On Semi Feebly Separation Axioms

Jassim Saadoun Shuwaie
Education College for Pure Sciences, Wasit University, Iraq

heudtfodg@gmail.com

Ali Khalaf Hussain
Education College for Pure Sciences, Wasit University, Iraq
alhachamia@uowasit.edu.iq

Abstract
The goal of this work is to present some new separation axioms based on the concept of defining new types of open sets namely semi-feeably open set. We investigate their fundamental features.

Keywords: semi-feeably-T_0, semi-feeably-T_1

1 Introduction

Separation qualities are a standout amongst the most vital and fascinating concepts in topology. In 1963, N. Levin [10] proposed concept of a semi-open set. S.N Maheshwari and R. Prasad [9], used semi-open sets to characterize and investigate new partition aphorisms known as semi-detachment aphorisms. In 1975, Maheshwari and et.al. [8] created semi-R_0. P. Bahattacharya B. K. Lahiri [7] summarized up of shut sets to semi-summed up shut sets using semi-receptiveness in 1987. Cueva M. C characterized the idea of new type of topological space called semi-$T_{1/2}$ in 2000 [6] (i.e. the space where the semi-closed sets and semi-summed up sets classes meet). Although none these applications reversible, it is proved that each semi-T_1 space is semi-$T_{1/2}$ and each semi-$T_{1/2}$ is semi-T_0. Maheshwari and et. al. [5] initiated the study of feeably open in 1978. Aad Aziz Hussan Abdulla in [1] presented the idea of semi-feeably open (sf-open) set. “the goal of this study is to provide some characterizations of semi-feeably separation axioms”.

55
2 Preliminaries

Definition 2.1.[1]
Let \((X, \tau)\) be a topological space. A subset \(A\) of \(X\) is said to be
(1) semi-feebly open set if \(\overline{A} \subseteq U\) whenever \(A \subseteq U\) and \(U\) is semi-open set.
i.e. \(\forall U\) is semi-open in \(X\) \((A \subseteq U \longrightarrow \overline{A} \subseteq U)\).
(2) the complement semi-feebly open set is said semi-feebly closed set.

Remark 2.2.[1]
If \(A\) is \(f\)-closed set, then \(A\) is \(sf\)-open set.

Proof.
let \(A\) be \(f\)-closed set in a topological space \(X\). \(A \subseteq U\). \(U\) s-open,
Since \(A\) is \((f\)-closed\) set then \(A = \overline{A^f}\) and \(A = \overline{A} \subseteq U\)
Hence \(A\) is \((sf\)-open\) set.

Remark 2.3[1]
If \(A\) is closed set, then \(A\) is \(sf\)-open set.

Proposition 2.4.[1]
If \(A_\lambda\) is a family of \(sf\)-open set, then \(\bigcup A_\lambda\) is \(sf\)-open set.

Proposition 2.5.[1]
Let \(X\) is a topological space and \(A, B \subseteq X\), then
1. \(A\) is an \(sf\)-closed set if and only if \(A = \overline{A^{sf}}\).
2. \(\overline{A^{sf}} \subseteq \overline{A}\).
3. \(\overline{A^{sf}} = \overline{(\overline{A})^{sf}}\).
4. If \(A \subseteq B\) then \(\overline{A^{sf}} \subseteq \overline{B^{sf}}\).

Lemma 2.6.
Let X is a topological space and $A \subseteq X$, then

$$\bar{A}^s \subseteq \bar{A}^{sf}$$

Proof.

Let $x \in \bar{A}^s$ and A is a s-closed set, then $A = \bar{A}^s \Rightarrow x \in A \subseteq \bar{A}^{sf}$.

Then $x \in \bar{A}^{sf}$.

Therefore $\bar{A}^s \subseteq \bar{A}^{sf}$.

3 **Lower separation axioms**

Definition 3.1.

A topological space (X, τ) is $sf-R_0$ if for each sf-open set $U, x \in U$ implies that $\overline{\{x\}}^{sf} \subset U$.

Lemma 3.2.

If a space X is $sf-R_0$, then for every sf-open set U and each $x \in U$,

$$\overline{\{x\}}^{s} \subset U.$$

Proof.

