Evaluation of 8-Oxoguanine DNA Glycosylase-1(OGG1) Serum Levels in Patients with Type2 Diabetes Mellitus

Authors

  • Duaa Hussein Allawi Al-dulaimi Department of Biology - College of Education for pure Sciences-University of Wasit, IRAQ

DOI:

https://doi.org/10.31185/wjps.543

Keywords:

8-oxoguanine DNA glycosylase-1(OGG1), type2 diabetes mellitus

Abstract

: Chronic hyperglycemia in type 2 diabetes mellitus leads to elevated oxidative stress. As a consequence, the accumulation of reactive oxygen species (ROS)may cause additional damage to various biological macromolecules, including DNA. The current study aims to evaluate the DNA damage in type2 diabetic patients from Wasit Province by estimating the levels of 8-OHdG using ELISA. All samples were collected from the local community of Wasit province, Iraq.  Forty-five type 2 diabetes mellitus patients (22 males and 23 females) and 35 healthy controls (17 males and 18 females) were genotyped for 8-oxoguanine DNA glycosylase-1(OGG1). Determination of 8-oxoguanine DNA glycosylase-1(OGG1) in sera of patients with T2DM and controls was done by using an Enzyme-linked immunosorbent assay ELISA.The results reveal highly significant differences, the OGG1 levels in the diabetic patients were higher than that of controls (646.96±2.14), controls (326.01±16.66), P= 0.0001. The OGG1 levels were elevated significantly among males and female’s patients withT2DM compared to the control group, 627.02±66.31 versus 679.68±63.27),        P= 0.01 (381.85±29.33 versus 355.44±31.45), P = 0.0006, respectively. No significant differences were observed when comparing OGG1 levels between male and female patients with type2 diabetes, as well as in the control group: 627.03±66.31 versus 679.68±63.27, P=0.5974;381.85±29.36 vs.355.44±31.45, P=0.5478 in patients and controls respectively.679.68267±63.27413 versus627.02830±66.29612 with a non-significant difference P=0.5974. In conclusion levels of serum OGG1 are associated with diabetes mellitus

References

Al-Aubaidy, H.A. and Jelinek, H.F., 2011. Oxidative DNA damage and obesity in type 2 diabetes mellitus. European journal of endocrinology, 164(6), pp.899-904.

Anene-Nzelu, C.G., Li, P.Y., Luu, T.D.A., Ng, S.L., Tiang, Z., Pan, B., Tan, W.L.W., Ackers-Johnson, M., Chen, C.K., Lim, Y.P. and Qin, R.W.M., 2022. 8‐Oxoguanine DNA Glycosylase (OGG1) Deficiency Exacerbates Doxorubicin‐Induced Cardiac Dysfunction. Oxidative Medicine and Cellular Longevity, 2022(1), p.9180267.

Goodarzi, M.T., Navidi, A.A., Rezaei, M. and Babahmadi‐Rezaei, H., 2010. Oxidative damage to DNA and lipids: correlation with protein glycation in patients with type 1 diabetes. Journal of clinical laboratory analysis, 24(2), pp.72-76.

Karahalil, B., Engin, A.B. and Coşkun, E., 2014. Could 8-oxoguanine DNA glycosylase 1 Ser326Cys polymorphism be a biomarker of susceptibility in cancer?. Toxicology and Industrial Health, 30(9), pp.814-825.

Pan, L., Zhu, B., Hao, W., Zeng, X., Vlahopoulos, S.A., Hazra, T.K., Hegde, M.L., Radak, Z., Bacsi, A., Brasier, A.R. and Ba, X., 2016. Oxidized guanine base lesions function in 8-oxoguanine DNA glycosylase-1-mediated epigenetic regulation of nuclear factor κB-driven gene expression. Journal of Biological Chemistry, 291(49), pp.25553-25566.

Prasad, M., Bronson, S.C., Warrier, T., Badarinath, A., Rai, S., Baid, K., Sitaraman, S., George, A., Moses, A., Saraswathy, R. and Vasuki, R., 2015. Evaluation of DNA damage in Type 2 diabetes mellitus patients with and without peripheral neuropathy: A study in South Indian population. Journal of natural science, biology, and medicine, 6(1), p.80.

Visnes, T., Cázares-Körner, A., Hao, W., Wallner, O., Masuyer, G., Loseva, O., Mortusewicz, O., Wiita, E., Sarno, A., Manoilov, A. and Astorga-Wells, J., 2018. Small-molecule inhibitor of OGG1 suppresses proinflammatory gene expression and inflammation. Science, 362(6416), pp.834-839.

