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Abstract: The main objective of this work is to study local dissipation in stochastic dynamical systems. The 

main properties of this concept were studied. In addition to presenting the necessary and sufficient conditions 

that make the random dynamic system a local dissipative. In Theorem 3.2, local dissipation is described in 

terms of Levinson center, and in Theorem 3.5, it is described in terms of 𝐷 Γ𝑋

+ (𝜔) is a forward prolongation of 

the random set Γ𝑋 and 𝐽 Γ𝑋

+ (𝜔) is a forward limit prolongation of the random set Γ𝑋. Finally in Theorem 3.7 it is 

described by locally asymptotically condensing. 

Key words: Random dynamical system (RDS), local dissipative, Compact dissipative, random attracter, 

random Levinson center (RLS).  

1.Introduction: It is well known that in the 1980s, efforts were made to develop sufficient mathematical 

models to account for turbulence phenomena, which greatly influenced the general theory of dissipative 

systems. Infinite-dimensional dissipative dynamics has made major strides in the past few years (see, for 

instance, Chueshov I. [6], Robinson J. [10], Temam R. [12] and Chiban D. [3] and the references therein). The 

dynamical systems encountered in physical or biological sciences can be loosely divided into two classes: 

conservative ones (including Hamiltonian systems) and those displaying some type of dissipation. These 

dynamical systems are often generated by partial differential equations and thus the underlying state space is an 

infinite dimensional. For interesting papers related to the theory of  dissipativity on RDS, we cite the works by 

Hale K. [8], Christian Kuehn, Alexandra Neamt ¸u and Anne Pein [9], Arnold [1], Igor [7], amongst many 

others.  
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In Our work, we will continue the line of research introduced by Yasir and Kadhim [13,14,15]. A new relations 

of  Local dissipativity on RDSs will be illustrated.  

2. Notation and Preliminaries: 

In this section, we will present some concepts and facts related to random dynamic systems that serve our work. 

Through our work the triple (Ω, ℱ, ℙ) dente the probability space and 𝕋 ≔ ℝ , or ℤ (considered as an additive 

topological group) and (𝑋, 𝑑) be a metric space. 

Definition 2.1[7]: The metric dynamical system (MDS) is the triple (𝕋, Ω, θ) where θ: 𝕋 × Ω ⟶ Ω is an 

invariant measurable action.  For convenience, it is denoted for the dynamic metric dynamic system by  θ. 

Definition 2.2[7]: The random dynamical system (RDS)  is a pair (θ, 𝜑) including an MDS θ and a mapping  

𝜑 ∶ 𝕋 × Ω × 𝑋 ⟶ 𝑋 , that meets the following axioms  for all t, s ∈ 𝕋 and ω ∈ Ω,  

 (i) Continuity:  𝜑 (∙, 𝜔,∙): 𝕋 × Ω × 𝑋 ⟶ 𝑋 is continuous.  

(ii) Cocycle property : the mapping 𝜑(𝑡, 𝜔): = 𝜑(𝑡, 𝜔,·) fulfill: 

𝜑(0, 𝜔) = id𝑋, and  𝜑(𝑡 + 𝑠, 𝜔) = 𝜑(𝑡, θs𝜔) ∘ 𝜑(𝑠, 𝜔)  . 

Definition 2.3[7]  

(a) The random set is a set-valued function  M: Ω ⟶ 𝑋  such that the function Ψ: Ω ⟶ ℝ  defined by  Ψ(ω) ≔

d(𝑥, M(ω)) is measurable for every 𝑥 ∈ 𝑋. 

(b) For some 𝑦 ∈ X and some random variable 𝑟: Ω ⟶ ℝ+, consider the set 𝒜 ≔ {𝑥: dis𝑋(𝑥, 𝑦) ≤

r(ω), for all ω ∈ Ω }. A random set 𝑆(ω) is called tempered if  𝑆(ω) ⊂ 𝒜 for every ω ∈ Ω , 

 and 𝑟: Ω ⟶ ℝ+ is called  tempered random variable (TRV), this means  

sup𝑡∈𝕋{𝑒−ℷ|𝑡| |𝑟(θtω)|} < ∞ , for every ℷ > 0 and   ω ∈ Ω. 

