The Deviation Issue and Total Completion Time on a Single Machine Scale Subject to Decreasing and Growing Linear Deterioration are Theoretically Addressed
DOI:
https://doi.org/10.31185/wjps.569Keywords:
single machine, linear deterioration, total completion timeAbstract
References
F. H. Ali and M. G. Ahmed, “Local Search Methods for Solving Total Completion Times, Range of Lateness and Maximum Tardiness Problem,” in Proceedings of the 6th International Engineering Conference “‘Sustainable Technology and Development’”, IEC 2020, IEEE, Feb. 2020, pp. 103–108. doi: 10.1109/IEC49899.2020.9122821.
H. A. Chachan, F. H. Ali, and M. H. Ibrahim, “Branch and Bound and Heuristic Methods for Solving Multi-Objective Function for Machine Scheduling Problems,” in 2020 6th International Engineering Conference “Sustainable Technology and Development" (IEC), IEEE, Feb. 2020, pp. 109–114. doi: 10.1109/IEC49899.2020.9122793.
M. H. Ibrahim, F. H. Ali, and H. A. Chachan, “Dominance Rules for Single Machine Scheduling to Minimize Weighted Multi Objective Functions,” in AIP Conference Proceedings, Feb. 2023, p. 040090. doi: 10.1063/5.0119047.
S. Browne and U. Yechiali, “Scheduling deteriorating jobs on a single processor,” Operations Research, vol. 38, no. 3, pp. 495–498, Jun. 1990, doi: 10.1287/opre.38.3.495.
G. Mosheiov, “V-shaped policies for scheduling deteriorating jobs,” Operations Research, vol. 39, no. 6, pp. 979–991, Dec. 1991, doi: 10.1287/opre.39.6.979.
B. Alidaee and N. K. Womer, “Scheduling with time dependent processing times: Review and extensions,” Journal of the Operational Research Society, vol. 50, no. 7, pp. 711–720, Jul. 1999, doi: 10.1057/palgrave.jors.2600740.
A. Bachman and A. Janiak, “Minimizing maximum lateness under linear deterioration,” European Journal of Operational Research, vol. 126, no. 3, pp. 557–566, Nov. 2000, doi: 10.1016/S0377-2217(99)00310-0.
C. T. Ng, T. C. E. Cheng, A. Bachman, and A. Janiak, “Three scheduling problems with deteriorating jobs to minimize the total completion time,” Information Processing Letters, vol. 81, no. 6, pp. 327–333, Mar. 2002, doi: 10.1016/S0020-0190(01)00244-7.
T. C. E. Cheng and Q. Ding, “Scheduling start time dependent tasks with deadlines and identical initial processing times on a single machine,” Computers and Operations Research, vol. 30, no. 1, pp. 51–62, Jan. 2003, doi: 10.1016/S0305-0548(01)00077-6.
Y.-H. Chung, H.-C. Liu, C.-C. Wu, and W.-C. Lee, “A deteriorating jobs problem with quadratic function of job lateness,” Computers & Industrial Engineering, vol. 57, no. 4, pp. 1182–1186, Nov. 2009, doi: 10.1016/j.cie.2009.05.012.
K. I. J. Ho, J. Y. T. Leung, and W. D. Wei, “Complexity of scheduling tasks with time-dependent execution times,” Information Processing Letters, vol. 48, no. 6, pp. 315–320, Dec. 1993, doi: 10.1016/0020-0190(93)90175-9.
A. Bachman, T. C. E. Cheng, A. Janiak, and C. T. Ng, “Scheduling start time dependent jobs to minimize the total weighted completion time,” Journal of the Operational Research Society, vol. 53, no. 6, pp. 688–693, Jun. 2002, doi: 10.1057/palgrave.jors.2601359.
J. B. Wang and Z. Q. Xia, “Scheduling jobs under decreasing linear deterioration,” Information Processing Letters, vol. 94, no. 2, pp. 63–69, Apr. 2005, doi: 10.1016/j.ipl.2004.12.018.
Y. Yin and D. Xu, “Some single-machine scheduling problems with general effects of learning and deterioration,” Computers and Mathematics with Applications, vol. 61, no. 1, pp. 100–108, 2011, doi: 10.1016/j.camwa.2010.10.036.
W.-C. Lee and P.-J. Lai, “Scheduling problems with general effects of deterioration and learning,” Information Sciences, vol. 181, no. 6, pp. 1164–1170, Mar. 2011, doi: 10.1016/j.ins.2010.11.026.
R. J. Freeman, “Letter to the Editor—A Generalized PERT,” Operations Research, vol. 8, no. 2, pp. 281–281, Apr. 1960, doi: 10.1287/opre.8.2.281.
A. Charnes and W. W. Cooper, “Chance-Constrained Programming,” Management Science, vol. 6, no. 1, pp. 73–79, Oct. 1959, doi: 10.1287/mnsc.6.1.73.
K. N. McKay, F. R. Safayeni, and J. A. Buzacott, “Job-Shop Scheduling Theory: What Is Relevant?,” Interfaces, vol. 18, no. 4, pp. 84–90, Aug. 1988, doi: 10.1287/inte.18.4.84.
B. Dodin, “Determining the optimal sequences and the distributional properties of their completion times in stochastic flow shops,” Computers and Operations Research, vol. 23, no. 9, pp. 829–843, Sep. 1996, doi: 10.1016/0305-0548(95)00083-6.
J. Mittenthal and M. Raghavachari, “Stochastic Single Machine Scheduling with Quadratic Early-Tardy Penalties,” Operations Research, vol. 41, no. 4, pp. 786–796, Aug. 1993, doi: 10.1287/opre.41.4.786.
H. A. Cheachan and M. T. Kadhim, “Exact Method for Solving Single Machine Scheduling Problem under Fuzzy Due Date to Minimize Multi-Objective Functions,” Journal of Physics: Conference Series, vol. 1879, no. 2, May 2021, doi: 10.1088/1742-6596/1879/2/022126.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Mohammed Alsudani, Hanan Ali Chachan

This work is licensed under a Creative Commons Attribution 4.0 International License.