Some Result on Triple Fiber Bundle

Nabaa Ibrahim Kadhim
Education College for Pure Sciences, Wasit University, Iraq
yafatimamadd@gmail.com

Daher Al Baydli
Education College for Pure Sciences, Wasit University, Iraq
daheralbaydli@uowasit.edu.iq

Abstract—The aim of this paper to introduce and study new concepts of the Triple fiber bundle, Triple local Serre fibration, Triple path lifting property, and prove that the Triple Hurewicz (Serre) fiber bundle over paracompact base space is a Triple Hurewicz (Serre) fibration.

Keywords—c-topology, Tri-fiber bundle, Tri- Local Serre fibration, Tri-path lifting property, Tri-bundle property.

1 INTRODUCTION

Fiber bundle and more general fibrations are basic objects of study in many areas of mathematics [9][17]. A continuous map is called Hurewicz fibration if it has the covering homotopy property for all topological space and called Serre fibration if it has the covering homotopy property for the CW complex space [1][12][2]. Serre fibration are more appropriate for many purposes [11], every Hurewicz fibration is Serre fibration but the converse is not true[14]. A fiber bundle (is also called locally trivial fiber bundle) over B and fiber F (where B and F are topological space) is a topological space E together with a continuous map $f : E \rightarrow B$ such that for every $b \in B$ there exist an open neighborhood U of b for which $f^{-1}(U)$ is homeomorphic to $U \times F$ and restriction of f to $f^{-1}(U)$ is the standard projection onto first term $f^{-1}(U) \times F \rightarrow U$ [6][3]. Fibrations need not to be fiber bundles. In fact, the definition of fibrations is less stringent than that of fiber bundles, and it is not difficult to slightly modify fiber bundles to obtain fibrations which is not locally trivial[10]. A fiber bundle is regular Hurewicz (Serre) fibration if the base space is paracompact[1][4]. In addition, mixed (co) fibration and mixed Hurewicz (co) fibration which introduce by [2][4][3]. Also, the mixed Serre (co) fibration was study by [18]. In this paper we introduce new concept Triple fiber bundle which is generalization of fiber bundle. Although, we introduce new concept Triple structure of triple Serre fibration [13].

2- PRELIMINARIES
Definition 2.1 [16] let \((X, \tau)\) be a topological space and let \(\{U_{\alpha} \subset X\}_{\alpha \in I}\) be an open cover, then refinement of this open cover is a set of open subset \(\{V_{\beta} \subset X\}_{\beta \in J}\) which is still an open cover in itself and such that for each \(\beta \in J\) there exists \(\alpha \in I\) with \(V_{\beta} \subset U_{\alpha}\).

Definition 2.2 [7] A Hausdorff space \(X\) is paracompact if each open covering of \(X\) has an open neighborhood finite refinement.

Definition 2.3 [8] A topological space is called shrinking space if every open covering is a shrinking. A shrinking of an open cover is another open cover by the same indexing set, with hold the property that the closure of any open set lies inside the corresponding original open set, and the fact are know that every paracompact space is shrinking space.[see also 16]

Theorem 2.4 [7] (P. Urysohn) Let \(A, B\) be any pair of disjoint closed sets in a normal space \(X\), then there exist a continuous map \(f: X \rightarrow I\), called Urysohn function for \(A, B\) such that,

\[
\begin{align*}
 f(x) &= 0 \quad \text{for} \quad x \in A, \\
 f(x) &= 1 \quad \text{for} \quad x \in B.
\end{align*}
\]

Definition 2.5 [7] Let \((E, p, B)\) be a fiber structure, let \(X\) be any space, and let \(h_t: X \rightarrow B\) be a homotopy, the map \(h_t^*: X \rightarrow E\) be a homotopy covering \(h_t\). We say that \(h_t^*\) is stationary with \(h_t\) if for each \(x_0 \in X\) such that \(h_t(x_0)\) is constant as a function of \(t\), the function \(h_t(x_0)\) is also constant.