Definition 2.4 [7] In the RDS  (θ, 𝜑) the trajectory starting from a random set 𝑀 is the set-valued function 

defined by  
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𝛾𝑀
𝑡 (𝜔) ≔ ⋃ 𝜑(𝜏, 𝜃−𝜏𝜔)𝑀(𝜃−𝜏𝜔)𝜏≥𝑡   

Definition 2.5[7]: The omega-limit set of 𝛾𝑀
𝑡 (𝜔) is  a set-valued function  

ω ⟼ Γ𝑀(𝜔) ≔∩ 𝛾𝑀
𝑡 (𝜔)̅̅ ̅̅ ̅̅ ̅̅ =∩∪ 𝜑(𝜏, 𝜃−𝜏𝜔)𝑀(𝜃−𝜏𝜔)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑡 > 0, 𝜏 ≥ 𝑡. 

Definition 2.6 [15]: We will call the set 𝐽𝑋(𝜔) defined by equality 

𝐽𝑋(𝜔) ∶= Γ𝐾(𝜔) =∩ {𝜑(𝑡, 𝜃−𝑡𝜔)𝐾(𝜃−𝑡𝜔)|𝑡 ∈ 𝑇, 𝜔 ∈ Ω, 𝐾 is compact random set},  

the random Levinson Center (RLC) of the compact dissipative RDS (𝜃, 𝜑). 

 In the following definition  we will introduce the concept of uniformly attracting  in RDS.  

Definition 2.7: For an RDS (θ, 𝜑). The random set 𝑀(𝜔) ⊆ 𝑋 is called uniformly attracting if there is a TRV 

𝛿(𝜔) >  0 so that 

lim
t→+∞

sup d(𝜑(𝑡, 𝜃−𝑡𝜔)𝑥 , 𝑀(𝜔)) =  0 , 𝑥 ∈ 𝐵(𝑀, 𝛿). 

Definition 2.8 [7]: For an RDS (𝜃, φ). A random set 𝑆(𝜔) is called forward invariant (backward invariant ) 

whenever  for every 𝜔 ∈ Ω , 𝑡 > 0 and  we have   φ(𝑡, 𝜔)𝑆(𝜔) ⊆ 𝑆(𝜃𝑡𝜔)(rep. 𝑆(𝜃𝑡𝜔) ⊆ φ(𝑡, 𝜔)𝑆(𝜔) ).  

Definition 2.9 [15]: Consider RDS (𝜃, φ). A random set 𝑀(𝜔) is said to be orbitally stable if for any TRV 𝜀 

and any non-negative number 𝑡, there exists TRV 𝛿 such that  

           𝑑(𝑥, 𝑀(𝜔)) < 𝛿(𝜔) implies  𝑑(𝜑(𝑡, 𝜃−𝑡𝜔)𝑥, 𝑀(𝜔)) < 𝜀(𝜔). 

Definition 2.10[7] The absorbing set for the RDS (𝜃, 𝜑) relative to universe ℳ is a closed  random set 𝐴(𝜔) 

with the property that  for every  𝐵 ∈ ℳ and 𝜔 there is  𝑡0(𝜔) so that   

𝜑(𝑡, 𝜃−𝑡𝜔)𝐷(𝜃−𝑡𝜔) ⊂ 𝐵(𝜔),  ∀𝑡 ≥ 𝑡0(𝜔) . 

Definition 2.11 [7]: The RDS (θ, φ) is called  dissipative in the universe ℳ, if  there is an absorbing set 𝐴 for 

the RDS (θ, φ) in ℳ contained in a closed random ball 𝐵r(ω)(𝑥0).   

Definition 2.12 [15]: If the RDS (θ, φ) satisfy the limit  
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lim
𝑡⟶+∞

𝑑(𝜑(𝑡, 𝜃−𝑡𝜔)𝑥(𝜃−𝑡𝜔), 𝐾(𝜔)) = 0 

for all 𝑥 ∈ 𝑋Ω and some random set 𝐾 , is called  point dissipative. 