Let X be $sf-R_0$. Then for every sf-open set U and each $x \in U$, $\overline{\{x\}}^{sf} \subset U$. But by $\overline{\{x\}}^{sf} \subset \overline{\{x\}}^{s}$ and $\overline{\{x\}}^{s} = \overline{\{x\}}^{s} \cup \overline{\{x\}}^{s}$ by [[11] Proposition(1.1.19)], this implies that $\overline{\{x\}}^{s} \subset U$.

Definition 3.3.

A topological space (X, τ) is $sf-R_1$ if for each $x, y \in X$ with $\overline{\{x\}}^{sf} \neq \overline{\{y\}}^{sf}$, there exist disjoint sf-open set U and V such that $\overline{\{x\}}^{sf} \subset U$ and $\overline{\{y\}}^{sf} \subset V$.

Theorem 3.4.
If a topological space \((X, \tau)\) is sf-\(R_1\), then \((X, \tau)\) is sf-\(R_0\).

Proof.

Let \(U\) be a sf-open set such that \(x \in U\). If \(y \notin U\), then \(x \notin \overline{\{y\}}\) \(\text{sf}\), therefore \(\overline{\{x\}} \neq \overline{\{y\}}\). So, there exists a sf-open set \(V\) such that \(\overline{\{y\}} \subset V\) and \(x \in V\), which implies \(y \notin \overline{\{x\}}\). Hence \(\overline{\{x\}} \subset U\). Therefore \((X, \tau)\) is sf-\(R_0\).

Theorem 3.5.

A topological space \((X, \tau)\) is sf-\(R_0\) if and only if for every sf-closed set \(F\) and \(x \notin F\), there exist a sf-open set \(G\) such that \(F \subset G\) and \(x \notin G\).

Proof.

Let \((X, \tau)\) is sf-\(R_0\) and \(F\) is sf-closed set in \(X\) and \(x \notin F\). Then \(X \setminus F\) is sf-open set containing \(x\), since \((X, \tau)\) is sf-\(R_0\) implies that \(\overline{\{x\}} \subset X \setminus F\) and then \(F \subset X \setminus \overline{\{x\}}\).

Now let \(G = X \setminus \overline{\{x\}}\), then \(G\) is sf-open set not contains \(x\) and \(F \subset G\).

Conversely: Let \(x \in G\) where \(G\) is sf-open set in \(X\). Then \(X \setminus G\) is sf-closed set and \(x \notin X \setminus G\) implies that by hypothesis there exists sf-open set \(U\) such that \(x \notin U\) and \(X \setminus G \subset U\). Now \(X \setminus U \subset G\) and \(x \in X \setminus U\), but \(X \setminus U\) sf-closed set then \(\overline{\{x\}} \subset X \setminus U \subset G\) this implies that \((X, \tau)\) is sf-\(R_0\).

Theorem 3.6.

For a space \(X\), the following are equivalent:

1. \(X\) is sf-\(R_0\).

2. For any two points \(x\) and \(y\) in \(X\), \(x \notin \overline{\{y\}}\) if and only if \(y \notin \overline{\{x\}}\).

Proof.

(1) \(\Rightarrow\) (2). Let \(X\) is sf-\(R_0\) and \(x \in \overline{\{y\}}\). To show \(y \notin \overline{\{x\}}\), let \(V\) be any sf-open set containing \(y\). Since \(X\) is sf-\(R_0\) so \(\overline{\{y\}} \subset V\) implies that \(x \in V\), hence every sf-open set which containing \(y\) contains \(x\) this implies that \(y \notin \overline{\{x\}}\). By the same way we can prove that if \(y \notin \overline{\{x\}}\), then \(x \notin \overline{\{y\}}\).
(2) ⇒ (1). Let the hypothesis be satisfied and U be any sf-open set and $x \in U$. To show \([x]^{sf} \subset U\), let $y \in [x]^{sf}$ implies that by hypothesis $x \in [y]^{sf}$, and then $U \cap \{y\} \neq \emptyset$ this implies that $y \in U$. Thus \([x]^{sf} \subset U\), therefore X is sf-R_0.

Theorem 3.7.

A space X is sf-R_0 if and only if for any x and y in X if \([x]^{sf} \neq [y]^{sf}\), then \([x]^{sf} \cap [y]^{sf} = \emptyset\).

Proof.