Nithya, K., Isabel, W., Angeline, T., As, P., & Asirvatham, A. (2017). Assessment of dna strand breaks and total antioxidant status in type 2 diabetic patients with and without complications- a case-control study. Asian Journal of Pharmaceutical and Clinical Research, 10(4), 430. https://doi.org/10.22159/ajpcr.2017.v10i4.17020

Cooke, M.S., Olinski, R. and Evans, M.D., 2006. Does measurement of oxidative damage to DNA have clinical significance?. Clinica Chimica Acta, 365(1-2), pp.30-49.

Cooke, M.S., Olinski, R., Loft, S. and European Standards Committee on Urinary (DNA) Lesion Analysis (ESCULA), 2008. Measurement and meaning of oxidatively modified DNA lesions in urine. Cancer Epidemiology Biomarkers & Prevention, 17(1), pp.3-14.

Shin, C.S., Moon, B.S., Park, K.S., Kim, S.Y., Park, S.J., Chung, M.H. and Lee, H.K., 2001. Serum 8-hydroxy-guanine levels are increased in diabetic patients. Diabetes care, 24(4), pp.733-737.

Kikuchi, A., Takeda, A., Onodera, H., Kimpara, T., Hisanaga, K., Sato, N., Nunomura, A., Castellani, R.J., Perry, G., Smith, M.A. and Itoyama, Y., 2002. Systemic increase of oxidative nucleic acid damage in Parkinson's disease and multiple system atrophy. Neurobiology of disease, 9(2), pp.244-248.

Pang, J., Xi, C., Dai, Y., Gong, H. and Zhang, T.M., 2012. Altered expression of base excision repair genes in response to high glucose-induced oxidative stress in HepG2 hepatocytes. Medical science monitor: international medical journal of experimental and clinical research, 18(7), p.BR281.

Song, F., Jia, W., Yao, Y., Hu, Y., Lei, L., Lin, J., Sun, X. and Liu, L., 2007. Oxidative stress, antioxidant status and DNA damage in patients with impaired glucose regulation and newly diagnosed Type 2 diabetes. Clinical science, 112(12), pp.599-606.

Golbidi, S. and Laher, I., 2010. Antioxidant therapy in human endocrine disorders. Med Sci Monit, 16(1), pp.9-24.

Dandona, P., Thusu, K., Cook, S., Snyder, B., Makowski, J., Armstrong, D. and Nicotera, T., 1996. Oxidative damage to DNA in diabetes mellitus. The Lancet, 347(8999), pp.444-445.

Hinokio, Y., Suzuki, S., Hirai, M., Chiba, M., Hirai, A. and Toyota, T., 1999. Oxidative DNA damage in diabetes mellitus: its association with diabetic complications. Diabetologia, 42, pp.995-998.

Goodarzi, M.T., Navidi, A.A., Rezaei, M. and Babahmadi‐Rezaei, H., 2010. Oxidative damage to DNA and lipids: correlation with protein glycation in patients with type 1 diabetes. Journal of clinical laboratory analysis, 24(2), pp.72-76.

Goodarzi, M.T., Navidi, A.A., Rezaei, M. and Babahmadi‐Rezaei, H., 2010. Oxidative damage to DNA and lipids: correlation with protein glycation in patients with type 1 diabetes. Journal of clinical laboratory analysis, 24(2), pp.72-76.

Collins, A.R., Rašlová, K., Somorovská, M., Petrovská, H., Ondrušová, A., Vohnout, B., Fábry, R. and Dušinská, M., 1998. DNA damage in diabetes: correlation with a clinical marker. Free Radical Biology and Medicine, 25(3), pp.373-377.

Tatsch, E., Bochi, G.V., Piva, S.J., De Carvalho, J.A., Kober, H., Torbitz, V.D., Duarte, T., Signor, C., Coelho, A.C., Duarte, M.M. and Montagner, G.F., 2012. Association between DNA strand breakage and oxidative, inflammatory and endothelial biomarkers in type 2 diabetes. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 732(1-2), pp.16-20.

Pilo, J., García-Flores, L.A., Clemente-Postigo, M., Arranz-Salas, I., Alcaide, J., Ramos-Fernandez, M., Lozano, J., Boughanem, H., Kompella, P. and Macías-González, M., 2023. 8-Oxoguanine DNA glycosylase 1 upregulation as a risk factor for obesity and colorectal cancer. International Journal of Molecular Sciences, 24(6), p.5488.

