Pure Graph of a Commutative Ring

¹Nermen J.Khalel Narmin.j.khaleel35382@st.tu.edu.iq

²Nabeel E.Arif nabarif@tu.edu.iq

³Tamadher Arif Ibrahiem <u>tamadherai_math@csw.uobaghdad.edu.iq</u>

- 1,2 Department of Mathematic College of Computer Science and Mathematics ,Tikrit, Tikrit University , Iraq.
- ³ Department of Mathematic College of Science for women, Bagdad, University of Bagdad, Iraq.

Abstract:- A new definition of a graph called Pure graph of a ring denote Pur(R) was presented, where the vertices of the graph represent the elements of R such that there is an edge between the two vertices α and β if and only if $\alpha = \alpha\beta$ or $\beta = \beta\alpha$, denoted by pur(R). In this work we studied some new properties of pur(R) finally we defined the complement of pur(R) and studied some of it is properties.

Keywords: Graph theory, commutative ring.

1- Introduction

There is a a lot of research linking between graph theory and algebraic ring theory. Ali Majidinya et.al. studied Ring in which the annihilator of an ideal is pure [1]. Bhavanari S. etal defined Prime Graph of a Ring [3] Mohammad Habibi etal. They studied clean graph of a ring [7]. Dhiren K.Basnet and Jayanta Bhattacharyya defined nil clean graph of rings [4], Jafari A. and Sahebi S., studied Vonneumann regular graphs associated with rings[6], A graph G is defined by an ordered pair (V(G),E(G)), where V(G) is a nonempty set whose elements are called vertices and E(G) is a set (may be empty) of unordered pairs of distinct vertices of V(G). the element of E(G) are called edges of the graph G, we denote by $\overline{\alpha\beta}$, an edge between two end vertices α and β [8].

In this paper we give new definition named Pure graph of ring and denoted by pur(R) with some properties of this new graph.

Basic concept:

Definition 1.1:[1] An element p in R is called pure element if there exist q in R such that p=pq.

Definition 1.2:[2]Let H be a graph, V(G) the set of vertices of G and $S \subseteq V(H)$, the set S is said to be a dominating set if the following condition is satisfy; $a \in V(H)$ implies either $a \in S$ or there exists $k \in S$ such that a and k are adjacent.

Definition 1.3:[8] A cycle graph with n vertices denoted by C_n , obtained by joining the two end vertices of a path graph and then each vertex of a cycle have degree two.

Definition 1.4:[5] The complete tripartite graph $K_{1,1,p}$. It is a graph consisting of p triangles sharing a common edge is called triangular book.

Theorem 1.5:[2] A connected graph G is Euler if and only if its edge set can be decomposed into cycles.

2- Main Result:

Definition 2.1: let R be a ring. A graph K(V, E) where V(K) = R and $E(K) = \{ \overline{\alpha \beta} / \alpha = \alpha \beta \text{ or } \beta = \beta \alpha \text{ and } \alpha \neq \beta \}$ is called Pure graph of R and denoted by pur(R)

Example:

$$Z_2 = \{0,1\}$$

Fig 1: $pur(Z_2)$

$$Z_3 = \{0,1,2\}$$

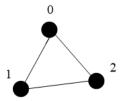


Fig 2: $pur(Z_3)$

$$Z_4 = \{0,1,2,3\}$$

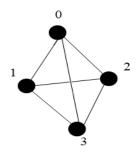


Fig $3:pur(Z_4)$

 $Z_5 = \{0,1,2,3,4\}$

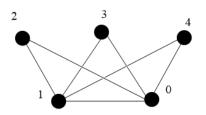


Fig $4:pur(Z_5)$

 $Z_6 = \{0,1,2,3,4,5\}$

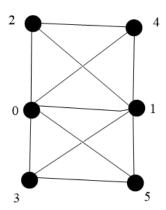


Fig 5: $pur(Z_6)$

 $Z_7 = \{0,1,2,3,4,5,6\}$

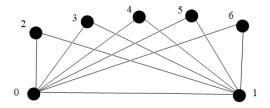


Fig 6: $pur(Z_7)$

 $Z_8 = \{0,1,2,3,4,5,6,7\}$

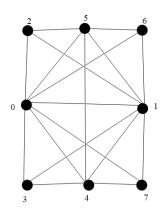


Fig 7: $pur(Z_8)$

Remarks 2.2: Let Pur(R) be Pure graph where $R = \mathbb{Z}_n$ then

- 1- Pur(R) has no self-loops
- 2- Since $0 = 0\mu$ and $\mu = \mu 1$ for all $0 \neq \mu \neq 1 \in R$ there is an edge from 0 and 1 to μ for all $\mu \in V(G) = R$ so degree (0)= degree (1) = |R| 1
- 3- For any two non-zero elements a,b in R there are edge one from 0 and 1 to a and another edge from 0 and 1 to b this show that the graph pur(R) is connected graph.
 - d(0,a) = d(a, 1) = 1 and $d(a,b) \le 2$ for any two non-zero elements $a,b \in R$
- 4- If there are two non-zero elements a,b in R such that a = ab or b = ba, then the subgraph produced by $\{0,1,a,b\}$ is K_4 graph, note that the graph Pur(R) where $R = Z_6$ as fig 5, Sub graph produced by $\{0,1,2,4\}$ is K_4 .
- 5- If $R = Z_n$ then max $Pur(Z_n) = \text{n-1}$ and min $Pur(Z_n) \ge 2$.

Remark 2.3:

1- $v_1 = v_1v_2$ or $v_2 = v_2v_1$ if and only if the distance between v_1 and v_2 equal 1.

Proof:

Suppose that $v_1=v_1v_2$ or $v_2=v_2v_1$ and $v_1\neq v_2\neq 0$ or 1 then $v_1v_2\in E(Pur(R))$ and so by definition of Pur(R) then $d(v_1,v_2)=1$. Conversely , suppose $d(v_1,v_2)=1$, if $(v_1=0 \text{ or } v_2=0)$ or $(v_1=1 \text{ or } v_1=1)$ then $v_1=v_1v_2$ or $v_2=v_2v_1$

if $d(v_1, v_2) = 1$ and $v_1 \neq v_2 \neq 0$ or 1 then $v_1v_2 \in E(Pur(R))$ which implies $v_1 = v_1v_2$ or $v_2 = v_2v_1$

2- $u_1 \neq u_1u_2$ or $u_2 \neq u_2u_1$ if and only if the distance between u_1 and u_2 equal 2.

Proof:

Let $u_1 \neq u_1u_2$ or $u_2 \neq u_2u_1$ then there is no edge between u_1 and u_2 , so the distance between u_1 and u_2 is largest than 1. since $0 = 0u_1$, $0 = 0u_2$, $\overline{u_10}$, $\overline{u_20} \in E(Pur(R))$, hence the distance between u_1 and u_2 equal 2. Conversely, let the distance between u_1 and u_2 equal 2 since $d(u_1,u_2) \neq 1$, there is no edge between u_1 and u_2 so $u_1 \neq u_1u_2$ or $u_2 \neq u_2u_1$

Theorem 2.4: If $R = Z_p$, and $p \ge 3$, p (prime number), then Pur(R) is a triangular book graph.

Proof:

It is clear that 0, 1 adjacent to all remaining vertices in $Pur(Z_p)$ by definition and there is no edge between any other two vertices α and β where $(\alpha \text{ and } \beta \neq 0 \text{ or } \alpha \text{ and } \beta \neq 1)$ since $\alpha \neq \alpha\beta \mod(p)$ or $\beta \neq \beta\alpha \mod(p)$.

Theorem 2.5: let $R = Z_p$, and $p \ge 3$ (p isprime number), then Pur(R) has p-2 of cycle C_3 .

