\tilde{Z}, \tilde{\tau}_{\tilde{Z}}, \mathcal{P})$ be a soft subspace of a soft S_p -Hausdorff space $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ and $\tilde{Z} \in \tilde{S}CO(\tilde{X})$. Then, $(\tilde{Z}, \tilde{\tau}_{\tilde{Z}}, \mathcal{P})$ is soft S_p -Hausdorff.

Proof. Let $\widetilde{e_x}$, $\widetilde{e_y} \in \widetilde{S}P(\widetilde{Z})$ and $\widetilde{e_x} \neq \widetilde{e_y}$. Then $\widetilde{e_x}$, $\widetilde{e_y} \in \widetilde{S}P(\widetilde{X})$ such that $\widetilde{e_x} \neq \widetilde{e_y}$. Since \widetilde{X} is soft S_p -Hausdorff, there exist disjoint soft S_p -open sets (A_1, \mathcal{P}) and (A_2, \mathcal{P}) with $\widetilde{e_x} \in (A_1, \mathcal{P})$ and $\widetilde{e_y} \in (A_2, \mathcal{P})$. Then by Proposition 1.27, $\widetilde{e_x} \in (A_1, \mathcal{P}) \cap \widetilde{Z} \in \widetilde{S}S_pO(\widetilde{Z})$ and $\widetilde{e_y} \in (A_2, \mathcal{P}) \cap \widetilde{Z} \in \widetilde{S}S_pO(\widetilde{Z})$. Since $(A_1, \mathcal{P}) \cap (A_2, \mathcal{P}) = \widetilde{\emptyset}$, we have $((A_1, \mathcal{P}) \cap \widetilde{Z}) \cap ((A_2, \mathcal{P}) \cap \widetilde{Z}) = ((A_1, \mathcal{P}) \cap (A_2, \mathcal{P})) \cap \widetilde{Z} = \widetilde{\emptyset} \cap \widetilde{Z} = \widetilde{\emptyset}$. Thus, $(A_1, \mathcal{P}) \cap \widetilde{Z}$ and $(A_2, \mathcal{P}) \cap \widetilde{Z}$ are disjoint soft S_p -open sets in \widetilde{Z} containing $\widetilde{e_x}$ and $\widetilde{e_y}$, respectively. Hence, $(\widetilde{Z}, \widetilde{\tau_{\widetilde{Z}}}, \mathcal{P})$ is soft S_p -Hausdorff.

Proposition 2.20. Let $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ be a $\tilde{S}TS$ and $(\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ be a soft Hausdorff (respectively, a soft S_p -Hausdorff) space. If $\tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ is a soft injective and a soft S_p -continuous (respectively, soft S_p -irresolute) function, then $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ is soft S_p -Hausdorff.

Proof. Let $\widetilde{e_x}, \widetilde{e_y} \in \widetilde{S}P(\widetilde{X})$ and $\widetilde{e_x} \neq \widetilde{e_y}$. Then, $\widetilde{f}_{pu}(\widetilde{e_x}), \widetilde{f}_{pu}(\widetilde{e_y}) \in \widetilde{S}P(\widetilde{Y})$. Since \widetilde{f}_{pu} is soft injective, then $\widetilde{f}_{pu}(\widetilde{e_x}) \neq \widetilde{f}_{pu}(\widetilde{e_y})$. Since $(\widetilde{Y}, \widetilde{\sigma}, \acute{\mathcal{P}})$ is soft Hausdorff (respectively, soft S_p -Hausdorff), there are disjoint soft open (respectively, soft S_p -open) sets $(A_1, \acute{\mathcal{P}})$ and $(A_2, \acute{\mathcal{P}})$ in \widetilde{Y} with $\widetilde{f}_{pu}(\widetilde{e_x}) \in (A_1, \acute{\mathcal{P}})$ and $\widetilde{f}_{pu}(\widetilde{e_y}) \in (A_2, \acute{\mathcal{P}})$. Since \widetilde{f}_{pu} is soft S_p -continuous (respectively, soft S_p -irresolute) and $(A_1, \acute{\mathcal{P}}) \cap (A_2, \acute{\mathcal{P}}) = \widetilde{\emptyset}$, we have $\widetilde{f}_{pu}^{-1}(A_1, \acute{\mathcal{P}})$ and $\widetilde{f}_{pu}^{-1}(A_2, \acute{\mathcal{P}})$ are disjoint soft S_p -open sets in \widetilde{X} such that $\widetilde{e_x} \in \widetilde{f}_{pu}^{-1}(A_1, \acute{\mathcal{P}})$ and $\widetilde{e_y} \in \widetilde{f}_{pu}^{-1}(A_2, \acute{\mathcal{P}})$. Hence, $(\widetilde{X}, \widetilde{\tau}, \mathcal{P})$ is soft S_p -Hausdorff.

3. Soft S_p-Open and Soft S_p-Closed Functions

Definition 3.1. Let $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ and $(\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ be two $\tilde{S}TS$ and $u: X \to Y$, $p: \mathcal{P} \to \hat{\mathcal{P}}$ be functions. A soft function $\tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ is known as

- (1) **soft** S_p -open, if $\tilde{f}_{pu}(A, \mathcal{P}) \approx \tilde{S}S_p O(\tilde{Y}), \forall (A, \mathcal{P}) \approx \tilde{\tau}$.
- (2) **soft** S_p -closed, if $\tilde{f}_{pu}(C, \mathcal{P}) \in \tilde{S}S_p\mathcal{C}(\tilde{Y}), \forall (C, \mathcal{P}) \in \tilde{\tau}^c$.

Proposition 3.2. A soft function $\tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \dot{\mathcal{P}})$ is soft S_p -open iff $\forall \ \tilde{e_x} \in \tilde{S}P(\tilde{X}), \ \forall \ (A, \mathcal{P}) \in \tilde{\tau}$ containing $\tilde{e_x}$, there exists $(B, \dot{\mathcal{P}}) \in \tilde{S}S_pO(\tilde{Y})$ containing $\tilde{f}_{pu}(\tilde{e_x})$ such that $(B, \dot{\mathcal{P}}) \subseteq \tilde{f}_{pu}(A, \mathcal{P})$.

Proof. Let \tilde{f}_{pu} be a soft S_p -open function, $\tilde{e_x} \in \tilde{S}P(\tilde{X})$ and $\tilde{e_x} \in (A, P) \in \tilde{\tau}$. Then, $\tilde{f}_{pu}(\tilde{e_x}) \in \tilde{f}_{pu}(A, P) \in \tilde{S}S_pO(\tilde{Y})$ and take $\tilde{f}_{pu}(A, P) = (B, P)$. Hence, the proof is complete.

Conversely, to show that \tilde{f}_{pu} is a soft S_p -open function. Let $(A, \mathcal{P}) \in \tilde{\tau}$. Then, by hypothesis $\forall \tilde{e_x} \in (A, \mathcal{P})$, there is $\tilde{f}_{pu}(\tilde{e_x}) \in (B, \hat{\mathcal{P}}) \in \tilde{S}S_p\mathcal{O}(\tilde{Y})$ such that $(B, \hat{\mathcal{P}}) \subseteq \tilde{f}_{pu}(A, \mathcal{P})$. Therefore, by Proposition 1.18(2), $\tilde{f}_{pu}(A, \mathcal{P}) \in \tilde{S}S_p\mathcal{O}(\tilde{Y})$. Thus, \tilde{f}_{pu} is soft S_p -open.

Proposition 3.3. For a soft surjective function \tilde{f}_{pu} : $(\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$, the following sentences are equivalent:

- (1) \tilde{f}_{nu} is soft S_n -closed.
- (2) $\forall \ \widetilde{e_y} \ \widetilde{\in} \ \widetilde{S}P(\widetilde{Y})$, and $\widetilde{f}_{pu}^{-1}(\widetilde{e_y}) \ \widetilde{\in} \ (A,\mathcal{P}) \ \widetilde{\in} \ \widetilde{\tau}$, there is $\widetilde{e_y} \ \widetilde{\in} \ (B,\mathcal{P}) \ \widetilde{\in} \ \widetilde{S}S_pO(\widetilde{Y})$ such that $\widetilde{f}_{pu}^{-1}(B,\mathcal{P}) \ \widetilde{\subseteq} \ (A,\mathcal{P})$.
- (3) $\forall \widetilde{e_y} \in \widetilde{SP}(\widetilde{Y})$, and $(C, \mathcal{P}) \in \widetilde{\tau}^c$ such that $\widetilde{f_{pu}}^{-1}(\widetilde{e_y}) \cap (C, \mathcal{P}) = \widetilde{\emptyset}$, there is $(D, \mathcal{P}) \in \widetilde{SS_pC}(\widetilde{Y})$ such that $\widetilde{e_y} \notin (D, \mathcal{P})$ and $(C, \mathcal{P}) \subseteq \widetilde{f_{pu}}^{-1}(D, \mathcal{P})$.