Let X be sf-R_0 and $x, y \in X$ such that \([x]^{sf} \neq [y]^{sf}\). Then there exists $z \in [x]^{sf}$ such that $z \notin [y]^{sf}$ implies that there exists an sf-open set U containing z but not y, hence $x \in [x]^{sf}$. Therefore we have $x \notin [y]^{sf}$ implies that $x \in X \setminus [y]^{sf}$ which is an sf-open set, but X is sf-R_0 so \([x]^{sf} \subset X \setminus [y]^{sf}\) this implies that \([x]^{sf} \cap [y]^{sf} = \emptyset\).

Conversely. Let the hypothesis be satisfied and let U be any sf-open set in X and $x \in U$. If $U = X$, then clearly \([x]^{sf} \subset U\), but if $U \neq X$, then there exists $y \in X$ such that $y \notin U$. Now $x \neq y$ and $x \notin [y]^{sf}$ implies that \([x]^{sf} \neq [y]^{sf}\), then by hypothesis \([x]^{sf} \cap [y]^{sf} = \emptyset\) implies that $y \notin [x]^{sf}$. Thus if $y \notin U$, then $y \notin [x]^{sf}$ this implies that \([x]^{sf} \subset U\). Hence X is sf-R_0.

Definition 3.8.

Let \((X, t)\) is a topological space. If for each $a, b \in X$ where $a \neq b$ there exists a semi-feebly-open set W of X containing a but not b, we say that X is semi-feebly-T_0 space.

Theorem 3.9.

Let \((X, t)\) is a topological space. We say that X is sf-T_0-space if and only if

for every $x, y \in X, x \neq y$. Implies \([x]^{sf} \neq [y]^{sf}\)

Proof.

Let $x, y \in X$ with $x \neq y$ and X is sf-T_0-space. We shall show that \([x]^{sf} \neq [y]^{sf}\). Since X is sf-T_0-space, there exists a sf-open set U such that $x \in U$ but $y \notin U$. Also $x \notin X \setminus U$ and $y \notin X \setminus U$ where $X \setminus U$ is sf-closed set in X. Now by definition \([y]^{sf}\) is the intersection of all sf-closed set which contain y. Hence, $y \in [y]^{sf}$ but $x \notin [y]^{sf}$ as
$x \not\in X \setminus U$. Therefore, $\overline{x}^{sf} \neq \overline{y}^{sf}$.

Conversely, for any $x, y \in X, x \neq y$. And $\overline{x}^{sf} \neq \overline{x}^{sf}$. Then there exists at least one point such that $z \in X$ such that $z \in \overline{x}^{sf}$ but $z \notin \overline{y}^{sf}$.

We claim that $x \notin \overline{y}^{sf}$. If $x \in \overline{y}^{sf}$ then $\{x\} \subseteq \overline{y}^{sf}$ implies $\overline{x}^{sf} \subseteq \overline{y}^{sf}$. So, $z \in \overline{y}^{sf}$, which is a contradiction. Hence, $x \notin \overline{y}^{sf}$. Now, $x \notin \overline{y}^{sf}$ implies $x \in X \setminus \overline{y}^{sf}$ is sf-open in X but $y \notin X \setminus \overline{y}^{sf}$ Observe X that is sf-T_0-space.

Proposition 3.10.

Whenever X is sf-T_0-space, then each subspace of X is sf-T_0-space.

Proof.

Consider X as a sf-T_0-space and $Y \subseteq X$. Take α and β as unequal points of Y. As $Y \subseteq X$, α and β are also unequal points of X. As per given, X is sf-T_0-space, we have a sf-open set K so that $\alpha \in K, \beta \notin K$. Then we have $Y \cap K$ is sf-open in Y having α but not β. Thus Y is sf-T_0-space.

Definition 3.11.

A subset A of a topological space (X, τ) is called to be semi-feebly generalized closed set (written in short as sfg-closed) if, $\overline{A}^{sf} \subseteq O$ hold whenever $A \subseteq O$ and O is sf-open.

Proposition 3.12.

Every sf-closed set is sfg-closed set.

Definition 3.13.

A topological space (X, τ) is called sf-$T_{1/2}$ if every sfg-closed set in (X, τ) is sf-closed set in (X, τ).

Definition 3.14.

That for any subset E of $(X, \tau), \overline{E}^{sf} = \cap\{A : A \subseteq (\in sfD(X, \tau))\}$, where
sfD(X, τ) = \{ A : A \subset X and A is sfg-closed in (X, τ) \} and
sfO(X, τ)^* = \{ B : \overline{E^{sf}} = E^c \}.