Proof:

By definition of pure graph of a ring it is clear that 0 and 1 adjacent to all ramming vertices then $\forall a \in V(Pur(Z_p)), 0 \neq a \neq 1$ then we have a cycle of length 3 { 0,1,a}, that is the number of cycle C_3 is p-2.

Theorem 2.6: If $R = Z_p$, p is prime number then $Pur(Z_p)$ is Euler graph.

Proof:

By theorem (2.5) the graph $Pur(Z_p)$ that is the set edges can be decomposed into cycles then $Pur(Z_p)$ is Euler graph by theorem (1.5)

Theorem 2.7: If $R = Z_p$, and $p \ge 3$ (p is prime number), then Pur(R) has $\sum_{i=3}^{p} (p - i)$ of C_4

Proof:

Suppose that $0 \neq v_1 \neq 1$ be a vertex in Pur(R) then we have (p-3) of C_4 start from the vertex v_1 where p-3 is the number of ramming vertices, now we take another vertex v_2 it is clear that is the number of ramming vertices is p-4 then we have (p-4) of C_4 start from the vertex v_2 Repeat the process for the rest of the vertices that is we have

$$(p-3) + (p-4) + \dots + 1 = \sum_{i=3}^{p-1} (p-i).$$

Corollary 2.8: The graph $Pur(Z_n)$, n > 3 not prime number has at least one of K_4 .

Proof:

By definition of Pur(R) for any two vertices $0 \neq v_1, v_2 \neq 1$ we have a cycle C4 { $0,v_1,1,v_2$ } and 0 and 1 are adjacent that is if $v_1 = v_1v_2$ or $v_2 = v_2v_1$ then we have K_4 sub graph of $Pur(Z_n)$, since n not prime then there are another vertices so by definition of Pur(R) has another K_4 .

3- Invariants of Pure graph:

In this part, we studied some results related to invariants of graph theory. The girth of Pur(R) is compute in the following theorem.

3.1 Girth of Pur(R)

In a graph G, the girth of G is the length of the shortest cycle in G. We have following results on girth of Pur(R).

Theorem 3.1.1: If $R = Z_n$, and $n \ge 3$, then the Girth of Pur(R) is equal to 3.

Proof:

It is clear that, Since 0 and 1 adjacent to all remaining vertices in Pur(R) and also 0 and 1 are adjacent to other, that is the shortest cycle in Pur(R) is of length 3

3.2 Dominating set of Pure graph:

Let G be a graph, a subset $S \subseteq V(G)$ is said to be dominating set for G if for all $x \in V(G)$, $x \in S$ or there exists $y \in S$ such that x is adjacent to y. Following theorem shows that for a finite commutative ring dominating number is 1, where dominating number is the carnality of smallest dominating set.

Theorem 3.2.1: The dominating number of $Pur(Z_n)$ is 1.

Proof:

Since the smallest dominating set in $Pur(Z_n)$ graph is $\{0\}$ and $\{1\}$ because 0 and 1 are adjacent to all vertices in $Pur(Z_n)$ graph then the dominating number is 1.

4- The complement of pur(R).

Definition 4.1: let R be a ring. A graph $Pur^c(R)$ is said to be the complement of pur(R) where the vertex set is the ring R and the edge set equal to $\{\overline{\alpha\beta}/\alpha \neq \alpha\beta\}$ or $\beta \neq \beta\alpha$ and $\alpha \neq \beta$.

Example: Consider Z_n (the ring of integers modulo n).

1- Where n = 2,3,4 $Pur^c(Z_n)$ is empty graph since, where n=2 then $V(Pur(Z_2)) = \{0,1\}$ and $E(Pur(Z_2)) = \{\overline{01}\}$ since 01=0, and hence there no edges in $Pur^c(Z_2)$, also where n=3 then $V(Pur(Z_3)) = \{0,1,2\}$ and $E(Pur(Z_3)) = \{\overline{01}, \overline{02}, \overline{12}\}$ since 01=0, 02=0, 21=2, and hence there no edges in $Pur^c(Z_3)$, now if n=4 then $V(Pur(Z_4)) = \{0,1,2,3\}$ and $E(Pur(Z_4)) = \{\overline{01}, \overline{02}, \overline{03}, \overline{12}, \overline{13}, \overline{23}\}$ since 01=0, 02=0, 03=0, 21=2, 31=3, 23=2 and hence there no edges in $Pur^c(Z_4)$.