Definition 2.13 [15]: If the RDS (θ, φ) satisfy the limit  

lim
𝑡⟶+∞

sup {𝑑(𝜑(𝑡, 𝜃−𝑡𝜔)𝑥, 𝐾(𝜔)): 𝑥 ∈ 𝐵𝛿𝑦(𝜔)(𝑦)} = 0  

for every 𝑦 ∈ 𝑋  and some TRV  𝛿𝑦(ω) >  0 and some random set K,  is called locally dissipative . 

Definition 2.14[5]: 𝐿𝑒𝑡 (𝑋, 𝑑) be a metric space, 𝐾 ⊂ 𝑋 is precompact or totally bounded if every sequence in 

𝐾 admits  a subsequence converges to a point of 𝑋. 

3. Local Dissipativity on RDSs:  

This section includes a study of the basic properties of the concept of  locally dissipative random dynamical 

systems, as it was described in terms of compact dissipation, uniform attractors, and the Levinson Center. 

 

Theorem 3.1: The RDS (θ, 𝜑) is locally dissipative if and only if the following limit satisfied  

Lim
t→+∞

𝑑𝑋(𝜑(𝑡, 𝜃−𝑡𝜔)B(p, 𝛿), 𝐽𝑋(𝜔)) = 0, 𝜔 ∈ Ω                                     (3.1) 

for all  p ∈ 𝑋Ω and some  TRV  𝛿(𝜔) > 0. 

 

Proof: The equation (3.1) lead to be (θ, 𝜑) locally dissipative. 

Conversely,  let (θ, 𝜑) be a locally dissipative RDS. Hence there is a nonvoid random compact subset 𝐾(𝜔) ⊆

𝑋 so that for all  𝑝 ∈ 𝑋Ω, there is a TRV 𝛿(𝑝, 𝜔) such that: 

lim
t→+∞

𝑑𝑋(𝜑(𝑡, 𝜃−𝑡𝜔)B(p, 𝛿), 𝐾(𝜔)) =  0                                                         (3.2) 

Theorem 3.5 [15]  lead to that the set 𝐾𝑝(𝜔) ∶= Γ(B(p, 𝛿𝑝(𝜔))) is nonvoid, invariant compact, random set  with  

lim
t→+∞

𝑑𝑋(𝜑(𝑡, 𝜃−𝑡𝜔)𝐵(𝑝, 𝛿𝑝(𝜔))), 𝐾𝑝(𝜔)) = 0                                        (3.3) 
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From equality (3.2) follows the inclusion 𝐾𝑝(𝜔) ⊆ 𝐾.So,  𝛤𝐾𝑝
(𝜔) ⊆ 𝛤𝐾(𝜔) ⊆ 𝐽𝑋(𝜔).  Since the set 𝐾𝑝(𝜔) is 

an invariant, we have 𝐾𝑝(𝜔) = 𝛤𝐾𝑝
(𝜔); hence 𝐾𝑝(𝜔) ⊆ 𝐽𝑋(𝜔). From the last inclusion and equality (3.3) we 

get equality (3.1).                                         ∎ 

Theorem 3.2: A compact dissipative RDS is local dissipative if and only if its random Levinson center is  

uniformly attracting . 

Proof: Suppose that 𝐽𝑋(𝜔) is a random Levinson center of a local dissipative RDS (θ, 𝜑)  and 𝑝 ∈ 𝐽𝑋(𝜔). 

Theorem 3.1 lead to existence of a  TRV 𝛿(𝜔) so  that equality (3.1) is valid . Since  𝐽𝑋(𝜔) is compact, then the 

open covering {𝐵 (𝑝, 𝛿𝑝(𝜔)) : 𝑝 ∈ 𝐽𝑋(𝜔)} admits  a finite subcovering       

{𝐵(𝑝𝑖, 𝛿𝑝𝑖
(𝜔)))|𝑖 = 1, … , 𝑚}. 

Now,  Lemma 3.3 [13] lead to existence of a  TRV 𝛼(𝜔)  so that  

 

𝐵(𝐽𝑋(𝜔), 𝛼(𝜔)) ⊂ ⋃{𝐵(𝑝𝑖, 𝛿𝑝𝑖
(𝜔)))| 𝑖 = 1, … , 𝑚}. 