Pang, J., Xi, C., Dai, Y., Gong, H. and Zhang, T.M., 2012. Altered expression of base excision repair genes in response to high glucose-induced oxidative stress in HepG2 hepatocytes. Medical science monitor: international medical journal of experimental and clinical research, 18(7), p.BR281.

Simone, S., Gorin, Y., Velagapudi, C., Abboud, H.E. and Habib, S.L., 2008. Mechanism of oxidative DNA damage in diabetes: tuberin inactivation and downregulation of DNA repair enzyme 8-oxo-7, 8-dihydro-2′-deoxyguanosine-DNA glycosylase. Diabetes, 57(10), pp.2626-2636.

Chen, S.C., Brooks, R., Houskeeper, J., Bremner, S.K., Dunlop, J., Viollet, B., Logan, P.J., Salt, I.P., Ahmed, S.F. and Yarwood, S.J., 2017. Metformin suppresses adipogenesis through both AMP-activated protein kinase (AMPK)-dependent and AMPK-independent mechanisms. Molecular and cellular endocrinology, 440, pp.57-68.

Kim, H.S., Kim, B.H., Jung, J.E., Lee, C.S., Lee, H.G., Lee, J.W., Lee, K.H., You, H.J., Chung, M.H. and Ye, S.K., 2016. Potential role of 8-oxoguanine DNA glycosylase 1 as a STAT1 coactivator in endotoxin-induced inflammatory response. Free Radical Biology and Medicine, 93, pp.12-22.

Tao, L., Fan, X., Sun, J. and Zhang, Z., 2021. Metformin prevented high glucose-induced endothelial reactive oxygen species via OGG1 in an AMPKα-Lin-28 dependent pathway. Life Sciences, 268, p.119015.

Orie, N.N., Zidek, W. and Tepel, M., 1999. Reactive oxygen species in essential hypertension and non–insulin-dependent diabetes mellitus. American journal of hypertension, 12(12), pp.1169-1174.

Seghrouchni, I., Drai, J., Bannier, E., Rivière, J., Calmard, P., Garcia, I., Orgiazzi, J. and Revol, A., 2002. Oxidative stress parameters in type I, type II and insulin-treated type 2 diabetes mellitus; insulin treatment efficiency. Clinica Chimica Acta, 321(1-2), pp.89-96.

Goodarzi, M.T., Navidi, A.A., Rezaei, M. and Babahmadi‐Rezaei, H., 2010. Oxidative damage to DNA and lipids: correlation with protein glycation in patients with type 1 diabetes. Journal of clinical laboratory analysis, 24(2), pp.72-76.

Robertson, R.P., 2004. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. Journal of Biological Chemistry, 279(41), pp.42351-42354.

Gao, Y., Wang, P., Wang, Z., Han, L., Li, J., Tian, C., Zhao, F., Wang, J., Zhao, F., Zhang, Q. and Lyu, Y., 2019. Serum 8-Hydroxy-2′-deoxyguanosine level as a potential biomarker of oxidative DNA damage induced by ionizing radiation in human peripheral blood. Dose-Response, 17(1), p.1559325818820649.

Chen, S.K., Hsieh, W.A., Tsai, M.H., Chen, C.C., Hong, A.I., Wei, Y.H. and Chang, W.P., 2003. Age-associated decrease of oxidative repair enzymes, human 8-oxoguanine DNA glycosylases (hOgg1), in human aging. Journal of radiation research, 44(1), pp.31-35.

Aka, P., Mateuca, R., Buchet, J.P., Thierens, H. and Kirsch-Volders, M., 2004. Are genetic polymorphisms in OGG1, XRCC1 and XRCC3 genes predictive for the DNA strand break repair phenotype and genotoxicity in workers exposed to low dose ionising radiations?. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 556(1-2), pp.169-181.

Pawlowska, E., Janik-Papis, K., Rydzanicz, M., Zuk, K., Kaczmarczyk, D., Olszewski, J., Szyfter, K., Blasiak, J. and Morawiec-Sztandera, A., 2009. The Cys326 allele of the 8-oxoguanine DNA N-glycosylase 1 gene as a risk factor in smoking-and drinking-associated larynx cancer. The Tohoku journal of experimental medicine, 219(4), pp.269-275.