Theorem 3.15.

A topological space (X, τ) is a sf-T_{1/2} space if and only if

\[sfO(X, τ) = sfO(X, τ)^* \]

Proof.

Necessity: Since the sf-open sets and the sfg-closed sets coincide by the assumption, \(E^{sf} = \overline{E^{sf}} \) holds for every subset E of (X, τ).

Therefore, we have \(sfO(X, τ) = sfO(X, \tau)^* \).

Sufficiency: Let \(A \) be a sfg-closed set of (X, \tau). Then, we have \(A = \overline{A}^{sf} \) and \(A^c \) is sf-open set in (X, \tau). Thus \(A \) is sf-closed set. Therefore (X, \tau) is sf-T_{1/2}.

Theorem 3.16.

A topological space is sf-T_{1/2} space if and only if each \(x \in X, \{ x \} \) is sf-open or \(\{ x \} \) is sf-closed.

Proof.

Necessity: Suppose that for some \(x \in X, \{ x \} \) is not sf-closed. Since X is the only sf-open set containing \(\{ x^c \} \), the set \(\{ x^c \} \) is sfg-closed and so it is sf-closed in the sf-T_{1/2} space (X, τ). Therefore \(\{ x \} \) is sf-open.

Sufficiency: Since \(sfO(X, \tau) \subset sfO(X, \tau)^* \) holds, we show \(sfO(X, \tau)^* \subset sfO(X, \tau) \). Let \(E \in sfO(X, \tau)^* \)

Suppose that \(E \notin sfO(X, \tau) \). Then, \(\overline{E^{sf}} = E^c \) and \(\overline{E^{sf}} \neq E^c \) hold. There exists a point \(x \) of X such that \(x \in E^c \) and \(x \notin E^c = \overline{E^{sf}} \). Since \(x \notin \overline{E^{sf}} \), there exists a sfg-closed set \(A \) such that \(x \notin A \) and \(A \supset E^c \). By the hypothesis,
the singleton \{x\} is sf-open or sf-closed.

Case (1). \{x\} is sf-open. Since \{x^c\} is a sf-closed set with \(E \subseteq \{x^c\}\),
we have \(E^{sf} \subseteq \{x^c\}\), i.e., \(x \notin E^{sf}\). This contradicts the fact that \(x \in E^{sf}\).

Therefore \(E \in sfO(\mathbb{X}, \tau)\).

Case (2). \{x\} is sf-closed. Since \(\{x^c\}\) is a sf-open set containing the sf-closed
set \(A \supset E^c\), we have \(\{x^c\} \supset A^{sf} \supset E^{sf}\). Therefore \(x \notin E^{sf}\). This is a
contradiction. Therefore \(E \in sfO(\mathbb{X}, \tau)\).

Hence in both cases, we have \(E \in sfO(\mathbb{X}, \tau)\), i.e., \(sfO(\mathbb{X}, \tau)^* \subseteq sfO(\mathbb{X}, \tau)\).

Corollary 3.17.

\(\mathbb{X}\) is sf-\(T_{1/2}\) if and only if every subset of \(\mathbb{X}\) is the intersection of all sf-open
sets and all sf-closed sets containing it.

Proof.

Necessity: let \(\mathbb{X}\) is sf-\(T_{1/2}\) with \(B \subseteq \mathbb{X}\) arbitrary. Then \(B = \{\{x\}\}, x \notin B\), an
intersection of sf-open and sf-closed[Theorem(3.16)]. The result follows.

Sufficiency: for \(x \in \mathbb{X}, \{x\}^c\) is the intersection of all sf-open sets and all
sf-closed sets containing it. Thus \(\{x\}^c\) is either sf-open or sf-closed and
\(\mathbb{X}\) is sf-\(T_{1/2}\).

Definition 3.18.

A space \((\mathbb{X}, \tau)\) is called a sf-\(T_{1/4}\) space if for every finite subset \(F \subseteq \mathbb{X}\) and
every point \(y \notin F\) there exists a subset \(A \subseteq \mathbb{X}\) such that \(F \subseteq A, y \notin A\)
and \(A\) is sf-open or sf-closed.

Proposition 3.19.

