Traffic data classification in SDN network based on machine learning algorithms

Authors

  • Samah Adil College of Computer Science and Information Technology, University of Al-Qadisiyah, Al-Qadisiyah, IRAQ
  • Ali Saeed Alfoudi College of Computer Science and Information Technology, University of Al-Qadisiyah, Al-Qadisiyah, Iraq

DOI:

https://doi.org/10.31185/wjps.375

Keywords:

Software defined network, traffic classification, machine learning.

Abstract

Traffic classification plays a crucial role in various domains of network management, including service measurement, architectural design, security monitoring, and advertising. Software-defined networks (SDN) is a new technology that has the potential to solve typical network problems by simplifying network management, the introduction of network programmability, and the provision of a global perspective of a network. In recent years, SDN has brought new opportunities to classify traffic. Traffic classification techniques in SDN have been investigated, proposed, and developed. This survey delves into traffic classification under SDN, which is a vital component for improving network services, administration, and security. We give an in-depth assessment of traffic categorization algorithms adapted for SDN, emphasizing the fresh opportunities and problems they present. We cover the many metrics for assessing the effectiveness of these traffic classification algorithms, such as accuracy, precision, recall, and F1 score, and we examine the numerous datasets that serve as performance benchmarks. The study also synthesizes the findings of existing research, revealing trends and the efficacy of various techniques in the context of SDN-enabled settings. This document serves as a resource for scholars and practitioners seeking to optimize traffic classification strategies by providing a complete review and assessment of existing traffic classification approaches

References

M. S. Towhid and N. Shahriar, “Encrypted Network Traffic Classification using Self-supervised Learning,” Proc. 2022 IEEE Int. Conf. Netw. Softwarization Netw. Softwarization Coming Age New Challenges Oppor. NetSoft 2022, pp. 366–374, 2022, doi: 10.1109/NetSoft54395.2022.9844044.

S. W. Yoon and S. J. Jeong, “Implementing coordinative contracts between manufacturer and retailer in a reverse supply chain,” Sustain., vol. 8, no. 9, 2016, doi: 10.3390/su8090913.

K. Shingare, R. Nandurkar, P. Shrivastav, and S. Bendale, “Intrusion Dataset Over Network Traffic of SDN and TCP/IP Network,” Int. J. Adv. Res. Sci. Commun. Technol., vol. 6, no. 1, pp. 694–701, 2021, doi: 10.48175/ijarsct-1459.

Y. R. Chen, A. Rezapour, W. G. Tzeng, and S. C. Tsai, “RL-Routing: An SDN Routing Algorithm Based on Deep Reinforcement Learning,” IEEE Trans. Netw. Sci. Eng., vol. 7, no. 4, pp. 3185–3199, 2020, doi: 10.1109/TNSE.2020.3017751.

W. J. Eom, Y. J. Song, C. H. Park, J. K. Kim, G. H. Kim, and Y. Z. Cho, “Network Traffic Classification Using Ensemble Learning in Software-Defined Networks,” 3rd Int. Conf. Artif. Intell. Inf. Commun. ICAIIC 2021, pp. 89–92, 2021, doi: 10.1109/ICAIIC51459.2021.9415187.

S. Faezi and A. Shirmarz, “A Comprehensive Survey on Machine Learning using in Software Defined Networks (SDN),” Human-Centric Intell. Syst., vol. 3, no. 3, pp. 312–343, 2023, doi: 10.1007/s44230-023-00025-3.

Imran, Z. Ghaffar, A. Alshahrani, M. Fayaz, A. M. Alghamdi, and J. Gwak, “A topical review on machine learning, software defined networking, internet of things applications: Research limitations and challenges,” Electron., vol. 10, no. 8, 2021, doi: 10.3390/electronics10080880.

Q. Long, Y. Chen, H. Zhang, and X. Lei, “Software Defined 5G and 6G Networks: a Survey,” Mob. Networks Appl., vol. 27, no. 5, pp. 1792–1812, 2022, doi: 10.1007/s11036-019-01397-2.

N. M. Akshatha, P. Jha, and A. Karandikar, “A Centralized SDN Architecture for the 5G Cellular Network,” IEEE 5G World Forum, 5GWF 2018 - Conf. Proc., pp. 147–152, 2018, doi: 10.1109/5GWF.2018.8516960.