Definition 2.6 [7][12][15] Let \(p: E \rightarrow B\) be a continuous map of topological spaces,

1) A fiber structure is called a fibration for a class \(\mathcal{R}\) of spaces if the covering homotopy property (C.H.P) is hold.

2) A fiber structure for a class \(\mathcal{R}\) of all spaces is called a Hurewicz fibration.

3) \(p\) has the covering homotopy property (C.H.P) with respect to a CW-complex space \(X\) is called Serre Fibration.

4) The fibration is (regular) if \(h_t^*\) can always be selected to be is stationary with \(h_t\).

Definition 2.7 [5][14] The map \(f: E \rightarrow B\) is called fiber bundle, with fiber \(F\) if it satisfies the following properties:

1) \(f^{-1}(b_0) = F\)

2) \(f: E \rightarrow B\) is surjective

3) For every point \(y \in B\) there is an open neighborhood \(U_y \subset B\) and a “fiber preserving homeomorphism” \(\psi_{U_y}: f^{-1}(U_y) \rightarrow U_y \times F\), that is a homeomorphism making the following diagram commute:
Corollary 2.8 [10]
If \(f : E \to X \) is a fiber bundle over paracompact space \(X \) then \(f \) is fibration.

Definition 2.9 [18] Let \(Y \) be a \(CW \)-space, \(f_1 : E_1 \to Y, f_2 : E_2 \to Y \) and \(\alpha : E_2 \to E_1 \) are maps of spaces such that \(f_1 \circ \alpha = f_2 \), let \(E_i = \{ E_1, E_2 \} \), \(f_i = \{ f_1, f_2 \} \), where \(i = 1, 2 \). The quartic \(\{ E_i, f_i, Y, \alpha \} \) has the mixed covering homotopy property (M-CHP) w.r.t a \(CW \)-space \(X \) iff given a map \(k : X \to E_2 \) and a homotopy \(h : X \to Y \) such that \(f_2 \circ k = h_0 \), then there exists a homotopy \(g : X \to E_1 \) such that
1) \(f_1 \circ g = h_t \),
2) \(\alpha \circ k = g_0 \).

M-fiber space is called M-Serre fibration, if it has the (M-CHP) with respect to a \(CW \)-space \(Y \), show Fig.2 above.

Definition 2.10 [13]
1) Let \(E_1, E_2, E_3, X \) be any four topological spaces, let \(E_i = \{ E_1, E_2, E_3 \} \), \(f_i = \{ f_1, f_2, f_3 \} \), \(\alpha_{ij} = \{ \alpha_{21}, \alpha_{32}, \alpha_{31} \} \) where \(f_1 = E_1 \to X, f_2 = E_2 \to X, f_3 = E_3 \to X \) are three maps, and \(\alpha_{21} = E_2 \to E_1, \alpha_{32} : E_3 \to E_2, \alpha_{31} : E_3 \to E_1 \) such that \(\alpha_{21} \circ \alpha_{32} = \alpha_{31}, f_1 \circ \alpha_{21} = f_2, f_2 \circ \alpha_{32} = f_3 \) then \((E_i, f_i, X, \alpha_{ij}) \) is a Triple fiber space (Tri-fiber space), show Fig.3 below. If \(E_1 = E_2 = E_3 = E \), \(\alpha_{ij} \) = identity \(f_1 = f_2 = f_3 = f \) then \((E, f, X) \) is the usual fiber space.
Let \(\{ E_i, f_i, X, \alpha_{ij} \} \), where \(i > j \), be a Tri-fiber space and let \(x_0 \in X \). Then \(f = \{ f_i^{-1}(x_0) \} \) is the Tri-fiber over \(x_0 \).