Let \((\mathbb{X}, \tau)\) be a sf-\(T_{1/4}\) space. Then every subspace of \(\mathbb{X}\) is a sf-\(T_{1/4}\) space.

Recall that a subset \(F\) of a space \((\mathbb{X}, \tau)\) sf-locally finite if every point
has an sf-open neighborhood \(U_x \) such that \(F \cap U_x \) is at most finite. \(x \in X \)

Theorem 3.20.

For a space \((X, \tau)\) the following are equivalent:

1. \((X, \tau)\) is a sf-\(T_{1/2} \) space,
2. For every sf-locally finite subset \(F \subset X \) and every point \(y \notin F \) there exists a subset \(A \subset X \) such that \(F \subset A \), \(y \notin A \) and \(A \) is sf-open or sf-closed.

Definition 3.21.

Let \((X, \tau)\) is a topological space. Then \(X \) is sf-\(T_1 \)-space if for each \(a, b \in X \) such that \(a \neq b \) there exists a sf-open set \(W \) of \(X \) containing \(a \) but not \(b \) and a sf-open set \(U \) of \(X \) containing \(b \) but not \(a \).

Remark 3.22.

Every sf-\(T_1 \)-space is sf-\(T_0 \) space.

Proof.

From the definition of sf-\(T_1 \)-space it is follows that it is sf-\(T_0 \), since there exists a sf-open set \(G \) such that \(x \in G \) but \(y \notin G \) the converse is not true.

Corollary 3.23.

Every sf-\(T_0 \)-space is not sf-\(T_1 \) space.

The following example supports this.

Example 3.24.

Let \(X = \{1, 2, 3\} \), \(\tau = \{X, \emptyset, \{1\}\} \) be a topology defined on \(X \). Here sf-open sets are \(\{X, \emptyset, \{2\}, \{3\}, \{2, 3\}\} \). It is clear \(X \) is sf-\(T_0 \) space but is not sf-\(T_1 \) since \(1 \neq 2 \) and there exist sf-open set contain 2 but there is not exist sf-open set such that containing 1 but not 2.

Proposition 3.25.
X is sf-T_1 if and only if for all $x \in X$ implies $\{x\}$ is sf-closed sets.

Proof.

Let $\{z\}$ sf-closed set for every $z \in X$. Let $x, y \in X$ such that $x \neq y$.

Then $x \in \{y\}^c$ and $\{y\}$ is sf-closed set. Therefore $\{y\}^c$ sf-open set containing x but not y and, and $\{x\}^c$ sf-open set containing y but not x.

Then X is sf-T_1

Conversely, let X be a sf-T_1 space and $y \in X$. To prove $\{y\}$ is sf-closed set. Let $x \in \{y\}^c$ then $x \neq y$. Since X sf-T_1, then there exists sf-open set in X, U such that $x \in U$ and $x \notin U$. Then $x \in U \subset \{y\}^c = \bigcup \{U_x : x \in \{y\}^c\}$ which is sf-open set. Hence $\{x\}$ is sf-closed set.

Theorem 3.26.

A space X is sf-T_1 if and only if it is sf-T_0 and sf-R_0.

Proof.

Let X be sf-T_1 space. Then from [Remark (3.22)] X is sf-T_0 and by [Proposition (3.25)] every singleton set in X is sf-closed. Now X is sf-R_0 space since for any $x \in U$, where U is sf-open set, $\overline{x}^{sf} = \{x\} \subset U$.

Thus the space X is sf-R_0.

Conversely, let $x, y \in X$ be any two distinct points. Since X is sf-T_0 so there exists an sf-open set U such that $x \in U$ and $y \notin U$ or $y \in U$ and $x \notin U$.

Now let $x \in U$ and $y \notin U$ and since X is sf-R_0 space so $\overline{x}^{sf} \subset U$ and we have $y \notin U$ implies that $y \notin \overline{x}^{sf}$, then $y \in X \setminus \overline{x}^{sf}$ which is sf-open set so take $V = X \setminus \overline{x}^{sf}$. Thus U and V are sf-open sets in X such that $x \in U, y \in V$ and $x \notin V$ and $y \notin U$, implies that X is sf-T_1 space.
Definition 3.27[2]
A subset A of a topological space (X, τ) is called sg-closed set if,
\[\overline{A}^s \subset O \text{ hold whenever } A \subset O \text{ and } O \text{ is s-open of } (X, \tau), \]
the complement of a sg-closed set is called a sg-open set.