Proof. (1) \to (2). Let $\widetilde{e_y} \in \widetilde{SP}(\widetilde{Y})$, and $\widetilde{f_{pu}}^{-1}(\widetilde{e_y}) \in (A, \mathcal{P}) \in \widetilde{\tau}$. Since \widetilde{f}_{pu} is soft surjective, then there exists a soft point $\widetilde{e_x} \in (A, \mathcal{P})$ such that $\widetilde{e_y} = \widetilde{f}_{pu}(\widetilde{e_x})$. Since \widetilde{f}_{pu} is soft S_p -closed, then $(B, \mathcal{P}) = \widetilde{Y} \setminus \widetilde{f}_{pu}(\widetilde{X} \setminus (A, \mathcal{P})) \subseteq \widetilde{f}_{pu}(\widetilde{X} \setminus (A, \mathcal{P})) = \widetilde{f}_{pu}(A, \mathcal{P}) \in \widetilde{SS}_p O(\widetilde{Y})$.

 $(2) \rightarrow (3)$ and $(3) \rightarrow (1)$. Obvious.

Proposition 3.4. Let \tilde{f}_{pu} : $(\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ be a soft function. Then,:

- (1) \tilde{f}_{pu} is soft semi-open (respectively, soft β -open and soft b-open), if \tilde{f}_{pu} is soft S_p -open.
- (2) \tilde{f}_{pu} is soft almost β -open (respectively, soft almost b-open), if \tilde{f}_{pu} is soft S_p -open.
- (3) \tilde{f}_{pu} is soft semi-closed (respectively, soft β -closed, and soft b-closed), if \tilde{f}_{pu} is soft S_p -closed.

Proof. (1) and (3) Obvious.

(2) Let $(A, \mathcal{P}) \in \tilde{S}RO(\tilde{X})$. Then, $(A, \mathcal{P}) \in \tilde{\tau}$. Since \tilde{f}_{pu} is soft S_p -open, then $\tilde{f}_{pu}(A, \mathcal{P}) \in \tilde{S}S_pO(\tilde{Y})$. By Proposition 1.19(5), $\tilde{f}_{pu}(A, \mathcal{P}) \in \tilde{S}\betaO(\tilde{Y})$ (respectively, $\tilde{S}bO(\tilde{Y})$). Thus, \tilde{f}_{pu} is soft almost β -open (respectively, soft almost δ -open).

As illustrated in the following example, the converse of Proposition 3.4 is not true in general:

Example 3.5. In Example 2.11, now define the soft function $\tilde{f}_{pu}:(\tilde{X},\tilde{\tau},\mathcal{P})\to(\tilde{X},\tilde{\tau},\mathcal{P})$, where p and u are identity functions on \mathcal{P} and X, respectively.

(1) The soft function \tilde{f}_{pu} is soft semi-open (respectively, soft β -open, soft almost β -open, soft b-open, and soft almost b-open), but it is not soft S_p -open. Since $(A_1, \mathcal{P}) \in \tilde{S}RO(\tilde{X}) \in \tilde{\tau}$, while:

```
\begin{split} \tilde{f}_{pu}(A_1,\mathcal{P}) &= \{(e_1,u(\,\widetilde{\cup}_{\alpha_1\widetilde{\in}p^{-1}(e_1)\cap\mathcal{P}}\,(A_1(\alpha_1)))),(e_2,u(\,\widetilde{\cup}_{\alpha_2\widetilde{\in}p^{-1}(e_2)\cap\mathcal{P}}\,(A_1(\alpha_2))))\} \\ &= \{(e_1,u(A_1(e_1))),(e_2,u(A_1(e_2)))\} = \, \{(e_1,u(\{x_1\})),(e_2,u(\emptyset))\} = (A_1,\mathcal{P}) \notin \tilde{S}S_pO(\tilde{X}) \ , \ \text{where} \\ p^{-1}(e_1) \cap \mathcal{P} &= \{e_1\}. \end{split}
```

(2) The soft function \tilde{f}_{pu} is soft semi-closed (respectively, soft β -closed, and soft b-closed), but it is not soft S_p -closed. Since $(A_8, \mathcal{P}) = \{(e_1, \{x_2\}), (e_2, X)\} \in \tilde{\tau}^c$, while

```
\begin{split} \tilde{f}_{pu}(A_8,\mathcal{P}) &= \{(e_1,u(\,\widetilde{\cup}_{\alpha_1\widetilde{\in}p^{-1}(e_1)\cap\mathcal{P}}\,(A_8(\alpha_1)))),(e_2,u(\,\widetilde{\cup}_{\alpha_2\widetilde{\in}p^{-1}(e_2)\cap\mathcal{P}}\,(A_8(\alpha_2))))\} \\ &= \{(e_1,u(A_8(e_1))),(e_2,u(A_8(e_2)))\} = \, \{(e_1,u(\{x_2\})),(e_2,u(X))\} = (A_8,\mathcal{P}) \notin \tilde{S}S_p\mathcal{C}(\tilde{X}) \quad , \quad \text{where} \\ p^{-1}(e_1)\cap\mathcal{P} &= \{e_1\}. \end{split}
```

Corollary 3.6. Let \tilde{f}_{pu} : $(\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ be a soft function and $(\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ is soft locally indiscrete (respectively, a soft T_1 -space). Then,

- (1) \tilde{f}_{pu} is soft S_p -open iff \tilde{f}_{pu} is soft semi-open.
- (2) \tilde{f}_{pu} is soft S_p -closed iff \tilde{f}_{pu} is soft semi-closed.

Proof. (1) This follows from Definition 3.1(1) and Proposition 1.20(1) (respectively, Proposition 1.21(1)).

(2) This follows from Definition 3.1(2) and Proposition 1.22(1) (respectively, Proposition 1.21(2)).

Corollary 3.7. Let \tilde{f}_{pu} : $(\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ be a soft function and $(\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ is soft locally indiscrete. Then,:

- (1) \tilde{f}_{pu} is soft S_p -open iff \tilde{f}_{pu} is soft open.
- (2) \tilde{f}_{pu} is soft S_p -open iff \tilde{f}_{pu} is soft α -open.
- (3) \tilde{f}_{pu} is soft pre-open, if \tilde{f}_{pu} is soft S_p -open.
- (4) \tilde{f}_{pu} is soft β_c -open, if \tilde{f}_{pu} is soft S_p -open.

Proof. By Definition 3.1(1), the proofs (1,2, and 3) are followed by Corollary 2.1.22. While the proof (4) follows from Proposition 1.20(5).

Corollary 3.8. Let \tilde{f}_{pu} : $(\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ be a soft function and $(\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ is soft locally indiscrete. Then,:

- (1) \tilde{f}_{pu} is soft S_p -closed iff \tilde{f}_{pu} is soft closed.
- (2) \tilde{f}_{pu} is soft S_p -closed iff \tilde{f}_{pu} is soft α -closed.
- (3) \tilde{f}_{pu} is soft pre-closed, if \tilde{f}_{pu} is soft S_p -closed.

Proof. Definition 3.1(2) and Proposition 1.22(2-4) provide the proof.

Corollary 3.9. Let \tilde{f}_{pu} : $(\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ be a soft function and $(\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ be a soft T_1 -space. Then, \tilde{f}_{pu} is soft S_p -open if \tilde{f}_{pu} is soft open (respectively, soft α -open).

Proof. Definition 3.1(1) and Proposition 1.21(3) (respectively, Proposition 1.21(4)) provide the proof.

Corollary 3.10. If $\tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ is a soft open (respectively, soft closed) function and $(\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ is a soft regular space, then \tilde{f}_{pu} is soft S_p -open (respectively, soft S_p -closed).

Proof. Definition 3.1(1) (respectively, Definition 3.1(2)) and Proposition 1.23(1) (respectively, Proposition 1.23(2)) provide the proof.

Corollary 3.11. If $\tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ is a soft S_p -open function and $(\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ is a soft submaximal space, then \tilde{f}_{pu} is soft β_c -open.

Proof. Definition 3.1(1) and Proposition 1.25 provide the proof.

Corollary 3.12. Let $\tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ be a soft function and $(\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ is soft extremally disconnected. Then,

- (1) \tilde{f}_{pu} is soft pre-open (respectively, soft α -open) if \tilde{f}_{pu} is soft S_p -open.
- (2) \tilde{f}_{pu} is soft pre-closed (respectively, soft α -closed) if \tilde{f}_{pu} is soft S_p -closed.

Proof. (1) Definition 3.1(1) and Proposition 1.24(1) provide the proof.

(2) Definition 3.1(2) and Proposition 1.24(2) provide the proof.

Corollary 3.13. Let \tilde{f}_{pu} : $(\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ be a soft function and $(\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ be soft extremally disconnected and a soft T_1 -space. Then, \tilde{f}_{pu} is soft S_p -open iff it is a soft α -open function.

Proof. Definition 3.1(1) and Corollary 1.26 provide the proof.

Proposition 3.14. Let \tilde{f}_{pu} : $(\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ be a soft function, $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ and $(\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ are soft locally indiscrete. Then,:

- (1) \tilde{f}_{pu} is soft S_p -open iff \tilde{f}_{pu} is soft irresolute open.
- (2) \tilde{f}_{pu} is soft S_p -closed iff \tilde{f}_{pu} is soft irresolute closed.

