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Abstract: The main objective of this work is to study local dissipation in stochastic dynamical systems. The
main properties of this concept were studied. In addition to presenting the necessary and sufficient conditions
that make the random dynamic system a local dissipative. In Theorem 3.2, local dissipation is described in
terms of Levinson center, and in Theorem 3.5, it is described in terms of lex(a)) is a forward prolongation of

the random set I'y and ]}ix(w) is a forward limit prolongation of the random set I'y. Finally in Theorem 3.7 it is
described by locally asymptotically condensing.
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1.Introduction: It is well known that in the 1980s, efforts were made to develop sufficient mathematical
models to account for turbulence phenomena, which greatly influenced the general theory of dissipative
systems. Infinite-dimensional dissipative dynamics has made major strides in the past few years (see, for
instance, Chueshov I. [6], Robinson J. [10], Temam R. [12] and Chiban D. [3] and the references therein). The
dynamical systems encountered in physical or biological sciences can be loosely divided into two classes:
conservative ones (including Hamiltonian systems) and those displaying some type of dissipation. These
dynamical systems are often generated by partial differential equations and thus the underlying state space is an
infinite dimensional. For interesting papers related to the theory of dissipativity on RDS, we cite the works by
Hale K. [8], Christian Kuehn, Alexandra Neamt ,u and Anne Pein [9], Arnold [1], Igor [7], amongst many
others.
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In Our work, we will continue the line of research introduced by Yasir and Kadhim [13,14,15]. A new relations

of Local dissipativity on RDSs will be illustrated.

2. Notation and Preliminaries:

In this section, we will present some concepts and facts related to random dynamic systems that serve our work.
Through our work the triple (Q, F, IP) dente the probability space and T := R, or Z (considered as an additive
topological group) and (X, d) be a metric space.

Definition 2.1[7]: The metric dynamical system (MDS) is the triple (T, (, 0) where 6: T X Q — Q is an
invariant measurable action. For convenience, it is denoted for the dynamic metric dynamic system by 6.
Definition 2.2[7]: The random dynamical system (RDS) is a pair (8, ¢) including an MDS 6 and a mapping
@:TxQxX — X, that meets the following axioms forall t,s € T and w € Q,

(i) Continuity: ¢ (-, w,”): T X Q X X — X is continuous.
(if) Cocycle property : the mapping ¢ (t, w): = @(t, w,-) fulfill:

¢(0,w) =idy, and @(t + s, w) = ¢(t,05w) ° (s, W) .
Definition 2.3[7]

(@) The random set is a set-valued function M: Q — X such that the function ¥: Q — R defined by ¥(w) :

d(x, M(w)) is measurable for every x € X.

(b) For some y € X and some random variable r: Q — R*, consider the set A = {x:disy(x,y) <

r(w), forall w € Q }. A random set S(w) is called tempered if S(w) c A forevery w € Q,
and r: 0 — Rt is called tempered random variable (TRV), this means
supser{e ™t |r(Biw)|} < o, foreveryd>0and w € Q.

Definition 2.4 [7] In the RDS (6, ¢) the trajectory starting from a random set M is the set-valued function

defined by
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V]f/[ (0)) = Urst (p(T, H—Tw)M(H—Tw)

Definition 2.5[7]: The omega-limit set of y%,(w) is a set-valued function

w — Iy(w) =ny5(w) =NV (1, 0_,w)M(6_,w),t > 0,T > t.
Definition 2.6 [15]: We will call the set ]y (w) defined by equality
Jx(w) :=Tg(w) =N {p(t,0_;w)K(O_w)|t € T,w € Q,K is compact random set},
the random Levinson Center (RLC) of the compact dissipative RDS (8, ¢).
In the following definition we will introduce the concept of uniformly attracting in RDS.

Definition 2.7: For an RDS (6, ). The random set M(w) < X is called uniformly attracting if there is a TRV
6(w) > 0so that

tligrn supd(e(t,0_;w)x,M(w)) = 0 ,x € B(M, ).

Definition 2.8 [7]: For an RDS (6, @). A random set S(w) is called forward invariant (backward invariant )

whenever for every w € Q, t > 0 and we have @(t, w)S(w) S S(6;w)(rep. S(6;w) < @(t, w)S(w) ).

Definition 2.9 [15]: Consider RDS (8, ¢). A random set M (w) is said to be orbitally stable if for any TRV ¢

and any non-negative number ¢, there exists TRV § such that
d(x, M(w)) < §(w) implies d(¢(t, 0_;w)x, M(w)) < e(w).

Definition 2.10[7] The absorbing set for the RDS (6, ¢) relative to universe M is a closed random set A(w)
with the property that for every B € M and w there is ty(w) so that

o(t,0_tw)D(0_;w) € B(w), YVt = ty(w) .