It is clear that for a TRV 𝛼 > 0, the equality  

lim
t→+∞

𝑑𝑋(𝜑(𝑡, 𝜃−𝑡𝜔)𝐵(𝐽𝑋(𝜔), 𝛿𝑝(𝜔)), 𝐽𝑋(𝜔)) = 0                              (3.4) 

valid, i.e., 𝐽𝑋(𝜔) is a uniformly attracting. 

 

 

Conversely, suppose that the Levinson center of a compact dissipative RDS  (θ, 𝜑)  is uniformly attracting , so, 

there is  a TRV  𝛼(𝜔)  make (3.4) valid . If  𝑥 ∈ 𝑋 , then there is  𝑙 = 𝑙(𝑥) > 0 so that 

 

 

d(𝜑(𝑡, 𝜃−𝑡𝜔)𝑥, 𝐽𝑋(𝜔)) < 𝛼(𝜔)                                                                 (3.5)    

 

for all  𝑡 ≥ 𝑙. According to (3.4), for every random variable 𝜀(𝜔) > 0 we can choose 𝐿(𝜀) > 0 such that 

 

d(𝜑(𝑡, 𝜃−𝑡𝜔)𝑦, 𝐽𝑋(𝜔)) < 𝜀(𝜔)                                                               (3.6)    
 

for all 𝑡 ≥  𝐿(𝜀) and 𝑦 ∈ 𝐵(𝐽𝑋(𝜔), 𝛼(𝜔)).By (3.5) 𝐵(𝐽𝑋(𝜔), 𝛼(𝜔)) is open, then we may choose                       

𝜂 = 𝜂(𝑥) > 0, so that the inclusion 𝐵(𝜑(𝑙, 𝜃−𝑙𝜔)𝑥, 𝜂) ⊂ 𝐵(𝐽𝑋(𝜔), 𝛼(𝜔))  hold. 

 

By hypothesis, the mapping 𝜑(𝑡, 𝜃−𝑡𝜔): 𝑋 → 𝑋 is continuous, We can find a TRV 𝛿(𝜔) = 𝛿𝑥(𝜔) > 0  
such that 

 

𝜑(𝑙, 𝜃−𝑙𝜔)𝑦 ∈ 𝐵(𝜑(𝑙, 𝜃−𝑙𝜔)𝑥, 𝜂) 𝑎𝑛𝑑  𝜑(𝑙, 𝜃−𝑙𝜔)𝑦 ∈ 𝐵(𝐽𝑋(𝜔), 𝛼(𝜔)) for all  𝑦 ∈ 𝐵(𝑥, 𝛿𝑥(𝜔)). 

By virtue of (3.6), we have 
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𝑦(𝑡 + 𝑙)  ∈ 𝐵(𝐽𝑋(𝜔), 𝜀(𝜔)) for all 𝑡 ≥  𝐿(𝜀)  𝑎𝑛𝑑  𝑦 ∈ 𝐵(𝑥, 𝛿𝑥(𝜔)). 

 

Set  𝐿(𝜀, 𝑥) ∶= 𝑙(𝑥) + 𝐿(𝜀). Then  𝜑(𝑡, 𝜃−𝑡𝜔)𝑦 ∈ 𝐵(𝐽𝑋(𝜔), 𝜀(𝜔)) for all 𝑡 ≥  𝐿(𝜀, 𝑥) and 𝑦 ∈ 𝐵(𝑥, 𝛿𝑥). 

Consequently  (θ, 𝜑) is local dissipative.                                         ∎ 

 

Lemma 3.3: The nonvoid forward invariant compact random set is orbitally stable . If it is uniformly attracting.  

 

Proof: Suppose 𝑀 be a random set with the given property.  Assume, if possible, that 𝑀(𝜔) is not orbitally 

stable. So there is  TRV 𝜀0(𝜔) and a positive real sequence 𝛿𝑛 ⟶ 0 and 𝑥𝑛 ∈ 𝐵(𝑀(𝜔) , 𝛿𝑛) and {𝑡𝑛} with   

𝑡𝑛 ⟶ +∞ such that 

 

 

𝑑(𝜑(𝑡𝑛, 𝜃−𝑡𝑛
𝜔)𝑥𝑛, 𝑀(𝜔)) ≥ 𝜀0(𝜔)                                                             (3.7) 

 

Since M is uniformly attracting, for a TRV 𝜀0(𝜔)  there exists 𝐿(𝜀0) > 0 such that 