2- Where n=5 $Pur^c(Z_5)$ is disconnected graph since $V(Pur(Z_5))=\{0,1,2,3,4\}$ and $E(Pur(Z_5))=\{\overline{01},\overline{02},\overline{03},\overline{04},\overline{12},\overline{13},\overline{14}\}$ since 01=0, 02=0,03=0,04=0, 21=2,31=3 and 41=4 and hence the $E(Pur^c(Z_5))=\{\overline{23},\overline{24},\overline{34}\}$ that is 0 and 1 don't adjacent to any vertex in $Pur^c(Z_5)$ the blew figure show that

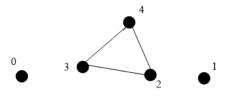


Fig 8: $Pur^c(Z_5)$

Note: the $Pur^c(Z_n)$ is disconnected graph since 0,1 is adjacent to all vertices in $Pur(Z_n)$. then $Pur^c(Z_n)$ has at least three components.

Theorem 4.2: A graph $Pur^c(Z_p)$, p is prime number is disconnected graph has three components two isolated vertices 0 and 1 and K_{p-2} complete graph.

Proof:

By theorem 2.4 $Pur(Z_p)$ is triangle book graph and 0,1 adjacent to all vertices, and there is no edge between any two vertices that is 0 and 1 are isolated vertices in $Pur^c(Z_p)$, now since the rest of the vertices (their number is p-2) are not adjacent to each other in $Pur(Z_p)$ they will be adjacent to each other in $Pur^c(Z_p)$, this means that $Pur^c(Z_p)$ contains K_{p-2} complete sub graph.

5- Conclusion

The definition of pure graph of commutative ring Pur(R) was introduced in this work and the number of cycles C_3 , C_4 and K_4 in Pur(R) was found where $R = Z_p$, also gave girth and the dominating number of Pur(R), in addition, a definition is provided the complement of pure graph denoted by $Pur^c(R)$.

References

- [1] A.Majidnya, A.Moussavi and K.Paykan, *Rings in which the annihilator of an ideals is pure*, Algebra colloq.22(spec01)(2016) 947-968.
- [2] Bhavanari S., and Kuncham S., *Discrete Mathematics and Graph Theory*, PHL Learning Private Limited, Delhi, 2014.
- [3] Bhavanari S., Kuncham S., and Dasari N., Prime Graph of a Ring, *Journal of Combinatorics*, *Information and System Sciences*, vol.35(No.1-2) (2010), 27-42.
- [4] Dhiren K.Basnet and Jayanta Bhattacharyya, *Nil clean graph of rings*, arxiv 24:3(2017)481-492.
- [5] Francesco Barioli, *Completely positive matrices with a book-graph*, Linear Algebra and its Applications 277 (1998) 11 31.
- [6] Jafari A. and Sahebi S., Vonneumann Regular Graphs Associated with Rings, Journal of Discrete Mathematics, Algorithms and Applications, vol.10(No.3) (2018) 1850029, 1-13.
- [7] Mohammad Habibi et al, *Clean graph of a ring*, Journal of Algebra and Its Applications Vol. 20, No. 09, 2150156 (2021).
- [8] Rahman M., Basic Graph Theory, Springer, 2017.
- [9] kishor F.Pawar and Sandeep S.Joshi, *Study of prime Graph of a ring*, Thai Journal of mathematics, vol 17(2019) 2:369-344.

Article submitted 11 February 2023. Published as resubmitted by the authors 2 March 2023.