S. Singh, V. Mehla, and S. Nikolovski, “LSSDNF: A Lightweight Secure Software Defined Network Framework for Future Internet in 5G–6G,” Futur. Internet, vol. 14, no. 12, 2022, doi: 10.3390/fi14120369.

Z. Shu and T. Taleb, “A Novel QoS Framework for Network Slicing in 5G and beyond Networks Based on SDN and NFV,” IEEE Netw., vol. 34, no. 3, pp. 256–263, 2020, doi: 10.1109/MNET.001.1900423.

X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, “Network Slicing in 5G: Survey and Challenges,” IEEE Commun. Mag., vol. 55, no. 5, pp. 94–100, 2017, doi: 10.1109/MCOM.2017.1600951.

C. Bektas, S. Monhof, F. Kurtz, and C. Wietfeld, “Towards 5G: An Empirical Evaluation of Software-Defined End-to-End Network Slicing,” 2018 IEEE Globecom Work. GC Wkshps 2018 - Proc., no. 1, pp. 1–6, 2018, doi: 10.1109/GLOCOMW.2018.8644145.

M. Condoluci and T. Mahmoodi, “Softwarization and virtualization in 5G mobile networks: Benefits, trends and challenges,” Comput. Networks, vol. 146, pp. 65–84, 2018, doi: 10.1016/j.comnet.2018.09.005.

S. Wijethilaka and M. Liyanage, “Survey on Network Slicing for Internet of Things Realization in 5G Networks,” IEEE Commun. Surv. Tutorials, vol. 23, no. 2, pp. 957–994, 2021, doi: 10.1109/COMST.2021.3067807.

M. H. H. Khairi et al., “Detection and Classification of Conflict Flows in SDN Using Machine Learning Algorithms,” IEEE Access, vol. 9, pp. 76024–76037, 2021, doi: 10.1109/ACCESS.2021.3081629.

C. C. Liu, Y. Chang, C. W. Tseng, Y. T. Yang, M. S. Lai, and L. Der Chou, “SVM-based Classification Mechanism and Its Application in SDN Networks,” 2018 10th Int. Conf. Commun. Softw. Networks, ICCSN 2018, pp. 45–49, 2018, doi: 10.1109/ICCSN.2018.8488219.

G. Tank, A. Dixit, A. Vellanki, and D. Annapurna, “Software Defined Networks : The New Norm for Networks,” no. 2013, pp. 2013–2015, 2017.

A. Shirmarz and A. Ghaffari, “Automatic Software Defined Network (SDN) Performance Management Using TOPSIS Decision-Making Algorithm,” J. Grid Comput., vol. 19, no. 2, 2021, doi: 10.1007/s10723-021-09557-z.

M. A. Moyeen, F. Tang, D. Saha, and I. Haque, “SD-FAST: A Packet Rerouting Architecture in SDN,” 15th Int. Conf. Netw. Serv. Manag. CNSM 2019, 2019, doi: 10.23919/CNSM46954.2019.9012703.

G. Kim, Y. Kim, and H. Lim, “Deep Reinforcement Learning-Based Routing on Software-Defined Networks,” IEEE Access, vol. 10, pp. 18121–18133, 2022, doi: 10.1109/ACCESS.2022.3151081.

K. Mershad, “SURFER: A Secure SDN-Based Routing Protocol for Internet of Vehicles,” IEEE Internet Things J., vol. 8, no. 9, pp. 7407–7422, 2021, doi: 10.1109/JIOT.2020.3038465.

F. Hu, Q. Hao, and K. Bao, “A survey on software-defined network and OpenFlow: From concept to implementation,” IEEE Commun. Surv. Tutorials, vol. 16, no. 4, pp. 2181–2206, 2014, doi: 10.1109/COMST.2014.2326417.

J. Yan and J. Yuan, “A Survey of Traffic Classification in Software Defined Networks,” Proc. 2018 1st IEEE Int. Conf. Hot Information-Centric Networking, HotICN 2018, no. HotICN, pp. 200–206, 2019, doi: 10.1109/HOTICN.2018.8606038.

W. Rafique, L. Qi, I. Yaqoob, M. Imran, R. U. Rasool, and W. Dou, “Complementing IoT Services through Software Defined Networking and Edge Computing: A Comprehensive Survey,” IEEE Commun. Surv. Tutorials, vol. 22, no. 3, pp. 1761–1804, 2020, doi: 10.1109/COMST.2020.2997475.