Proof. (1) Let $(A, \mathcal{P}) \in \tilde{S}SO(\tilde{X})$. Since \tilde{X} is soft locally indiscrete, then by Proposition 1.20(2), $(A, \mathcal{P}) \in \tilde{\tau}$. Since \tilde{f}_{pu} is soft S_p -open, then $\tilde{f}_{pu}(A, \mathcal{P}) \in \tilde{S}S_pO(\tilde{Y})$. So by Proposition 1.19(1), $\tilde{f}_{pu}(A, \mathcal{P}) \in \tilde{S}SO(\tilde{Y})$. Thus, \tilde{f}_{pu} is soft irresolute open.

Conversely, let $(A, \mathcal{P}) \in \tilde{\tau}$. Then, $(A, \mathcal{P}) \in \tilde{S}SO(\tilde{X})$. Since \tilde{f}_{pu} is soft irresolute open, so $\tilde{f}_{pu}(A, \mathcal{P}) \in \tilde{S}SO(\tilde{Y})$. Since \tilde{Y} is soft locally indiscrete, then by Proposition 1.20(1), $\tilde{f}_{pu}(A, \mathcal{P}) \in \tilde{S}S_pO(\tilde{Y})$. Thus, \tilde{f}_{pu} is soft S_p -open.

(2) Using Proposition 1.19(2) and Proposition 1.22(1) in place of Proposition 1.19(1) and Proposition 1.20(1), respectively, the proof is similar to (1).

Proposition 3.15. Let \tilde{f}_{pu} : $(\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ be a soft function from soft semi-regular $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ to soft locally indiscrete $(\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$. Then, \tilde{f}_{pu} is soft S_p -open iff \tilde{f}_{pu} is soft almost open (respectively, soft almost semi-open, and soft almost α -open).

Proof. Let $(A, \mathcal{P}) \in \tilde{S}RO(\tilde{X})$. Then, $(A, \mathcal{P}) \in \tilde{\tau}$. Since \tilde{f}_{pu} is soft S_p -open, then $\tilde{f}_{pu}(A, \mathcal{P}) \in \tilde{S}S_pO(\tilde{Y})$. Since \tilde{Y} is soft locally indiscrete, then by Proposition 1.20(2) (respectively, Proposition 1.19(1), and Proposition 1.20(3)), $\tilde{f}_{pu}(A, \mathcal{P}) \in \tilde{\sigma}$ (respectively, $\tilde{S}SO(\tilde{Y})$, and $\tilde{S}\alpha O(\tilde{Y})$). Thus, \tilde{f}_{pu} is soft almost open (respectively, soft almost semi-open, and soft almost α -open).

Conversely, let $(A, \mathcal{P}) \in \tilde{\tau}$ and $\tilde{f}_{pu}(\tilde{e}_{x}) \in \tilde{f}_{pu}(A, \mathcal{P})$, we have $\tilde{e}_{x} \in (A, \mathcal{P})$. By the soft semi-regularity of \tilde{X} , there is $(O, \mathcal{P}) \in \tilde{S}RO(\tilde{X})$ such that $\tilde{e}_{x} \in (O, \mathcal{P}) \subseteq (A, \mathcal{P})$. Since \tilde{f}_{pu} is soft almost open (respectively, soft almost semi-open, and soft almost α -open), then $\tilde{f}_{pu}(O, \mathcal{P}) \in \tilde{\sigma}$ (respectively, $\tilde{S}SO(\tilde{Y})$, and $\tilde{S}\alpha O(\tilde{Y})$), and $\tilde{f}_{pu}(\tilde{e}_{x}) \in \tilde{f}_{pu}(O, \mathcal{P}) \subseteq \tilde{f}_{pu}(A, \mathcal{P})$. Since \tilde{Y} is soft locally indiscrete, then by Proposition 1.20(2) (respectively, Proposition 1.20(1), and Proposition 1.20(3)), $\tilde{f}_{pu}(O, \mathcal{P}) \in \tilde{S}S_{p}O(\tilde{Y})$. Therefore, by Proposition 1.18(2), $\tilde{f}_{pu}(A, \mathcal{P}) \in \tilde{S}S_{p}O(\tilde{Y})$. Thus Definition 3.1(1), \tilde{f}_{pu} is soft S_{p} -open.

Proposition 3.16. Let $\tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ be a soft function and $(\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ is soft extremally disconnected. Then, \tilde{f}_{pu} is soft almost pre-open (respectively, soft almost α -open), if \tilde{f}_{pu} is soft S_p -open.

Proof. Let $(A, \mathcal{P}) \in \tilde{S}RO(\tilde{X})$. Then, $(A, \mathcal{P}) \in \tilde{\tau}$. Since \tilde{f}_{pu} is soft S_p -open, then $\tilde{f}_{pu}(A, \mathcal{P}) \in \tilde{S}S_pO(\tilde{Y})$. Since \tilde{Y} is soft extremally disconnected, then by Proposition 1.24(1), $\tilde{f}_{pu}(A, \mathcal{P}) \in \tilde{S}PO(\tilde{Y})$ (respectively, $\tilde{S}\alpha O(\tilde{Y})$). Thus, \tilde{f}_{pu} is soft almost pre-open (respectively, soft almost α -open).

Proposition 3.17. Let $\tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ be a soft homeomorphism function. Then, $(A, \mathcal{P}) \in \tilde{S}S_pO(\tilde{X})$ iff $\tilde{f}_{pu}(A, \mathcal{P}) \in \tilde{S}S_pO(\tilde{Y})$.

Proof. Let $(A, \mathcal{P}) \in \tilde{S}S_p O(\tilde{X})$. Then by Proposition 1.18(1), $(A, \mathcal{P}) \in \tilde{S}SO(\tilde{X})$ and $(A, \mathcal{P}) = \widetilde{U}(B_{\vartheta}, \mathcal{P})$, where $(B_{\vartheta}, \mathcal{P}) \in \tilde{S}PC(\tilde{X})$, $\forall \vartheta \in \mathfrak{K}$. So, $\tilde{f}_{pu}(A, \mathcal{P}) = \tilde{f}_{pu}(\widetilde{U}(B_{\vartheta}, \mathcal{P})) = \widetilde{U}(\tilde{f}_{pu}(B_{\vartheta}, \mathcal{P}))$. By Proposition 1.17(2), \tilde{f}_{pu} is soft continuous and soft open, so by Proposition 1.31, $\tilde{f}_{pu}(A, \mathcal{P}) \in \tilde{S}SO(\tilde{Y})$. Also, \tilde{f}_{pu} is soft homeomorphism, so by Proposition 1.32, $\tilde{f}_{pu}(B_{\vartheta}, \mathcal{P}) \in \tilde{S}PC(\tilde{Y})$, $\forall \vartheta \in \mathfrak{K}$. Hence by Proposition 1.18(1), $\tilde{f}_{pu}(A, \mathcal{P}) \in \tilde{S}S_p O(\tilde{Y})$.

Conversely, this follows from Proposition 1.17(2) and Proposition 1.30.

Corollary 3.18. Let $\tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ be a soft homeomorphism function. Then, $(C, \mathcal{P}) \in \tilde{S}S_pC(\tilde{X})$ iff $\tilde{f}_{pu}(C, \mathcal{P}) \in \tilde{S}S_pC(\tilde{Y})$.

Proof. Applying Proposition 3.17 and Definition 1.4.

Proposition 3.19. Let $\tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ be soft irresolute open. If $(\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ is soft locally indiscrete and $(A, \mathcal{P}) \in \tilde{S}S_p O(\tilde{X})$, then $\tilde{f}_{pu}(A, \mathcal{P}) \in \tilde{S}S_p O(\tilde{Y})$.

Proof. Since $(A, \mathcal{P}) \in \tilde{S}S_pO(\tilde{X})$, then $(A, \mathcal{P}) \in \tilde{S}SO(\tilde{X})$. Since \tilde{f}_{pu} is soft irresolute open, then $\tilde{f}_{pu}(A, \mathcal{P}) \in \tilde{S}SO(\tilde{Y})$. Also since \tilde{Y} is soft locally indiscrete, then by Proposition 1.20(1), $\tilde{f}_{pu}(A, \mathcal{P}) \in \tilde{S}S_pO(\tilde{Y})$.