Definition 2.11 [13] Let \(Y \) be a CW-complex space \(f_1 : E_1 \rightarrow Y \), \(f_2 : E_2 \rightarrow Y \), \(f_3 : E_3 \rightarrow Y \), \(\alpha_{21} : E_2 \rightarrow E_1 \), \(\alpha_{32} : E_3 \rightarrow E_2 \), and \(\alpha_{31} : E_3 \rightarrow E_1 \) are maps of spaces such that
\[
\alpha_{21} \circ \alpha_{32} = \alpha_{31} \quad f_1 \circ \alpha_{21} = f_2 \quad f_2 \circ \alpha_{32} = f_3
\]
let \(E_i = \{ E_1, E_2, E_3 \} \) \(f_i = \{ f_1, f_2, f_3 \} \), \(\alpha_{ij} = \{ \alpha_{21}, \alpha_{32}, \alpha_{31} \} \) where \(i = 1,2,3 \), \(j = 1,2 \) and \(i > j \). (see Fig. below), the quartic \((E_i, f_i, Y, \alpha_{ij}) \) has the Triple covering homotopy property (Tri-CHP) w.r.t a CW-space \(X \) iff given a map \(k_i : X \rightarrow E_i \) and a homotopy \(h_t : X \rightarrow Y \) such that \(f_i \circ k_i = h_0 \), then there exists a homotopy \(L^i_t : X \rightarrow E_i \) such that
\[
(1) \quad f_i \circ L^i_t = h_t \quad (2) \quad k_i = L^i_0
\]

The Tri-fiber space is called Tri-Serre fibration if it has the (Tri-CHP) with respect to all CW-complex \(Y \).

3-Triple Fiber Bundle

Definition 3.1. Let \(B \) be a base space with basepoint \(b_0 \in B \) and \(f_i : E_i \rightarrow B \) be continuous maps where \(i = 1,2,3 \), \(f_i = \{ f_{i1}, f_{i2}, f_{i3} \} \) and \(E_i = \{ E_1, E_2, E_3 \} \).
The maps $f_i : E_i \rightarrow B$ are called Tri-fiber bundle, with fiber F_i if it satisfies the following properties:

1) $f_1^{-1}(b_0) = F_i$
2) $f_i : E_i \rightarrow B$ is surjective
3) For every point $y \in B$ there is an open neighborhood $U_y \subset B$ and a “fiber preserving homeomorphism” $\psi_i : f_1^{-1}(U_x) \rightarrow U_x \times F_i$, that is a homeomorphism making the following diagram commute:

\[
\begin{array}{ccc}
 f_1^{-1}(U_x) & \xrightarrow{\psi_i(U_x)} & U_x \times F_i \\
 \downarrow f_i & & \downarrow p_i \\
 U_x & & \\
\end{array}
\]

Fig. 5. Triple fiber bundle

Definition 3.2 Let $(E_i, p_i, B, \alpha_{ij})$ be Tri-fiber structure where $i, j = 1, 2, 3$ and α_{ij} is continuous maps where $i > j$. Let X be any space, and let $h_t : X \rightarrow B$ be a homotopy, the maps $L_t^i : X \rightarrow E_i$ be a homotopy covering h_t. We say that L_t^i is stationary with h_t if for each $x_0 \in X$ such that $h_t(x_0)$ is constant as a function of t, the function $L_t^i(x_0)$ is also constant.

Definition 3.3 The Tri-Serre fibration is (regular) if L_t^i can always be selected to be stationary with h_t.

Definition 3.4 A Tri-fiber structure $(E_i, p_i, B, \alpha_{ij})$ where $i, j = 1, 2, 3$, α_{ij} is continuous maps where $i > j$ and X is CW complex space is called Triple local (regular) Serre fibration if for each $b \in B$ has a neighborhood U such that $(p_i^{-1}(U), p_i|p_i^{-1}(U), U, \alpha_{ij})$ is Tri-(regular) Serre fibration.

Theorem 3.5 Let the base B is paracompact, then Tri-fiber structure $(E_i, p_i, B, \alpha_{ij})$ where $i, j = 1, 2, 3$, is a Tri-(regular) Serre fibration if and only if it is Tri-local (regular) Serre fibration.

Proof. It is clear that every Tri-(regular) Serre fibration $(E_i, p_i, B, \alpha_{ij})$ is Tri-local (regular) Serre fibration, so only the converse requires proof.