Definition 3.28[3]
A subset A of a topological space (X, τ) is called Ψ-closed set if,
\[\overline{A}^\Psi \subset O \text{ hold whenever } A \subset O \text{ and } O \text{ is sg-open of } (X, \tau). \]

Theorem 3.29[4]
Let A be a subset of topological space (X, τ), then
1) A is Ψ-closed if and only if $\overline{A}^\Psi \setminus A$ does not contain any non-empty sg-closed set.
2) If A is Ψ-closed and $A \subset B \subset \overline{A}^\Psi$, then B is Ψ-closed

Definition 3.30.
A space (X, τ) is said to be a sf-$T_{1/3}$ space if every Ψ-closed set in (X, τ) is sf-closed.

Theorem 3.31.
For a topological space (X, τ), the following conditions are equivalent:
(i) (X, τ) is a sf-$T_{1/3}$ space.
(ii) Every singleton of X is either sg-closed or sf-open set.
(iii) Every singleton of X is either sg-closed or open set.

Proof.
(i) \Rightarrow (ii) let $x \in X$ and suppose that $\{x\}$ is not sg-closed of (X, τ). Then
$X\setminus\{x\}$ is not sg-open set. so, X is the only sg-open set containing $X\setminus\{x\}$.
Hence $X\setminus\{x\}$ is Ψ-closed set. Since (X, τ) is sf-$T_{1/3}$ space, then $X\setminus\{x\}$ is
a sf-closed set or equivalently $\{x\}$ is sf-open set.

(ii) \Rightarrow (i) let A be a Ψ-closed set. clearly $A \subset \overline{A}$. let $x \in X$. By Assumption, $\{x\}$ is either sg-closed or sf-open.

Case(1) suppose $\{x\}$ is sg-closed.\[\text{Theorem(3.29)}\] $\overline{A} - A$ does not contain any non-empty sg-closed set. Since $x \in \overline{A}$, then $x \in A$.

Case(2) suppose $\{x\}$ is a sf-open set. Since $x \in \overline{A} \text{sf}$, then $\{x\} \cap A \neq \emptyset$.

So $x \in A$. Thus in any case $\overline{A} \text{sf} \subset A$.

Therefore $A = \overline{A} \text{sf}$ or equivalently A is sf-closed set of (X, τ).

Hence (X, τ) is an $\text{sf}-T_{1/3}$ space.

(iii) \iff (ii) Follows from the fact that a singleton is sf-open if and only if it is open.

4 Some new separation axioms

Definition 4.1.

Let (X, τ) be a topological space. Let $A \subset X$ we say that A is semi-feebly $\text{-Difference (sf-D)}$ set if there exists U, V are sf-open set such that $U \neq X$ and $A = U \setminus V$.

Remark 4.2.

Every sf-open set $U \neq X$ is sf-D-set if $A = U$ and $V = \emptyset$

Corollary 4.3.

Every sf-D-set is not sf-open set.

The following example shows.

Example 4.4.

Let $X = \{1, 2, 3, 4\}$, $\tau = \{\emptyset, \{2\}, \{3\}, \{1, 2\}, \{2, 3\}, \{1, 2, 3\}, X\}$. So,
sf-open set are \(\emptyset, X, \{1, 3, 4\}, \{1, 2, 4\}, \{3, 4\}, \{1, 4\}, \{4\}, \{1, 3\}, \{1\}, \{3\}, \{1, 2\} \), then \(U = \{1, 2, 4\} \neq X \) and \(V = \{1, 3, 4\} \) are sf-open sets in \(X \) and \(A = U \setminus V = \{1, 2, 4\} \setminus \{1, 3, 4\} = \{2\} \), then we have \(A = \{2\} \) is a sf-\(D \)-set but it is not sf-open set.

Definition 4.5.

A topological space \((X, \tau)\) is said to be:

1. sf-\(D_0 \) if for any pair of distinct points \(x\) and \(y\) of \(X\) there exists a sf-\(D \)-set of \(X\) containing \(x\) but not \(y\) or a sf-\(D \)-set of \(X\) containing \(y\) but not \(x\).

2. sf-\(D_1 \) if for any pair of distinct points \(x\) and \(y\) of \(X\) there exists a sf-\(D \)-set of \(X\) containing \(x\) but not \(y\) and a sf-\(D \)-set of \(X\) containing \(y\) but not \(x\).