Wu, Z.Y., Wang, M.H., Qi, H.M., Wu, M.H., Ge, Y.Z. and Li, H.T., 2015. Relationship between hOGG1 Ser326Cys gene polymorphism and coronary artery lesions in patients with diabetes mellitus. International Journal of Clinical and Experimental Medicine, 8(10), p.18629.

Yousif, B. A., & Ghali, Z. H. (2021). Evaluation Of Serum Levels Of Interleukin-10 Among Patients With Type Two Diabetes Mellitus (T2DM). NVEO-NATURAL VOLATILES & ESSENTIAL OILS Journal| NVEO, 496-499.‏

Al-Sarray, A. J., & Ahmed, I. H. (2021). Serum TNF-Α Concentrations In Type Two Diabetes Mellitus. NVEO-NATURAL VOLATILES & ESSENTIAL OILS Journal| NVEO, 540-546.‏

Shamkhi, R. J., & Ahmed, I. H. (2021). Association between Sirtuin1 levels and Type2-Diabetes Mellitus. Turkish Journal of Physiotherapy and Rehabilitation, 32, 3.‏

Hussein, A. R., & Ghali, Z. H. (2022). Analysis Of Cell Free DNA And Cf-Mt DNA As Molecular Markers In Patients With Type-2 Diabetes Mellitus. NVEO-NATURAL VOLATILES & ESSENTIAL OILS Journal| NVEO, 444-449.‏

Ghali, H. D. J. Z. H. (2021). Evaluation Of Serum Levels Of Cyclooxygenase-1 (COX-1) Among Patients With Type Two Diabetes Mellitus (T2DM). NVEO-NATURAL VOLATILES & ESSENTIAL OILS Journal| NVEO, 511-515.‏

Kadhum, M. S., & Ahmed, I. H. (2022). The influence of IL-17A genetic polymorphism on the susceptibility of Type 2 diabetes mellitus in Iraqi patients. Chinese Journal of Medical Genetics, 31(3), 288-291.‏

Mahmood, D. Q., & Ghali, Z. H. (2022). ASSOCIATION OF OSTEOPROTEGERIN OPG T950C POLYMORPHISM TO SUSCEPTIBILITY OF TYPE 2 DIABETES MELLITUS.‏

Mahmood, Diana Qais, and Zafir Hassan Ghali. "Evaluation of Osteoprotegerin (OPG) levels among Iraqi type2 diabetic patients."‏

Thamer, M. M., Wong, C. F., & Ghali, Z. H. (2021). Estimation of Interleukin-4 (IL-4) and Interleukin-6 (IL-6) Levels in Sera From Patients with Type 2 Diabetes Mellitus. Indian Journal of Forensic Medicine & Toxicology, 15(1).‏

Ahmed, I. H., & Ghali, Z. H. (2019). Transversion and transition mutations of interleukin-6 gene-174 (G/C) in patients with type-2 diabetes mellitus. Gene Reports, 17, 100478

.Alwan, M. A. (2023). POLYMORPHISM OF Telomerase reverse transcriptase (TERT) gene rs2736100 IN IRAQI PATIENTS WITH TYPE2 DIABETES MELLITUS. JOURNAL OF HEALTHCARE AND LIFE-SCIENCE RESEARCH, 2(9), 71-79.‏

Alwan, M. A. (2023). POLYMORPHISM OF Telomerase reverse transcriptase (TERT) gene rs2736100 IN IRAQI PATIENTS WITH TYPE2 DIABETES MELLITUS. JOURNAL OF HEALTHCARE AND LIFE-SCIENCE RESEARCH, 2(9), 71-79.‏

Foad,MH and Ahmed,IH: Polymorphism of Human Insulin Receptor INSR Gene Rs1366600 in Iraqi Patients with Type2 Diabetes Mellitus. JCHR (2023 a) 13(5), 76-82 | ISSN:2251-6727

Foad, M. H., & Ahmed, I. H. (2023). Polymorphism of acyl-CoA synthetase 1 ACSL1 Gene rs2292899 in Iraqi Patients with type2 Diabetes Mellitus. Central Asian Journal of Medical and Natural Science, 4(5), 226-232.‏

Downloads

Published

2024-12-30

Issue

Section

Biology

How to Cite

Al-dulaimi, D. H. A. (2024). Evaluation of 8-Oxoguanine DNA Glycosylase-1(OGG1) Serum Levels in Patients with Type2 Diabetes Mellitus. Wasit Journal for Pure Sciences , 3(4), 156-163. https://doi.org/10.31185/wjps.543