Theorem 3.20. Let $\tilde{f}_{vu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ be a soft function. Then, the following sentences are equivalent:

- (1) \tilde{f}_{pu} is soft S_p -open.
- (2) $\tilde{f}_{vu}(\tilde{s}int(A,\mathcal{P})) \cong \tilde{s}S_{v}int(\tilde{f}_{vu}(A,\mathcal{P})), \forall (A,\mathcal{P}) \cong \tilde{X}.$
- $(3) \quad \tilde{s}int(\tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}})) \cong \tilde{f}_{pu}^{-1}(\tilde{s}S_{p}int(B, \acute{\mathcal{P}})), \, \forall \, (B, \acute{\mathcal{P}}) \cong \tilde{Y}.$
- $(4) \quad \tilde{f}_{pu}^{-1}(\tilde{s}S_pcl(B,\dot{\mathcal{P}})) \cong \tilde{s}cl(\tilde{f}_{pu}^{-1}(B,\dot{\mathcal{P}})), \, \forall \, (B,\dot{\mathcal{P}}) \cong \tilde{Y}.$
- $(5) \quad \tilde{f}_{pu}^{-1}(\tilde{s}S_pBd(B,\hat{\mathcal{P}})) \cong \tilde{s}Bd(\tilde{f}_{pu}^{-1}(B,\hat{\mathcal{P}})), \, \forall \, (B,\hat{\mathcal{P}}) \cong \tilde{Y}.$

Proof. (1) \rightarrow (2). Let $(A, \mathcal{P}) \subseteq \tilde{X}$. Then, $\tilde{s}int(A, \mathcal{P}) \in \tilde{\tau}$. Since \tilde{f}_{pu} is soft S_p -open, then $\tilde{f}_{pu}(\tilde{s}int(A, \mathcal{P})) \in \tilde{S}S_pO(\tilde{Y})$, also since $\tilde{s}int(A, \mathcal{P}) \subseteq (A, \mathcal{P})$ implies that $\tilde{f}_{pu}(\tilde{s}int(A, \mathcal{P})) \subseteq \tilde{f}_{pu}(A, \mathcal{P})$. Therefore, $\tilde{f}_{pu}(\tilde{s}int(A, \mathcal{P})) \subseteq \tilde{s}S_pint(\tilde{f}_{pu}(A, \mathcal{P}))$.

- $(2) \to (3). \text{ Let } (B, \mathcal{P}) \widetilde{\subseteq} \widetilde{Y}. \text{ Then, } \widetilde{f}_{pu}^{-1}(B, \mathcal{P}) \widetilde{\subseteq} \widetilde{X}. \text{ By } (2), \text{ we have } \widetilde{f}_{pu}(\widetilde{sint}(\widetilde{f}_{pu}^{-1}(B, \mathcal{P}))) \widetilde{\subseteq} \widetilde{sS}_{p}int(\widetilde{f}_{pu}(\widetilde{f}_{pu}^{-1}(B, \mathcal{P}))).$ $(B, \mathcal{P})). \text{ So, } \widetilde{f}_{pu}(\widetilde{sint}(\widetilde{f}_{pu}^{-1}(B, \mathcal{P}))) \widetilde{\subseteq} \widetilde{sS}_{p}int(B, \mathcal{P}). \text{ Hence, } \widetilde{sint}(\widetilde{f}_{pu}^{-1}(B, \mathcal{P})) \widetilde{\subseteq} \widetilde{f}_{pu}^{-1}(\widetilde{sS}_{p}int(B, \mathcal{P})).$
- $(3) \to (1)$. Let $(A, \mathcal{P}) \in \tilde{\tau}$. Then, $\tilde{f}_{pu}(A, \mathcal{P}) \subseteq \tilde{Y}$. So by (3), $\tilde{s}int(A, \mathcal{P}) \subseteq \tilde{s}int(\tilde{f}_{pu}^{-1}(\tilde{f}_{pu}(A, \mathcal{P}))) \subseteq \tilde{f}_{pu}^{-1}(\tilde{s}S_pint(\tilde{f}_{pu}(A, \mathcal{P})))$. Since $\tilde{s}int(A, \mathcal{P}) = (A, \mathcal{P})$, then $(A, \mathcal{P}) \subseteq \tilde{f}_{pu}^{-1}(\tilde{s}S_pint(\tilde{f}_{pu}(A, \mathcal{P})))$ and so $\tilde{f}_{pu}(A, \mathcal{P}) \subseteq \tilde{s}S_pint(\tilde{f}_{pu}(A, \mathcal{P}))$. Hence, $\tilde{f}_{pu}(A, \mathcal{P}) \in \tilde{s}S_pO(\tilde{Y})$. Thus, \tilde{f}_{pu} is soft S_p -open.
- $(3) \leftrightarrow (4). \text{ Let } (B, \acute{\mathcal{P}}) \widetilde{\subseteq} \widetilde{Y} \text{ . Then, } \widetilde{Y} \widetilde{\backslash} (B, \acute{\mathcal{P}}) \widetilde{\subseteq} \widetilde{Y} \text{ and } \widetilde{sint}(\widetilde{f}_{pu}^{-1}(\widetilde{Y} \widetilde{\backslash} (B, \acute{\mathcal{P}}))) \widetilde{\subseteq} \widetilde{f}_{pu}^{-1}(\widetilde{s}S_pint(\widetilde{Y} \widetilde{\backslash} (B, \acute{\mathcal{P}}))) \leftrightarrow \widetilde{X} \widetilde{\backslash} \widetilde{scl}(\widetilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}})) \widetilde{\subseteq} \widetilde{X} \widetilde{\backslash} \widetilde{f}_{pu}^{-1}(\widetilde{s}S_pcl(B, \acute{\mathcal{P}})) \leftrightarrow \widetilde{f}_{pu}^{-1}(\widetilde{s}S_pcl(B, \acute{\mathcal{P}})) \widetilde{\subseteq} \widetilde{scl}(\widetilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}})).$

- $(4) \to (5). \text{ Let } (B, \acute{\mathcal{P}}) \ \widetilde{\subseteq} \ \widetilde{Y} \text{. Then by Definition 1.5(3) and } (4), \ \widetilde{f}_{pu}^{-1}(\widetilde{s}S_pBd(B, \acute{\mathcal{P}})) = \widetilde{f}_{pu}^{-1}[\widetilde{s}S_pcl(B, \acute{\mathcal{P}}) \ \widetilde{\cap} \ \widetilde{s}S_pcl(B, \acute{\mathcal{P}})) \ \widetilde{\cap} \ \widetilde{s}S_pcl(B, \acute{\mathcal{P}})) \ \widetilde{\cap} \ \widetilde{s}S_pcl(B, \acute{\mathcal{P}})) \ \widetilde{\cap} \ \widetilde{s}Cl(\widetilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}})) \ \widetilde{\cap} \ \widetilde{s}Cl(\widetilde{f}_{pu}^{-1}(\widetilde{Y} \backslash (B, \acute{\mathcal{P}}))) = \widetilde{s}Bd(\widetilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}})) \ \widetilde{\cap} \ \widetilde{s}Cl(\widetilde{f}_{pu}^{-1}(\widetilde{Y} \backslash (B, \acute{\mathcal{P}}))) = \widetilde{s}Bd(\widetilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}})).$
- $(5) \longrightarrow (4). \text{ Let } (B, \acute{\mathcal{P}}) \cong \widetilde{Y}. \text{ Then by } (5) \text{ and Theorem } 1.28(3), \ \widetilde{f}_{pu}^{-1}(\widetilde{s}S_p cl(B, \acute{\mathcal{P}})) = \widetilde{f}_{pu}^{-1}((B, \acute{\mathcal{P}}) \ \widetilde{\cup} \ \widetilde{s}S_p Bd(B, \acute{\mathcal{P}})) = \widetilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}) \ \widetilde{\cup} \ \widetilde{f}_{pu}^{-1}(\widetilde{s}S_p Bd(B, \acute{\mathcal{P}})) \cong \widetilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}) \ \widetilde{\cup} \ \widetilde{s}Bd(\widetilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}})) = \widetilde{s}cl(\widetilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}})). \text{ Therefore, } \widetilde{f}_{pu}^{-1}(\widetilde{s}S_p cl(B, \acute{\mathcal{P}})) \cong \widetilde{s}cl(\widetilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}})).$

Proposition 3.21. Let \tilde{f}_{pu} : $(\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ be a soft surjective function. Then, the following sentences are equivalent:

- (1) \tilde{f}_{pu} is soft S_p -open.
- (2) $\forall (A, \mathcal{P}) \cong \tilde{X}$, $\tilde{f}_{pu}(\tilde{s}int(A, \mathcal{P})) \cong \tilde{s}cl\tilde{s}int\tilde{f}_{pu}(A, \mathcal{P})$, and $\tilde{f}_{pu}(\tilde{s}int(A, \mathcal{P})) = \tilde{U}_{\vartheta \in \aleph}(C_{\vartheta}, \acute{\mathcal{P}})$ where $(C_{\vartheta}, \acute{\mathcal{P}}) \cong \tilde{S}PC(\tilde{Y}), \forall \vartheta \in \aleph$.
- (3) $\forall (B, \mathcal{P}) \subseteq \tilde{Y}$, $\tilde{s}int(\tilde{f}_{pu}^{-1}(B, \mathcal{P})) \subseteq \tilde{f}_{pu}^{-1}(\tilde{s}cl\tilde{s}int(B, \mathcal{P}))$, and $\tilde{f}_{pu}(\tilde{s}int(\tilde{f}_{pu}^{-1}(B, \mathcal{P}))) = \tilde{U}_{\vartheta \in \mathbb{N}}(C_{\vartheta}, \mathcal{P})$ where $(C_{\vartheta}, \mathcal{P}) \in \tilde{S}PC(\tilde{Y}), \forall \vartheta \in \mathbb{N}$.
- **Proof.** (1) \rightarrow (2). Let $(A, \mathcal{P}) \cong \tilde{X}$. Then, $\tilde{s}int(A, \mathcal{P}) \cong \tilde{\tau}$ and by (1), $\tilde{f}_{pu}(\tilde{s}int(A, \mathcal{P})) \cong \tilde{S}S_p O(\tilde{Y})$. So by Proposition 1.19(1), $\tilde{f}_{pu}(\tilde{s}int(A, \mathcal{P})) \cong \tilde{S}SO(\tilde{Y})$ and $\tilde{f}_{pu}(\tilde{s}int(A, \mathcal{P})) = \tilde{U}_{\vartheta \in \aleph} (C_{\vartheta}, \dot{\mathcal{P}})$ where $(C_{\vartheta}, \dot{\mathcal{P}}) \cong \tilde{S}PC(\tilde{Y})$, $\forall \vartheta \in \aleph$. Thus, $\tilde{f}_{pu}(\tilde{s}int(A, \mathcal{P})) \cong \tilde{s}cl\tilde{s}int\tilde{f}_{pu}(A, \mathcal{P})$, and $\tilde{f}_{pu}(\tilde{s}int(A, \mathcal{P})) = \tilde{U}_{\vartheta \in \aleph} (C_{\vartheta}, \dot{\mathcal{P}})$, $(C_{\vartheta}, \dot{\mathcal{P}}) \in \tilde{S}PC(\tilde{Y})$, $\forall \vartheta \in \aleph$.
- $(2) \longrightarrow (1). \text{ Let } (A,\mathcal{P}) \ \widetilde{\in} \ \widetilde{\tau}. \text{ Then, } \widetilde{sint}(A,\mathcal{P}) = (A,\mathcal{P}) \text{ and by } (2), \ \widetilde{f}_{pu}(A,\mathcal{P}) = \widetilde{f}_{pu}(\widetilde{sint}(A,\mathcal{P})) \ \widetilde{\subseteq} \ \widetilde{scl}\widetilde{sint}\widetilde{f}_{pu}(A,\mathcal{P})$ and $\widetilde{f}_{pu}(A,\mathcal{P}) = \widetilde{U}_{\vartheta \in \aleph} (C_{\vartheta}, \not \mathcal{P}) \text{ where } (C_{\vartheta}, \not \mathcal{P}) \ \widetilde{\in} \ \widetilde{SPC}(\widetilde{Y}), \ \forall \ \vartheta \in \aleph . \text{ So, } \ \widetilde{f}_{pu}(A,\mathcal{P}) \ \widetilde{\in} \ \widetilde{SSO}(\widetilde{Y}) \text{ and } \ \widetilde{f}_{pu}(A,\mathcal{P}) = \widetilde{U}_{\vartheta \in \aleph} (C_{\vartheta}, \not \mathcal{P}) \ \widetilde{\in} \ \widetilde{SPC}(\widetilde{Y}), \ \forall \ \vartheta \in \aleph . \text{ Therefore, by Proposition 1.18(1), } \ \widetilde{f}_{pu}(A,\mathcal{P}) \ \widetilde{\in} \ \widetilde{SS}_p O(\widetilde{Y}). \text{ Thus, } \ \widetilde{f}_{pu} \text{ is soft } S_p\text{-open.}$
- $(2) \to (3). \text{ Let } (B, \acute{\mathcal{P}}) \cong \widetilde{Y}. \text{ Then, } \widetilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}) \cong \widetilde{X} \text{ and by } (2), \ \widetilde{f}_{pu}(\widetilde{sint}(\widetilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}))) \cong \widetilde{scl}\widetilde{sint}\widetilde{f}_{pu}(\widetilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}})) \subseteq \widetilde{scl}\widetilde{sint}(B, \acute{\mathcal{P}}) \text{ and } \widetilde{f}_{pu}(\widetilde{sint}(\widetilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}))) = \widetilde{\cup}_{\vartheta \in \aleph} (C_{\vartheta}, \acute{\mathcal{P}}) \text{ where } (C_{\vartheta}, \acute{\mathcal{P}}) \cong \widetilde{SPC}(\widetilde{Y}), \ \forall \ \vartheta \in \aleph. \text{ So, } \widetilde{sint}(\widetilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}})) \cong \widetilde{f}_{pu}^{-1}(\widetilde{scl}\widetilde{sint}(B, \acute{\mathcal{P}})) \text{ and } \widetilde{f}_{pu}(\widetilde{sint}(\widetilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}))) = \widetilde{\cup}_{\vartheta \in \aleph} (C_{\vartheta}, \acute{\mathcal{P}}) \text{ where } (C_{\vartheta}, \acute{\mathcal{P}}) \cong \widetilde{SPC}(\widetilde{Y}), \ \forall \ \vartheta \in \aleph.$
- $(3) \to (2). \text{ Let } (A,\mathcal{P}) \widetilde{\subseteq} \tilde{X}. \text{ Then, } \tilde{f}_{pu}(A,\mathcal{P}) \widetilde{\subseteq} \tilde{Y} \text{ and by } (3), \tilde{s}int(A,\mathcal{P}) \widetilde{\subseteq} \tilde{s}int(\tilde{f}_{pu}^{-1}(\tilde{f}_{pu}(A,\mathcal{P}))) \widetilde{\subseteq} \tilde{f}_{pu}^{-1}(\tilde{s}cl\tilde{s}int(\tilde{f}_{pu}^{-1}(\tilde{f}_{pu}(A,\mathcal{P}))))) = \tilde{\mathcal{G}}_{\theta \in \mathbb{N}}(C_{\theta}, \hat{\mathcal{P}}) \text{ where } (C_{\theta}, \hat{\mathcal{P}}) \widetilde{\in} \tilde{S}PC(\tilde{Y}), \forall \theta \in \mathbb{N}.$ Therefore, $\tilde{s}int(A,\mathcal{P}) \widetilde{\subseteq} \tilde{f}_{pu}^{-1}(\tilde{s}cl\tilde{s}int(\tilde{f}_{pu}(A,\mathcal{P}))) \text{ and } \tilde{f}_{pu}(\tilde{s}int(A,\mathcal{P})) = \tilde{\mathcal{G}}_{\theta \in \mathbb{N}}(C_{\theta}, \hat{\mathcal{P}}).$ Thus, $\tilde{f}_{pu}(\tilde{s}int(A,\mathcal{P})) \widetilde{\subseteq} \tilde{s}cl\tilde{s}int(\tilde{f}_{pu}(A,\mathcal{P})) \text{ and } \tilde{f}_{pu}(\tilde{s}int(A,\mathcal{P})) = \tilde{\mathcal{G}}_{\theta \in \mathbb{N}}(C_{\theta}, \hat{\mathcal{P}}).$

Proposition 3.22. Let $\tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ is a soft bijective and soft S_p -open function. If $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ is a soft Hausdorff space, then $(\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ is soft S_p -Hausdorff.

Proof. Let $\widetilde{e_x}$, $\widetilde{e_y}$ \in $\widetilde{SP}(\widetilde{Y})$ such that $\widetilde{e_x} \neq \widetilde{e_y}$. Then, $\widetilde{f_{pu}^{-1}}(\widetilde{e_x})$, $\widetilde{f_{pu}^{-1}}(\widetilde{e_y})$ \in $\widetilde{SP}(\widetilde{X})$. Since $\widetilde{f_{pu}}$ is soft bijective, then $\widetilde{f_{pu}^{-1}}(\widetilde{e_x}) \neq \widetilde{f_{pu}^{-1}}(\widetilde{e_y})$. Since $(\widetilde{X}, \widetilde{\tau}, \mathcal{P})$ is soft Hausdorff, there are disjoint soft open sets (A_1, \mathcal{P}) and (A_2, \mathcal{P}) in \widetilde{X} with $\widetilde{f_{pu}^{-1}}(\widetilde{e_x}) \in (A_1, \mathcal{P})$ and $\widetilde{f_{pu}^{-1}}(\widetilde{e_y}) \in (A_2, \mathcal{P})$. Since $\widetilde{f_{pu}}$ is soft S_p -open, then $\widetilde{f_{pu}}(A_1, \mathcal{P})$, $\widetilde{f_{pu}}(A_2, \mathcal{P}) \in \widetilde{SS_pO}(\widetilde{Y})$. Also, since $\widetilde{f_{pu}}$ is soft bijective and $(A_1, \mathcal{P}) \cap (A_2, \mathcal{P}) = \widetilde{\emptyset}$, we have $\widetilde{f_{pu}}(A_1, \mathcal{P}) \cap \widetilde{f_{pu}}(A_2, \mathcal{P}) = \widetilde{f_{pu}}((A_1, \mathcal{P}) \cap (A_2, \mathcal{P})) = \widetilde{\emptyset}$ and $\widetilde{e_x} \in \widetilde{f_{pu}}(A_1, \mathcal{P})$, $\widetilde{e_y} \in \widetilde{f_{pu}}(A_2, \mathcal{P})$. Hence, $(\widetilde{Y}, \widetilde{\sigma}, \widehat{\mathcal{P}})$ is soft S_p -Hausdorff.