3. sf-\(D_2 \) if for any pair of distinct points \(x\) and \(y\) of \(X\) there exist disjoint sf-\(D \)-set \(G\) and \(E\) of \(X\) containing \(x\) and \(y\), respectively.

Remark 4.6.

For a topological space \((X, \tau)\), the following properties hold:

1. If \((X, \tau)\) is sf-\(T_k \), then it is sf-\(D_k \), for \(k = 0, 1, 2\).

2. If \((X, \tau)\) is sf-\(D_k \), then it is sf-\(D_{k-1} \), for \(k = 1, 2\).

Proof.

It follows from [Remark (4.2)] and [Definition (4.5)].

Proposition 4.7.

A space \(X\) is sf-\(D_0 \) if and only if it is sf-\(T_0 \).

Proof.

Suppose that \(X\) is sf-\(D_0 \). Then for each distinct pair \(x, y \in X\), at least one of \(x, y\), say \(x\), belongs to sf-\(D \)-set \(G\) but \(y \notin G\). Let \(G = U_1 \setminus U_2\) where \(U_1 \neq X\) and \(U_1, U_2\) are sf-open set. Then \(x \in U_1\), and for \(y \notin G\) we have two cases: (a) \(y \notin U_1\), (b) \(y \in U_1\) and \(y \in U_2\).

In case (a), \(x \in U_1\) but \(y \notin U_1\).

In case (b), \(y \in U_2\) but \(x \notin U_2\).
Thus in both the cases, we obtain that X is sf-T_0.

Conversely, if X is sf-T_0, by [Remark (4.6) (1)], X is g sf-D_0.

Proposition 4.8.

A space X is sf-D_1 if and only if it is sf-D_2.

Proof.

Necessity. Let $x, y \in X, x \neq y$. Then there exist sf-D-sets G_1, G_2 in X such that $x \in G_1, y \notin G_1$ and $y \in G_2, x \notin G_2$. Let $G_1 = U_1 \setminus U_2$ and $G_2 = U_3 \setminus U_4$, where U_1, U_2, U_3 and U_4 are sf-open sets in X. From $x \notin G_2$, it follows that either $x \notin U_3$ or $x \in U_4$. We discuss the two cases separately.

(i) $x \notin U_3$. By $y \notin G_1$ we have two sub-cases:

(a) $y \notin U_1$. Since $x \in U_1 \setminus U_2$, it follows that $x \in U_1 \setminus (U_2 \cup U_3)$, and since $y \in U_3 \setminus U_4$, we have $x \in U_3 \setminus (U_1 \cup U_4)$. Therefore $(U_1 \setminus (U_2 \cup U_3)) \cap (U_3 \setminus (U_1 \cup U_4)) = \emptyset$.

(b) $y \in U_1$ and $y \in U_2$. We have $x \in U_1 \setminus U_2$, and $y \in U_2$. Therefore $(U_1 \setminus U_2) \cap U_2 = \emptyset$.

(ii) $x \in U_3$ and $x \in U_4$. We have $y \in U_3 \setminus U_4$ and $x \in U_4$. Hence $(U_3 \setminus U_4) \cap U_4 = \emptyset$. Therefore X is sf-D_2.

sufficiency. Follows from [Remark (4.6)(2)].

Corollary 4.9.

If (X, τ) is sf-D_1, then it is sf-T_0.

Proof.

Follows from [Remark (4.6) (2)] and [Proposition (4.7)].

Remark 4.10.

Here is an example which shows that the converse of [Corollary (4.9)] is not true in general.

Example 4.11.

Let $X = \{1, 2\}, \tau = \{\emptyset, \{1\}, X\}$ be a topology on X.

68
Then \((X, \tau)\) is sf-\(T_0\), but not sf-\(D_1\), since there is no sf-\(D\)-set containing 2 but not 1.

5 Conclusion

In topological space, separation axioms are very important. Through this paper, it was concluded that there is a relationship between semi-feebly-\(T_1\), semi-feebly-\(T_0\) and the axioms of separation of type semi-feebly-\(R_0\), semi-feebly-\(R_1\) there is also a relationship between semi-feebly-\(D_0\), semi-feebly-\(D_1\), semi-feebly-\(D_2\).

6 References