Definition 2.11 [7]: The RDS (6, ¢) is called dissipative in the universe M, if there is an absorbing set A for
the RDS (0, @) in M contained in a closed random ball B (x,)-

Definition 2.12 [15]: If the RDS (6, @) satisfy the limit
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tETm d((p(t, 0_ w)x(6_,;w), K(w)) =0

for all x € X and some random set K , is called point dissipative.

Definition 2.13 [15]: If the RDS (6, @) satisfy the limit
Jimsup {d(ga(t, 0_cw)x,K(w)): X € By (0 (y)} =0
forevery y € X and some TRV 6, (w) > 0 and some random set K, is called locally dissipative .

Definition 2.14[5]: Let (X, d) be a metric space, K c X is precompact or totally bounded if every sequence in

K admits a subsequence converges to a point of X.

3. Local Dissipativity on RDSs:

This section includes a study of the basic properties of the concept of locally dissipative random dynamical

systems, as it was described in terms of compact dissipation, uniform attractors, and the Levinson Center.

Theorem 3.1: The RDS (6, ¢) is locally dissipative if and only if the following limit satisfied
Lim dy(o(t,6-,0)B(p, 8),Jx(w)) = 0,0 € 0 (3.1

forall p € X® and some TRV §(w) > 0.

Proof: The equation (3.1) lead to be (6, ¢) locally dissipative.

Conversely, let (8, ) be a locally dissipative RDS. Hence there is a nonvoid random compact subset K (w) <
X so that for all p € X?, there is a TRV &(p, w) such that:

Jim dy (¢(t, 6-,0)B(p, 6), K(w)) = 0 (3.2)
Theorem 3.5 [15] lead to that the set K,,(w) := I'(B(p, 6, (w))) is nonvoid, invariant compact, random set with

lim dy ((t,0_)B(p, 8, ())), Ky (@)) = 0 (33)
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From equality (3.2) follows the inclusion K, (w) € K.So, Ik, (w) € Ik(w) S Jx(w). Since the set K, (w) is
an invariant, we have K;, (w) = I, (w); hence K, (w) < Jx(w). From the last inclusion and equality (3.3) we
get equality (3.1). ]

Theorem 3.2: A compact dissipative RDS is local dissipative if and only if its random Levinson center is
uniformly attracting .

Proof: Suppose that /x(w) is a random Levinson center of a local dissipative RDS (6, ¢) and p € Jx(w).

Theorem 3.1 lead to existence of a TRV §(w) so that equality (3.1) is valid . Since Jy(w) is compact, then the
open covering {B (p, 8y (w)) :p € Jxy(w)} admits a finite subcovering

{B(pi, 6p,(w))]i = 1, ...,m}.
Now, Lemma 3.3 [13] lead to existence of a TRV a(w) so that

B(x(w), a(w)) c U{B(pi, by, (w))) i =1,...,m}.
Itis clear that for a TRV a > 0, the equality

Jim dy (¢ (6, 6_)B(Jx (@), 8,()),Jx (@) = 0 (3.4)
valid, i.e., Jx(w) is a uniformly attracting.

Conversely, suppose that the Levinson center of a compact dissipative RDS (6, ¢) is uniformly attracting , so,
thereis a TRV a(w) make (3.4) valid . If x € X , then thereis [ = [(x) > 0 so that

d((p(t, 0_rw)x,]x (w)) < a(w) (3.5)

forall ¢t > . According to (3.4), for every random variable e(w) > 0 we can choose L(€) > 0 such that

d(@(t,6_,w)y,Jx(w)) < e(w) (3.6)

forallt > L(¢)and y € B(Jx(w), a(w)).By (3.5) B(Jx(w), a(w)) is open, then we may choose

n =n(x) > 0, so that the inclusion B(¢(l,6_;w)x,n) € B(Jx(w), a(w)) hold.

By hypothesis, the mapping ¢(t, 0_;w): X — X is continuous, We can find a TRV §(w) = §,(w) >0
such that

o(,0_jw)y € B(p(l,0_jw)x,n) and ¢(l,0_jw)y € B(Jx(w),a(w)) forall y € B(x, 6, (w)).
By virtue of (3.6), we have
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y(t+1) € B(x(w), e(w))forallt = L(¢) and y € B(x, 6, (w)).