𝑑(𝜑(𝑡, 𝜃−𝑡𝜔)𝑥, 𝑀(𝜔)) <
𝜀0(𝜔)

2
                                                               (3.8) 

for all 𝑥 ∈ 𝐵(𝑀, 𝛼) 𝑎𝑛𝑑 𝑡 ≥  𝐿(𝜀 0), where a TRV 𝛼(𝜔) > 0  such that 

lim
t→+∞

𝑑𝑋(𝜑(𝑡, 𝜃−𝑡𝜔)𝐵(𝑀, 𝛼(𝜔)), 𝑀(𝜔))  = 0 

Since 𝑥𝑛 ∈ 𝐵(𝑀, 𝛿𝑛) 𝑎𝑛𝑑 𝛿𝑛 ⟶  0, then {𝑥𝑛} convergent. Set   𝑥0 = lim
t→+∞

𝑥𝑛 , thus  𝑥0 ∈ 𝑀 and 𝑥𝑛 ≥ 𝐿(𝜀0) as 

𝑛 ⟶ +∞. Then inequality  (3.8) leads to  

𝑑(𝜑(𝑡𝑛, 𝜃−𝑡𝑛
𝜔)𝑥𝑛, 𝑀(𝜔)) <

𝜀0(𝜔)

2
                                                (3.9) 

Both (3.7) and (3.9) are contradictory.                                    ∎       

 

Assume Γ𝑋(𝜔) ∶=∪ {Γ𝑥(𝜔)|𝑥 ∈  𝑋}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  , 𝜔 ∈ Ω. Let (𝜃, 𝜑) be a compact dissipative RDS and 𝐽𝑋(𝜔) its random 

Levinson center ( see, for more details [15]). It is clear that Γ𝑋(𝜔) ⊆ 𝐽𝑋(𝜔). The set Γ𝑋(𝜔) is an essential to 

distinguishing of a dissipative RDS, (see [13] Theorem 3.5). 

 

Definition 3.4 [14]: Let {𝜀𝑠: 𝛺 → ℝ, 𝑠 ∈ ℝ+} be a family of tempered random variables, and define the forward 

prolongation and the forward limit prolongation of the random set 𝑀 respectively as follows : 

          𝐷𝑀
+(𝜔) ≔ ⋂  ∪ {𝜑(𝑡, 𝜃−𝑡𝜔)𝐵(𝑀, 𝜀𝑠)|𝑡 ≥ 0, 𝜔 ∈ Ω}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑠>0  , 

          𝐽𝑀
+(𝜔) ≔ ⋂ ⋂ ∪ {𝜑(τ, 𝜃−τ𝜔)𝐵(𝑀, 𝜀𝑠)|𝜔 ∈ Ω, τ ≥  t}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑡≥0𝑠>0  

In particular, if 𝑀 = {𝑥} , then we set 
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𝐷𝑥
+(𝜔): = 𝐷+({𝑥}),  and   𝐽𝑥

+(𝜔): = 𝐽+({𝑥}). 

The set  𝐷𝑀
+(𝜔) is called the first forward  prolongation of a random set 𝑀 and  𝐽𝑀

+(𝜔) is called first 

forward prolongational limit set of  a random set 𝑀.  

 

Theorem 3.5: A point dissipative RDS (θ, 𝜑) is  local dissipative if and only if  the set  𝐷 Γ𝑋

+ (𝜔) (resp., 

𝐽 Γ𝑋

+ (𝜔) ) is compact and uniformly attracting .  

 

Proof: Suppose that  (θ, 𝜑) is  point dissipative and  𝐷 Γ𝑋

+ (𝜔) (resp., 𝐽 Γ𝑋

+ (𝜔) ) is compact and uniformly 

attracting. By  Lemma 3.3, 𝐷 Γ𝑋

+ (𝜔) (resp., 𝐽 Γ𝑋

+ (𝜔) ) is orbitally stable, so Theorem 3.23 [14] tell us that the   

RDS (θ, 𝜑) is compact dissipative and 𝐷 Γ𝑋

+ (𝜔) (resp., 𝐽 Γ𝑋

+ (𝜔)) agrees with its random Levinson center 𝐽𝑋(𝜔). 