Proposition 3.23. Let $\tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ be a soft function. Then, \tilde{f}_{pu} is soft S_p -closed iff $\tilde{s}S_p cl(\tilde{f}_{pu}(A, \mathcal{P})) \cong \tilde{f}_{pu}(\tilde{s}cl(A, \mathcal{P})), \forall (A, \mathcal{P}) \cong \tilde{X}$.

Proof. Let $(A, \mathcal{P}) \subseteq \tilde{X}$. Then, $\tilde{s}cl(A, \mathcal{P}) \in \tilde{\tau}^c$. Since \tilde{f}_{pu} is soft S_p -closed, then $\tilde{f}_{pu}(\tilde{s}cl(A, \mathcal{P})) \in \tilde{S}S_pC(\tilde{Y})$. Also, since $(A, \mathcal{P}) \subseteq \tilde{s}cl(A, \mathcal{P})$ implies that $\tilde{f}_{pu}(A, \mathcal{P}) \subseteq \tilde{f}_{pu}(\tilde{s}cl(A, \mathcal{P}))$, then $\tilde{s}S_pcl(\tilde{f}_{pu}(A, \mathcal{P})) \subseteq \tilde{s}S_pcl(\tilde{f}_{pu}(\tilde{s}cl(A, \mathcal{P}))) = \tilde{f}_{pu}(\tilde{s}cl(A, \mathcal{P}))$. So, $\tilde{s}S_pcl(\tilde{f}_{pu}(A, \mathcal{P})) \subseteq \tilde{f}_{pu}(\tilde{s}cl(A, \mathcal{P}))$.

Conversely, let $(A, \mathcal{P}) \in \tilde{\tau}^c$. Then, $(A, \mathcal{P}) = \tilde{s}cl(A, \mathcal{P})$. By hypothesis, we get $\tilde{s}S_pcl(\tilde{f}_{pu}(A, \mathcal{P})) \subseteq \tilde{f}_{pu}(\tilde{s}cl(A, \mathcal{P})) = \tilde{f}_{pu}(A, \mathcal{P})$. So, $\tilde{s}S_pcl(\tilde{f}_{pu}(A, \mathcal{P})) \subseteq \tilde{f}_{pu}(A, \mathcal{P})$. Hence, $\tilde{f}_{pu}(A, \mathcal{P}) \in \tilde{s}S_pcl(\tilde{f}_{pu}(A, \mathcal{P}))$. Thus by Definition 3.1(2), \tilde{f}_{pu} is soft S_p -closed.

Proposition 3.24. Let $\tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \dot{\mathcal{P}})$ be a soft bijective function. Then, \tilde{f}_{pu} is soft S_p -closed iff $\tilde{f}_{pu}^{-1}(\tilde{s}S_pcl(B, \dot{\mathcal{P}})) \cong \tilde{s}cl(\tilde{f}_{pu}^{-1}(B, \dot{\mathcal{P}})), \forall (B, \dot{\mathcal{P}}) \cong \tilde{Y}$.

Proof. Let $(B, \acute{\mathcal{P}}) \cong \Tilde{Y}$. Then, $\Tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}) \cong \Tilde{X}$, $\Tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}) \cong \Tilde{scl}(\Tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}))$ and so $\Tilde{scl}(\Tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}})) \cong \Tilde{scl}(\Tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}})) \cong \Tilde{scl}(\Tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}})) \cong \Tilde{scl}(\Tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}))$. Since \Tilde{f}_{pu} is a soft bijective function, so $(B, \acute{\mathcal{P}}) \cong \Tilde{f}_{pu}(\Tilde{scl}(\Tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}})))$ and hence, $\Tilde{sS}_p cl(B, \acute{\mathcal{P}}) \cong \Tilde{sS}_p cl(\Tilde{f}_{pu}(\Tilde{scl}(\Tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}))) = \Tilde{f}_{pu}(\Tilde{scl}(\Tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}})))$. Also, since \Tilde{f}_{pu} is a soft bijective function, so $\Tilde{f}_{pu}^{-1}(\Tilde{sS}_p cl(B, \acute{\mathcal{P}})) \cong \Tilde{scl}(\Tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}))$.

Conversely, let $(C, \mathcal{P}) \in \tilde{\tau}^c$. Then, $(C, \mathcal{P}) = \tilde{s}cl(C, \mathcal{P})$ and $\tilde{f}_{pu}(C, \mathcal{P}) \subseteq \tilde{Y}$. By hypothesis, we get $\tilde{f}_{pu}^{-1}(\tilde{s}S_pcl(\tilde{f}_{pu}(C, \mathcal{P})))) \subseteq \tilde{s}cl(\tilde{f}_{pu}^{-1}(\tilde{f}_{pu}(C, \mathcal{P})))$. Since \tilde{f}_{pu} is a soft bijective function, so $\tilde{f}_{pu}^{-1}(\tilde{s}S_pcl(\tilde{f}_{pu}(C, \mathcal{P})))) \subseteq \tilde{s}cl(C, \mathcal{P}) = (C, \mathcal{P})$. Hence, $\tilde{s}S_pcl(\tilde{f}_{pu}(C, \mathcal{P})) \subseteq \tilde{f}_{pu}(C, \mathcal{P})$. Thus, $\tilde{f}_{pu}(C, \mathcal{P}) \in \tilde{s}S_pC(\tilde{Y})$. Therefore, by Definition 3.1(2), \tilde{f}_{pu} is soft S_p -closed.

Proposition 3.25. Let \tilde{f}_{pu} : $(\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ be a soft bijective function. Then, the following sentences are equivalent:

- (1) \tilde{f}_{pu} is soft S_p -open.
- (2) \tilde{f}_{pu} is soft S_p -closed.
- (3) \tilde{f}_{pu}^{-1} : $(\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}}) \to (\tilde{X}, \tilde{\tau}, \mathcal{P})$ is soft S_p -continuous.

Proof. (1) \rightarrow (2). Obvious.

- (2) \rightarrow (3). Let $(C, \mathcal{P}) \in \tilde{\tau}^c$. By (2), we get $\tilde{f}_{pu}(C, \mathcal{P}) \in \tilde{S}S_p\mathcal{C}(\tilde{Y})$. But $\tilde{f}_{pu}(C, \mathcal{P}) = (\tilde{f}_{pu}^{-1})^{-1}(C, \mathcal{P})$ and therefore, by Theorem 1.29(2), \tilde{f}_{pu}^{-1} is soft S_p -continuous.
- $(3) \longrightarrow (1)$. Let $(A, \mathcal{P}) \in \tilde{\tau}$. By (3), we get $(\tilde{f}_{pu}^{-1})^{-1}(A, \mathcal{P}) = \tilde{f}_{pu}(A, \mathcal{P}) \in \tilde{S}S_p\mathcal{O}(\tilde{Y})$ and so by Definition 3.1(1), \tilde{f}_{pu} is soft S_p -open.

Proposition 3.26. A soft surjective function \tilde{f}_{pu} : $(\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ is soft S_p -closed iff $\forall (B, \hat{\mathcal{P}}) \subseteq \tilde{Y}$ and $(A, \mathcal{P}) \in \tilde{\tau}$ such that $\tilde{f}_{pu}^{-1}(B, \hat{\mathcal{P}}) \subseteq (A, \mathcal{P})$, there exists $(Q, \hat{\mathcal{P}}) \in \tilde{S}S_pO(\tilde{Y})$ such that $(B, \hat{\mathcal{P}}) \subseteq (Q, \hat{\mathcal{P}})$ and $\tilde{f}_{pu}^{-1}(Q, \hat{\mathcal{P}}) \subseteq (A, \mathcal{P})$.

Proof. Let $(B, \acute{\mathcal{P}}) \cong \tilde{Y}$ and $(A, \mathcal{P}) \in \tilde{\tau}$ such that $\tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}) \cong (A, \mathcal{P})$. Then, $\tilde{X} \setminus (A, \mathcal{P}) \in \tilde{\tau}^c$. Since \tilde{f}_{pu} is soft S_p -closed, then $\tilde{f}_{pu}(\tilde{X} \setminus (A, \mathcal{P})) \in \tilde{S}S_pC(\tilde{Y})$ and so $(Q, \acute{\mathcal{P}}) = \tilde{Y} \setminus \tilde{f}_{pu}(\tilde{X} \setminus (A, \mathcal{P})) \in \tilde{S}S_pO(\tilde{Y})$. Since $\tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}) \cong (A, \mathcal{P})$, then $\tilde{X} \setminus (A, \mathcal{P}) \cong \tilde{X} \setminus \tilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}) = \tilde{f}_{pu}^{-1}(\tilde{Y} \setminus (B, \acute{\mathcal{P}}))$, so $\tilde{X} \setminus (A, \mathcal{P}) \cong \tilde{f}_{pu}^{-1}(\tilde{Y} \setminus (B, \acute{\mathcal{P}}))$. Since \tilde{f}_{pu} is soft surjective, so $\tilde{f}_{pu}(\tilde{X} \setminus (A, \mathcal{P})) \cong \tilde{f}_{pu}(\tilde{f}_{pu}^{-1}(\tilde{Y} \setminus (B, \acute{\mathcal{P}}))) = \tilde{Y} \setminus (B, \acute{\mathcal{P}})$. This implies that $(B, \acute{\mathcal{P}}) \cong \tilde{Y} \setminus \tilde{f}_{pu}(\tilde{X} \setminus (A, \mathcal{P})) = (Q, \acute{\mathcal{P}})$, so $(B, \acute{\mathcal{P}}) \cong (Q, \acute{\mathcal{P}})$ and $\tilde{f}_{pu}^{-1}(Q, \acute{\mathcal{P}}) = \tilde{f}_{pu}^{-1}(\tilde{Y} \setminus \tilde{f}_{pu}(\tilde{X} \setminus (A, \mathcal{P}))) = \tilde{X} \setminus \tilde{f}_{pu}^{-1}(\tilde{f}_{pu}(\tilde{X} \setminus (A, \mathcal{P}))) \cong \tilde{X} \setminus \tilde{X} \setminus (A, \mathcal{P}) = (A, \mathcal{P})$. Thus, $\tilde{f}_{pu}^{-1}(Q, \acute{\mathcal{P}}) \cong (A, \mathcal{P})$.