Set L(g,x) :=1(x)+ L(¢). Then ¢(t,0_,w)y € B(Jx(w), e(w)) forallt = L(g,x)and y € B(x,5,).
Consequently (6, ¢) is local dissipative. ]

Lemma 3.3: The nonvoid forward invariant compact random set is orbitally stable . If it is uniformly attracting.
Proof: Suppose M be a random set with the given property. Assume, if possible, that M (w) is not orbitally

stable. So there is TRV &,(w) and a positive real sequence §,, — 0 and x,, € B(M(w), &,,) and {t,,} with
t, — oo such that

d(p(tn, 0, 0)xn, M(w)) = &o(w) (3.7)

Since M is uniformly attracting, for a TRV g,(w) there exists L(gy,) > 0 such that

d(o(t, 0_,0)x, M(w)) < 80(2“))

(3.8)

forall x € B(M,a) and t > L(&,), wherea TRV a(w) >0 such that

Jim dy (p(t,6-,0)B(M, a(w)), M(@)) =0

Since x,, € B(M, 6,,) and 6, — 0, then {x,,} convergent. Set x, = tlifrn Xn ,thus xo € M and x,, > L(&g) as
n — oo, Then inequality (3.8) leads to

g(w)
d(p(tn, 01, )xn, M(w)) < —
Both (3.7) and (3.9) are contradictory. ]

(3.9)

Assume Ty (w) :=U {I(w)|x € X}, w € Q. Let (6, ¢) be a compact dissipative RDS and Jx (w) its random
Levinson center ( see, for more details [15]). It is clear that Ty (w) € Jx(w). The set I'y(w) is an essential to
distinguishing of a dissipative RDS, (see [13] Theorem 3.5).

Definition 3.4 [14]: Let {&: 2 - R, s € R*} be a family of tempered random variables, and define the forward
prolongation and the forward limit prolongation of the random set M respectively as follows :

DI\-;(O)) = r]S>0 U {q)(t, e—tw)B(M) Ss)lt = Olw € Q} y

Jar (@) = Ngs0 NezoU {9 (T, 0_cw)B(M, &) |w € Q, T = t}
In particular, if M = {x} , then we set
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Dy (w):=D*({x}), and Jy(w):=]"({x}).

The set Dj;(w) is called the first forward prolongation of a random set M and J;;(w) is called first
forward prolongational limit set of a random set M.

Theorem 3.5: A point dissipative RDS (6, ¢) is local dissipative if and only if the set lex(a)) (resp.,
]FX(w) ) is compact and uniformly attracting .

Proof: Suppose that (6, ¢) is point dissipative and DFX(w) (resp.,]“fx(w)) is compact and uniformly
attracting. By Lemma 3.3, DT, (w) (resp., JT,(w) ) is orbitally stable, so Theorem 3.23 [14] tell us that the
RDS (6, ) is compact dissipative and lex(w) (resp., ]{EX(cu)) agrees with its random Levinson center Jy (w).
Hence by Theorem 3.2 the proof is finished.

Conversely, suppose that (8, ¢) is local dissipative. By Proposition 3.17 [15], (6, ¢) is compact dissipative.
Consequently lex(w) (resp., ]}ix(w)) is compact and orbitally stable ([14] Theorem 3.22). So that D =

D7, (w) (respectively, | = JT (w) ) ([14]Theorem 3.15 and Corollary 3.16).
From Theorem 3.2 yield DT, (w) (resp., /T, (w))) is an uniformly attracting set. u

Definition 3.6: The RDS (6, ¢) is called a locally asymptotically condensing if the limit
lim_dy(9(t,6-:0) By 5(6_:0), Kp(w)) = 0 (3.10)

holds for all p € X and some TRV &, (w) and a nonvoid compact random set K,,(w) € X, where B, s =

B (p. 8,()).

Theorem 3.7: The point dissipative RDS is local dissipative if and only if it is locally asymptotically
condensing.

Proof: Suppose that (6, ¢) is locally dissipative, then it is easy to see that (6, ¢) is asymptotically condensing.
Conversely, suppose that (8, ¢) is point dissipative and locally asymptotically condensing,

Let us show that I'{ (w) is precompact for any compact random subset K. Let p € K and 6, (w) be a TRV and
K, (w) compact random subset satisfy (3.10) . Since K is compact, then open covering {B(p, 6, (w))| p € K}

admits a finite subcovering {B (pi, 6pl,(a)))| i=12,..,n}

Set W(w):=K,, (w) UKp,(w)U...UK, (w).Hence W is compact and

tliI.El dy(p(t,0_tw)K(O_tw),W(w)) =0 (3.11)
From equality (3.11) follows the set I'{ (w) is relative compact. According to Theorem 3.22 [14], (6, @) is
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compact dissipative. Now , let p € Jx(w), 6,(w) be a TRV and K,,(w) be compact set satisfy (3.10). By
Lemma 3.5 [15], the set I'(B(p, 6, (w))) is nonvoid invariant compact, and the equality

Jlim dy (¢, 6_;0)B(P, 8,(@)), [(B(p, 5,(@)))) = 0 (3.12)
holds. So I'(B(p, 8,,)) € Jx(w) because Jx(w) is a maximal invariant compact set of (6, )
and from equality (3.12) follows (3.1). According to Theorem 3.1, (6, ¢) is local dissipative. [ ]
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