Hence by Theorem 3.2 the proof is finished.  

 

Conversely, suppose that (θ, 𝜑) is local dissipative. By Proposition 3.17 [15], (θ, 𝜑) is compact dissipative.  

Consequently 𝐷 Γ𝑋

+ (𝜔) (resp., 𝐽 Γ𝑋

+ (𝜔))  is compact and orbitally stable ([14] Theorem 3.22). So that  𝐷 =

𝐷 Γ𝑋

+ (𝜔) (respectively, 𝐽 = 𝐽 Γ𝑋

+ (𝜔) ) ([14]Theorem 3.15 and Corollary 3.16). 

From Theorem 3.2 yield  𝐷 Γ𝑋

+ (𝜔) (resp., 𝐽 Γ𝑋

+ (𝜔))) is an uniformly attracting set.             ∎ 

 

Definition 3.6: The RDS (θ, 𝜑) is called a locally asymptotically condensing if the limit  

 lim
𝑡→+∞

𝑑𝑋(𝜑(𝑡, 𝜃−𝑡𝜔)𝐵𝑝,𝛿(𝜃−𝑡𝜔), 𝐾𝑝(𝜔)) = 0                                      (3.10) 

 
holds for all 𝑝 ∈ 𝑋 and some TRV  𝛿𝑝(𝜔) and a nonvoid compact random set 𝐾𝑝(𝜔) ⊆ 𝑋, where 𝐵𝑝,𝛿 ≡

𝐵 (𝑝, 𝛿𝑝(𝜔)).  

 

Theorem 3.7: The  point dissipative RDS is local dissipative if and only if it is locally asymptotically 

condensing. 

Proof: Suppose that  (θ, 𝜑) is locally dissipative, then it is easy to see that (θ, 𝜑) is asymptotically condensing. 

Conversely, suppose that (θ, 𝜑)  is point dissipative and locally asymptotically condensing, 

Let us show that Γ𝐾
+(𝜔) is precompact for any compact random subset 𝐾. Let 𝑝 ∈ 𝐾 and 𝛿𝑝(𝜔) be  a TRV and 

𝐾𝑝(𝜔) compact random subset satisfy  (3.10) . Since  𝐾 is compact, then open covering {𝐵(𝑝, 𝛿𝑝(𝜔))| 𝑝 ∈ 𝐾} 

admits a finite subcovering {𝐵 (𝑝𝑖, 𝛿𝑝𝑖
(𝜔))| 𝑖 = 1,2, … , 𝑛}. 

 

Set  𝑊(𝜔): = 𝐾𝑝1
(𝜔) ⋃ 𝐾𝑝2

(𝜔) ⋃ … ⋃ 𝐾𝑝𝑛
(𝜔) . Hence 𝑊 is compact and 

 

lim
𝑡→+∞

𝑑𝑋(𝜑(𝑡, 𝜃−𝑡𝜔)𝐾(𝜃−𝑡𝜔), 𝑊(𝜔)) = 0                                                       (3.11) 

From equality (3.11) follows the set Γ𝐾
+(𝜔) is relative compact. According to Theorem 3.22 [14], (θ, 𝜑) is  
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compact dissipative. Now , let 𝑝 ∈ 𝐽𝑋(𝜔),  𝛿𝑝(𝜔) be a TRV and 𝐾𝑝(𝜔) be  compact set  satisfy (3.10). By 

Lemma 3.5 [15], the set Γ(𝐵(𝑝, 𝛿𝑝(𝜔))) is nonvoid invariant compact, and the equality 

 

                                          lim
𝑡→+∞

𝑑𝑋(𝜑(𝑡, 𝜃−𝑡𝜔)𝐵(𝑝, 𝛿𝑝(𝜔)), Γ(𝐵(𝑝, 𝛿𝑝(𝜔))))  =  0                  (3.12) 

holds. So Γ(𝐵(𝑝, 𝛿𝑝)) ⊆ 𝐽𝑋(𝜔) because  𝐽𝑋(𝜔) is a maximal invariant compact set of (θ, 𝜑)  

and from equality (3.12) follows (3.1). According to Theorem 3.1, (θ, 𝜑) is local dissipative.           ∎     
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