Conversely, let $(C, \mathcal{P}) \in \tilde{\tau}^c$ and $\widetilde{e_y} \in \tilde{Y} \setminus \tilde{f}_{pu}(C, \mathcal{P})$. Then, $\tilde{X} \setminus (C, \mathcal{P}) \in \tilde{\tau}$ and $\tilde{Y} \setminus \tilde{f}_{pu}(C, \mathcal{P}) \subseteq \tilde{Y}$ such that $\tilde{f}_{pu}^{-1}(\widetilde{e_y}) \in \tilde{f}_{pu}^{-1}(\tilde{Y} \setminus \tilde{f}_{pu}(C, \mathcal{P})) \subseteq \tilde{X} \setminus (C, \mathcal{P})$. By hypothesis, there exists $(Q, \dot{\mathcal{P}}) \in \tilde{S}S_pO(\tilde{Y})$ such that $\widetilde{e_y} \in \tilde{Y} \setminus \tilde{f}_{pu}(C, \mathcal{P}) \subseteq (Q, \dot{\mathcal{P}})$ and $\tilde{f}_{pu}^{-1}(Q, \dot{\mathcal{P}}) \subseteq \tilde{X} \setminus (C, \mathcal{P})$, and so $(C, \mathcal{P}) \subseteq \tilde{X} \setminus \tilde{f}_{pu}^{-1}(Q, \dot{\mathcal{P}})$. That is $(C, \mathcal{P}) \subseteq \tilde{f}_{pu}^{-1}(\tilde{Y} \setminus (Q, \dot{\mathcal{P}}))$ implies that $\tilde{f}_{pu}(C, \mathcal{P}) \subseteq \tilde{Y} \setminus (Q, \dot{\mathcal{P}})$, so $\tilde{e_y} \in (Q, \dot{\mathcal{P}}) \subseteq \tilde{Y} \setminus \tilde{f}_{pu}(C, \mathcal{P})$. Thus Proposition 1.18(2), $\tilde{Y} \setminus \tilde{f}_{pu}(C, \mathcal{P}) \in \tilde{S}S_pO(\tilde{Y})$ and so $\tilde{f}_{pu}(C, \mathcal{P}) \in \tilde{S}S_pC(\tilde{Y})$. Therefore, \tilde{f}_{pu} is soft S_p -closed.

Proposition 3.27. Let $\tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}})$ and $\tilde{g}_{qv}: (\tilde{Y}, \tilde{\sigma}, \hat{\mathcal{P}}) \to (\tilde{W}, \tilde{\mu}, \ddot{\mathcal{P}})$ be two soft functions. Then, $\tilde{g}_{qv} \circ \tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{W}, \tilde{\mu}, \ddot{\mathcal{P}})$ is soft S_p -open (respectively, soft S_p -closed), if \tilde{f}_{pu} is soft open (respectively, soft closed) and \tilde{g}_{qv} is soft S_p -open (respectively, soft S_p -closed).

Proof. Let $(A, \mathcal{P}) \in \tilde{\tau}$ (respectively, $\tilde{\tau}^c$). Since \tilde{f}_{pu} is soft open (respectively, soft closed), then $\tilde{f}_{pu}(A, \mathcal{P}) \in \tilde{\sigma}$ (respectively, $\tilde{\sigma}^c$). Since \tilde{g}_{qv} is soft S_p -open (respectively, soft S_p -closed), then $\tilde{g}_{qv}(\tilde{f}_{pu}(A, \mathcal{P})) = (\tilde{g}_{qv} \circ \tilde{f}_{pu})(A, \mathcal{P})$ $\in \tilde{S}S_pO(\tilde{W})$ (respectively, $\tilde{S}S_pC(\tilde{W})$). Therefore, by Definition 3.1(1) (respectively, Definition 3.1(2)), $\tilde{g}_{qv} \circ \tilde{f}_{pu}$ is soft S_p -open (respectively, soft S_p -closed).

Proposition 3.28. If $\tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \dot{\mathcal{P}})$ and $\tilde{g}_{qv}: (\tilde{Y}, \tilde{\sigma}, \dot{\mathcal{P}}) \to (\tilde{W}, \tilde{\mu}, \ddot{\mathcal{P}})$ are soft S_p -open (respectively, soft S_p -closed) functions and $(\tilde{Y}, \tilde{\sigma}, \dot{\mathcal{P}})$ is soft locally indiscrete, then, $\tilde{g}_{qv} \circ \tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{W}, \tilde{\mu}, \ddot{\mathcal{P}})$ is soft S_p -open (respectively, soft S_p -closed).

Proof. Let $(A, \mathcal{P}) \in \tilde{\tau}$ (respectively, $\tilde{\tau}^c$). Since \tilde{f}_{pu} is soft S_p -open (respectively, soft S_p -closed), then $\tilde{f}_{pu}(A, \mathcal{P}) \in \tilde{S}S_p\mathcal{O}(\tilde{Y})$ (respectively, $\tilde{S}S_p\mathcal{C}(\tilde{Y})$). Since \tilde{Y} is soft locally indiscrete, then by Proposition 1.20(2) (respectively, Proposition 1.22(2)), then $\tilde{f}_{pu}(A, \mathcal{P}) \in \tilde{\sigma}$ (respectively, $\tilde{\sigma}^c$) and so as in Proposition 3.27, $\tilde{g}_{qv} \circ \tilde{f}_{pu}$ is soft S_p -open (respectively, soft S_p -closed).

Theorem 3.29. Let $\tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \dot{\mathcal{P}})$ and $\tilde{g}_{qv}: (\tilde{Y}, \tilde{\sigma}, \dot{\mathcal{P}}) \to (\tilde{W}, \tilde{\mu}, \ddot{\mathcal{P}})$ be two soft functions such that $\tilde{g}_{av} \circ \tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{W}, \tilde{\mu}, \ddot{\mathcal{P}})$ is a soft S_p -open function. Then,:

- (1) \tilde{g}_{qv} is soft S_p -open, if \tilde{f}_{pu} is soft continuous and soft surjective.
- (2) \tilde{g}_{qv} is soft S_p -open, if \tilde{f}_{pu} is soft S_p -continuous, soft surjective and $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ is soft locally indiscrete.
- (3) \tilde{f}_{pu} is soft S_p -open, if \tilde{g}_{qv} is soft S_p -irresolute and soft injective.
- **Proof.** (1) Let $(B, \mathcal{P}) \in \tilde{\sigma}$. Since \tilde{f}_{pu} is soft continuous, then $\tilde{f}_{pu}^{-1}(B, \mathcal{P}) \in \tilde{\tau}$. Since $\tilde{g}_{qv} \circ \tilde{f}_{pu}$ is soft S_p -open, then $(\tilde{g}_{qv} \circ \tilde{f}_{pu})(\tilde{f}_{pu}^{-1}(B, \mathcal{P})) \in \tilde{S}S_pO(\tilde{W})$. Since \tilde{f}_{pu} is soft surjective, then $\tilde{g}_{qv}(\tilde{f}_{pu}(\tilde{f}_{pu}^{-1}(B, \mathcal{P}))) = \tilde{g}_{qv}(B, \mathcal{P}) \in \tilde{S}S_pO(\tilde{W})$. Therefore, by Definition 3.1(1), \tilde{g}_{qv} is soft S_p -open.
- (2) Let $(B, \acute{\mathcal{P}}) \in \widetilde{\sigma}$. Since \widetilde{f}_{pu} is soft S_p -continuous, then $\widetilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}) \in \widetilde{S}S_pO(\widetilde{X})$. Since \widetilde{X} is soft locally indiscrete, then by Proposition 1.20(2), $\widetilde{f}_{pu}^{-1}(B, \acute{\mathcal{P}}) \in \widetilde{\tau}$ and so in a similar way as we have done in (1), we get \widetilde{g}_{qv} is soft S_p -open.
- (3) Let $(A, \mathcal{P}) \in \tilde{\tau}$. Since $\tilde{g}_{qv} \circ \tilde{f}_{pu}$ is soft S_p -open, then $(\tilde{g}_{qv} \circ \tilde{f}_{pu})(A, \mathcal{P}) \in \tilde{S}S_p O(\tilde{W})$, and so $\tilde{g}_{qv}^{-1}(\tilde{g}_{qv} \circ \tilde{f}_{pu})(A, \mathcal{P}) = \tilde{f}_{pu}(A, \mathcal{P}) \in \tilde{S}S_p O(\tilde{Y})$ as \tilde{g}_{qv} is soft S_p -irresolute and soft injective. Therefore, by Definition 3.1(1), \tilde{f}_{pu} is soft S_p -open.