Since B is paracompact, the covering of B by the neighborhood U_{ij} of the definition has a neighborhood-finite refinement $\{V_{ij}\}$ which we shrink to get $\{W_{ij}\}$. [Since every paracompact space is normal space[7]], so For each index β, let $c_{i\beta} : X \rightarrow I$ be a
Urysohn function such that \(c_{ip}(\overline{W}_{ip}) = 1 \) and \(c_{ip}(Vc_{ip}) = 0 \). The covering of \(B \) by the open sets \(U_{ip} = c^{-1}_{ip}[I - \{0\}] \) satisfy the requirement of theorem.

Corollary 3.6 If \(f_i : E_i \to B \) are Tri-fiber bundle over paracompact space \(B \) then \(f_i \) is Tri-(Serre) fibration.

Proof: Since Tri-fiber bundles have local product structure \((U \times F_i \to U) \), theorem 3.5 implies that a Tri-fiber bundle are Tri-(Serre) fibration.

4-Triple Path Lifting Property

In this section we introduce the triple path lifting property (Tri-PLP) with the some result and properties.

Definition 4.1[7][9] Let \(M, N \) be topological spaces, and denoted by \(N^M \) the set of all continuous maps of \(M \) into \(N \). For each pair of sets \(A, B \subseteq N \), let \((A,B) = \{ f \in N^M | f(A) \subseteq B \} \). The compact open topology (c-topology) in \(N^M \) is that having as sub basis all sets \((A,V) \), where \(A \subseteq M \) is compact \(B \subseteq N \) is open.

Definition 4.2[7] A path in \(X \) is continuous mapping unit interval \(I \) into \(X \), rather than a continuous image of \(I \) in \(X \); that is, a path in \(X \) is an element of \(X^I \). The path \(\alpha \in X^I \) is said to start at the point \(\alpha(0) \in X \) and to end at the point \(\alpha(1) \in X \); a closed path or loop at \(x_0 \in X \) is path starting and ending at \(x_0 \).

- A constant path \(\eta(I) = x_0 \) is called the null path or loop at \(x_0 \).

Definition 4.3[12] Let \(p : E \to B \) be a map. Then \(p \) is said to have path lifting property (abbreviated PLP) if for any \(e \in E \) and any path \(f : I \to B \) with \(f(0) = p(e) \), then there exist a path \(\tilde{f} : I \to E \) such that \(\tilde{f}(0) = e \).

\[p \tilde{f} = f, \text{ and } \tilde{f} \text{ depends continuously on } e \text{ and } f. \]

For a precise definition, let \(B^I : (f : I \to B) \) and let \(\Omega_p \subseteq E \times B^I \) be a subspace of the product space \(E \times B^I \).

Define by,

\[\Omega_p = \{(e,f) \in E \times B^I | p(e) = f(0)\}. \]

Define a map \(q : E^I \to \Omega_p \)

By taking \(q(\tilde{f}) = (\tilde{f}(0), pf) \) for each \(\tilde{f} : I \to E \) in \(E^I \).

A lifting function for a fiber structure \((E,p,B) \) is continuous map \(\lambda : \Omega_p \to E^I \), such that \(\lambda(e,f)(0) = e \), and \(p \circ \lambda(e,f)(t) = f(t) \) for each \((e,f) \in \Omega_p \) and \(t \in I \). If \(\lambda \) lifts constant path to constant paths, then it is called a regular lifting function for \(p : E \to B \) and the triple \((E,p,B) \) is called a regular fiber space.
Then the map \(p: E \to B \) is said to have the PLP if \(\alpha \) is the identity map on \(\Omega_p \). It is well-known that a map \(p: E \to B \) has the PLP iff it has the ACHP (i.e., it is has Hurewicz fibration).