Theorem 3.30. Let $\tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\tilde{Y}, \tilde{\sigma}, \dot{\mathcal{P}})$ and $\tilde{g}_{qv}: (\tilde{Y}, \tilde{\sigma}, \dot{\mathcal{P}}) \to (\widetilde{W}, \tilde{\mu}, \ddot{\mathcal{P}})$ be two soft functions such that $\tilde{g}_{qv} \approx \tilde{f}_{pu}: (\tilde{X}, \tilde{\tau}, \mathcal{P}) \to (\widetilde{W}, \tilde{\mu}, \ddot{\mathcal{P}})$ is a soft S_p -closed function. Then,:

- (1) \tilde{g}_{qv} is soft S_p -closed, if \tilde{f}_{pu} is soft continuous and soft surjective.
- (2) \tilde{g}_{qv} is soft S_p -closed, if \tilde{f}_{pu} is soft S_p -continuous, soft surjective and $(\tilde{X}, \tilde{\tau}, \mathcal{P})$ is soft locally indiscrete.
- (3) \tilde{f}_{pu} is soft S_p -closed, if \tilde{g}_{qv} is soft S_p -irresolute and soft injective.

Proof. Using Definition 3.1(2) and Proposition 1.22(2) in place of Definition 3.1(1) and Proposition 1.20(2), respectively, the proof is similar to Proposition 3.29.

REFERENCES

- [1] D. Molodtsov, "Soft Set Theory- First Results," *Computers and Mathematics with Applications*, vol. 37, no. 4–5, pp. 19–31, 1999.
- [2] P. K. Maji, R. Biswas, and A. R. Roy, "Soft set theory," *Computers and Mathematics with Applications*, vol. 45, no. 4–5, pp. 555–562, 2003.
- [3] I. Zorlutuna, M. Akdag, W. Min, and S. Atmaca, "Remarks on soft topological spaces," *Annals of fuzzy Mathematics and Informatics*, vol. 3, no. 2, pp. 171–185, 2012.
- [4] M. Shabir and M. Naz, "On soft topological spaces," *Computers and Mathematics with Applications*, vol. 61, no. 7, pp. 1786–1799, 2011.
- [5] S. Hussain and B. Ahmad, "Some properties of soft topological spaces," *Computers and Mathematics with Applications*, vol. 62, no. 11, pp. 4058–4067, 2011.
- [6] A. Kharal and B. Ahmad, "Mappings on Soft Classes," *New Mathematics and Natural Computation*, vol. 07, no. 03, pp. 471–481, 2011.
- [7] J. Mahanta and P. K. Das, "On soft topological space via semiopen and semiclosed soft sets," *Kyungpook Mathematical Journal*, vol. 54, no. 2, pp. 221–236, 2014.
- [8] S. Nazmul and S. K. Samanta, "Neighbourhood properties of soft topological spaces," *Annals of Fuzzy Mathematics and Informatics*, vol. 6, no. 1, pp. 1–15, 2013.
- [9] M. Akdag and A. Ozkan, "Soft α -Open Sets and Soft α -Continuous Functions," *Abstract and Applied Analysis*, vol. 2014, no. Article ID 891341, pp. 1–7, 2014.

- [10] M. Akdag and A. Ozkan, "Soft b-open sets and soft b-continuous functions," *Mathematical Sciences*, vol. 8, pp. 1–9, Sep. 2014.
- [11] M. Akdag and A. Ozkan, "On Soft β -open sets and soft β -continuous functions," *Scientific World Journal*, vol. 2014, no. Article ID 843456, pp. 1–6, 2014.
- [12] Y. Yumak and A. K. Kaymakcı, "Soft β -open sets and their applications," *Journal of New Theory*, no. 4, pp. 80–89, 2015.
- [13] E. Fayad and H. Mahdi, "Soft βc-open sets and soft βc-continuity," *International Mathematical Forum*, vol. 12, no. 1, pp. 9–26, 2017.
- [14] P. M. Mahmood, H. M. Darwesh, H. A. Shareef, and S. Al Ghour, "A Stronger Novel Form of Soft Semi-Open Set," *New Mathematics and Natural Computation*, 2023, accepted.
- [15] P. M. Mahmood, H. M. Darwesh, and H. A. Shareef, "On Soft Sp-Closed and Soft Sp-Open Sets with Some Applications," *Tikrit Journal of Pure Science*, 2023, accepted.
- [16] G. Ilango and M. Ravindran, "On Soft Preopen Sets in Soft Topological Spaces," *International Journal of Mathematics Research*, vol. 5, no. 4, pp. 399–409, 2013.
- [17] I. Arockiarani and A. A. Lancy, "Generalized soft gβ closed sets and soft gsβ closed sets in soft topological spaces," *International Journal of Mathematical Archive*, vol. 4, no. 2, pp. 17–23, 2013.
- [18] S. Yüksel, N. Tozlu, and Z. G. Ergül, "Soft regular generalized closed sets in soft topological spaces," *International Journal of Mathematical Analysis*, vol. 8, no. 5–6, pp. 355–367, 2014.
- [19] S. Y. Musa, "SSc-Open Sets in Soft Topological Spaces," M. Sc. Thesis, University of Duhok, 2015.
- [20] A. Aclkgoz and Nihal A. Tas, "Some New Soft Sets and Decompositions of Some Soft Continuities," *Annals of Fuzzy Mathematics and Informatics*, vol. 9, no. 1, pp. 23–35, 2015.
- [21] R. A. Hosny and D. Al-Kadi, "Soft semi open sets with respect to soft ideals," *Applied Mathematical Sciences*, vol. 8, no. 149–152, pp. 7487–7501, 2014.
- [22] S. Hussain and B. Ahmad, "Soft separation axioms in soft topological spaces," *Hacettepe Journal of Mathematics and Statistics*, vol. 44, no. 3, pp. 559–568, 2015.
- [23] B. Chen, "Soft Semi-open sets and related properties in soft topological spaces," *Applied Mathematics and Information Sciences*, vol. 7, no. 1, pp. 287–294, 2013.
- [24] S. S. Thakur, A. S. Rajput, and M. R. Dhakad, "Soft Almost Semi-Continuous Mappings," *Malaya Journal of Matematik*, vol. 5, no. 2, pp. 395–400, 2017.
- [25] I. Demir and O. B. Ozbakir, "Soft Hausdorff spacesand their some properties," *Annals of Fuzzy Mathematics and Informatics*, vol. 8, no. 5, pp. 769–783, 2014.
- [26] H. Hazra, P. Majumdar, and S. K. Samanta, "Soft Topology," *Fuzzy Information and Engineering*, vol. 4, no. 1, pp. 105–115, 2012.
- [27] I. Arockiarani and A. Selvi, "On soft contra πg-continuous Functions in Soft Topological Spaces," *International Journal of Mathematics Trends and Technology*, vol. 19, no. 1. pp. 80–90, 2015.
- [28] P. M. Mahmood, H. A. Shareef, and H. M. Darwesh, "Soft Sp-Continuous Functions," *Iraqi Journal of Science*, 2023, accepted.
- [29] A. Kandil *et al.*, "Soft semi separation axioms and some types of soft functions," *Annals of Fuzzy Mathematics and Informatics*, vol. 8, no. 2, pp. 305–318, 2014.
- [30] S. S. Thakur and Alpa Singh Rajput, "Soft Almost Continuous Mappings," *International Journal of Advances in Mathematics*, vol. 1, pp. 22–29, 2017.
- [31] S. S. Thakur and Alpa Singh Rajput, "Soft almost α-continuous mappings." Journal of Advanced Studies in Topology, pp. 94–99, 2018.
- [32] S. S. Thakur and Alpa Singh Rajput, "Soft Almost Pre-Continuous Mappings," *The Journal of Fuzzy Mathematics*, vol. 26, no. 2, pp. 439–449, 2018.
- [33] S. S. Thakur and A. S. Rajput, "Soft Almost b-Continuous Mappings," *Journal of New Theory*, no. 23, pp. 93–104, 2018.

- [34] A. Singh Rajput, S. S. Thakur, and O. P. Dubey, "Soft Almost β-Continuity in Soft Topological Spaces," *International Journal of Students' Research in Technology & Management*, vol. 8, no. 2, pp. 06–14, Jun. 2020.
- [35] İ. Zorlutuna and H. Çakır, "On Continuity of Soft Mappings," *Applied Mathematics and Information Sciences*, vol. 9, no. 1, pp. 403–409, 2015.