Definition 4.4: let \((E_i, f_i, Y, \alpha_{ij})\) be Tri-fiber structure, where \(i = 1, 2, 3 \) . \(j = 1, 2 \) \(i > j \), and \(X \) be CW complex space , and \(Y' = \{\omega: I \to Y\} \), \(\Omega_{f_i} \subseteq E_i \times Y' \) be subspaces

\[\Omega_{f_i} = \{(e_i, \omega) \in E_i \times Y' \mid f_i(e_i) = \omega(0)\}. \]

A Tri-lifting functions for \((E_i, f_i, Y, \alpha_{ij})\) is continues maps \(\lambda_i: \Omega_{f_i} \to E_i' \) such that \(\lambda_i(e_i, \omega)(0) = e \) and \(f_i \circ \lambda_i(e_i, \omega)(t) = \omega(t) \), for each \((e_i, \omega) \in \Omega_{f_i} \), and \(t \in I \)

Thus \(\lambda_i = \{\lambda_1, \lambda_2, \lambda_3\} \) and \(\Omega_{f_i} = \{\Omega_{f_1}, \Omega_{f_2}, \Omega_{f_3}\} \), where \(\lambda_1: \Omega_{f_1} \to E_1' \) , \(\lambda_2: \Omega_{f_2} \to E_2' \) , \(\lambda_3: \Omega_{f_3} \to E_3' \) defined as

\[
\begin{align*}
\lambda_1(e_1, \omega)(0) &= e_1, \quad f_1 \circ \lambda_1(e_1, \omega)(t) = \omega(t), \\
\lambda_2(e_2, \omega)(0) &= e_2, \quad f_2 \circ \lambda_2(e_2, \omega)(t) = \omega(t), \\
\lambda_3(e_3, \omega)(0) &= e_3, \quad f_3 \circ \lambda_3(e_3, \omega)(t) = \omega(t).
\end{align*}
\]

Thus a Tri-lifting functions there for associates with each \(e_i \in E_i \), and each path \(\omega \) in \(Y \) starting at \(f_i(e_i) \). A path \(\lambda_1(e_1, \omega) \) in \(E_1 \) , \(\lambda_2(e_2, \omega) \) in \(E_2 \) and \(\lambda_3(e_3, \omega) \) in \(E_3 \) starting at \(e_1, e_2 \) and \(e_3 \), and is Tri-cover of \(\omega \) since the c-topology used in \(E' \), the continuity of \(\lambda \) is equivalent to that of associated \(\tilde{\lambda}: \Omega_{f_i} \times I \to E_i \).

Tri-regular Serre If \(\lambda_1 \) lifts constant paths to constant paths, then it called a regular lifting functions for \(f_i: E_i \to Y \) and the quartic \((E_i, f_i, Y, \alpha_{ij})\) is called Tri-regular fiber space.

Now, define a map

\[q_i: E_i' \to \Omega_{f_i} \]

By taking \(q_i(\alpha) = (\alpha_i(0), f_i \alpha) \) for each \(\alpha_i: I \to E_i \) in \(E_i' \).

Then \(f_i: E_i \to Y \) is said to have Tri-PLP if \(q_i \alpha_i \) are the identity maps on \(\Omega_{f_i} \).

Note: We can see the mixed path lifting property in [18].

Example 4.5: Let \((E_i, f_i, Y, \alpha_{ij})\) be the Tri-Serre fibration ,and let \(Y' = \{\omega: I \to Y\} \) and \(f_i(\omega) = \omega(1), f_2(\omega') = \omega'(1) \) and \(f_3(\omega'') = \omega''(1) \) where \(\omega, \omega', \omega'': I \to Y \). A lifting functions

\[
\begin{align*}
\lambda_1: \Omega_{f_1} &\to E_1' \text{ for } f_1: E_1 \to Y, \\
\lambda_2: \Omega_{f_2} &\to E_2' \text{ for } f_2: E_2 \to Y, \\
\lambda_3: \Omega_{f_3} &\to E_3' \text{ for } f_3: E_3 \to Y.
\end{align*}
\]
Are defined as follows:

\[
\begin{align*}
\lambda_1(\delta, \omega)(t)(s) &= \begin{cases}
\delta \frac{6s}{1-t} & \text{if } 0 \leq s \leq \frac{1+t}{\delta} \\
\omega(6s - t - 1) & \text{if } \frac{1+t}{\delta} < s \leq \frac{2+t}{\delta}
\end{cases} \\
\lambda_2(\delta'\omega')(t)(s) &= \begin{cases}
\delta'(6s - t - 2) & \text{if } \frac{2+t}{\delta} < s \leq \frac{3+t}{\delta} \\
\omega'(6s - t - 3) & \text{if } \frac{3+t}{\delta} < s \leq \frac{4+t}{\delta}
\end{cases} \\
\lambda_3(\delta''\omega'')(t)(s) &= \begin{cases}
\delta''(6s - t - 3) & \text{if } \frac{4+t}{\delta} < s \leq \frac{5+t}{\delta} \\
\omega''(6s-t-5) & \text{if } \frac{5+t}{\delta} < s \leq 1
\end{cases}
\end{align*}
\]

Notice that the particular \(\lambda_1, \lambda_2\) and \(\lambda_3\) are not regular because they are not constants.

Theorem 4.6 The Tri-Serre structure \((E_i, f_i, X, \alpha_{ij})\) where \(i, j = 1, 2, 3\) and \(i > j\) is Tri-Serre fibration if and only if \(f_i\) has T-lifting functions.

Proof. If \(f_i\) is Tri-Serre fibration, let \(Y = \Omega_f\), let \(g_i : \Omega_f \rightarrow E_i, h_i : \Omega_f \rightarrow X\) define by \(g_i(e_i, \omega)(0) = e_i\), \(h_i(e_i, \omega) = \omega(t)\), then \(h_0(e_i, \omega)(0) = \omega(0) = f_i(e_i) = f_i \circ g_i(e_i, \omega)\).

since \(f_i\) is Tri-Serre fibration, then there exist \(L^1_i : \Omega_f \rightarrow E_i\) such that

1. \(f_i \circ L^1_i = h_i\),
2. \(g_i(e_i, \omega) = L^0_i\)

Define as a lifting function \(\lambda_i(e_i, \omega)(t) = L^1_i(e_i, \omega)\)
i.e:

\[
\begin{align*}
\lambda_1(e_1, \omega)(t) &= L^1_1(e_1, \omega) \implies \lambda_1(e_1, \omega)(0) = L^0_1(e_1, \omega) = e_1 \\
f_1 \circ \lambda_1(e_1, \omega)(t) &= f_1 \circ L^1_1(e_1, \omega) \implies f_1 \circ \lambda_1(e_1, \omega) = h_1(e_1, \omega) = \omega(t)
\end{align*}
\]

\[
\begin{align*}
\lambda_2(e_2, \omega)(t) &= L^1_2(e_2, \omega) \implies \lambda_2(e_2, \omega)(0) = L^0_2(e_2, \omega) = e_2 \\
f_2 \circ \lambda_2(e_2, \omega)(t) &= f_2 \circ L^1_2(e_2, \omega) \implies f_2 \circ \lambda_2(e_2, \omega) = h_2(e_2, \omega) = \omega(t)
\end{align*}
\]

\[
\begin{align*}
\lambda_3(e_3, \omega)(t) &= L^1_3(e_3, \omega) \implies \lambda_3(e_3, \omega)(0) = L^0_3(e_3, \omega) = e_3 \\
f_3 \circ \lambda_3(e_3, \omega)(t) &= f_3 \circ L^1_3(e_3, \omega) \implies f_3 \circ \lambda_3(e_3, \omega) = h_3(e_3, \omega) = \omega(t)
\end{align*}
\]

Conversely:

If \(f_i\) is Tri-lifting function
Let \(g^*_i : Y \rightarrow E_i\) and \(h^*_i : Y \rightarrow X\) such that \(f_i \circ g^*_i = h^*_0\), consider \(\omega : I \rightarrow X\) such that \(\omega(t) = h^*_i(y)\)
And define \(L^i_t: Y \rightarrow E_i \) as
\[
L^i_t(e) = \lambda_t \left[\gamma^i_t, \omega_y \right](t)
\]
Thus : \(L^i_0 = g_i \) and \(f_t \circ L^i_t = h^*_i \)
Hence \(L^i_t \) are Tri-CHP of \(h_t \) with respect to \(Y \), since \(Y \) is arbitrary

There for \(f_i \) is Tri-Serre fibration .

References

Article submitted 11 August 2023. Accepted at 21 September 2023. Published at 30 September 2023.