D. Nu˜nez-Agurto, W. Fuertes, L. Marrone, and M. Macas, “Machine Learning-Based Traffic Classification in Software-Defined Networking: A Systematic Literature Review, Challenges, and Future Research Directions,” IAENG Int. J. Comput. Sci., vol. 49, no. 4, 2022.

B. Pradhan, G. Srivastava, D. S. Roy, K. H. K. Reddy, and J. C. W. Lin, “Traffic Classification in Underwater Networks Using SDN and Data-Driven Hybrid Metaheuristics,” ACM Trans. Sens. Networks, vol. 18, no. 3, 2022, doi: 10.1145/3474556.

P. Wang, S. C. Lin, and M. Luo, “A framework for QoS-aware traffic classification using semi-supervised machine learning in SDNs,” Proc. - 2016 IEEE Int. Conf. Serv. Comput. SCC 2016, pp. 760–765, 2016, doi: 10.1109/SCC.2016.133.

A. S. Da Silva, C. C. Machado, R. V. Bisol, L. Z. Granville, and A. Schaeffer-Filho, “Identification and selection of flow features for accurate traffic classification in SDN,” Proc. - 2015 IEEE 14th Int. Symp. Netw. Comput. Appl. NCA 2015, pp. 134–141, 2016, doi: 10.1109/NCA.2015.12.

A. A. El-serwy, E. AbdElhalim, and M. A. Mohamed, “Network Slicing Based on Real-Time Traffic Classification in Software Defined Network (SDN) using Machine Learning,” MEJ. Mansoura Eng. J., vol. 47, no. 3, pp. 1–10, 2022, doi: 10.21608/bfemu.2022.261455.

M. Reza, M. Javad, S. Raouf, and R. Javidan, “Network Traffic Classification using Machine Learning Techniques over Software Defined Networks,” Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 7, 2017, doi: 10.14569/ijacsa.2017.080729.

F. Xie, D. Wei, and Z. Wang, “Traffic analysis for 5G network slice based on machine learning,” Eurasip J. Wirel. Commun. Netw., vol. 2021, no. 1, 2021, doi: 10.1186/s13638-021-01991-7.

J. Kwon, D. Jung, and H. Park, “Traffic Data Classification using Machine Learning Algorithms in SDN Networks,” Int. Conf. ICT Converg., vol. 2020-Octob, pp. 1031–1033, 2020, doi: 10.1109/ICTC49870.2020.9289174.

R. Edvhg, T. T. Frp, L. Khqj, I. X. H. G. X. Fq, and O. D. Hu, “08756496,” pp. 5–9 Y. Zhai and X. Zheng, "Random Forest based Traffic Classification Method In SDN," 2018 International Conference on Cloud Computing, Big Data and Blockchain (ICCBB), Fuzhou, China, 2018, pp. 1-5, doi: 10.1109/ICCBB.2018.8756496.

J. Xie et al., “A survey of machine learning techniques applied to software defined networking (SDN): Research issues and challenges,” IEEE Commun. Surv. Tutorials, vol. 21, no. 1, pp. 393–430, 2019, doi: 10.1109/COMST.2018.2866942.

M. M. Raikar, S. M. Meena, M. M. Mulla, N. S. Shetti, and M. Karanandi, “Data Traffic Classification in Software Defined Networks (SDN) using supervised-learning,” Procedia Comput. Sci., vol. 171, no. 2019, pp. 2750–2759, 2020, doi: 10.1016/j.procs.2020.04.299.

A. Azab, M. Khasawneh, S. Alrabaee, K. K. R. Choo, and M. Sarsour, “Network traffic classification: Techniques, datasets, and challenges,” Digit. Commun. Networks, no. June 2022, 2023, doi: 10.1016/j.dcan.2022.09.009.

A. Thantharate, R. Paropkari, V. Walunj, and C. Beard, “DeepSlice: A Deep Learning Approach towards an Efficient and Reliable Network Slicing in 5G Networks,” 2019 IEEE 10th Annu. Ubiquitous Comput. Electron. Mob. Commun. Conf. UEMCON 2019, pp. 0762–0767, 2019, doi: 10.1109/UEMCON47517.2019.8993066.

J. Krupski, W. Graniszewski, and M. Iwanowski, “Data transformation schemes for cnn-based network traffic analysis: A survey,” Electron., vol. 10, no. 16, 2021, doi: 10.3390/electronics10162042.

A. W. Moore and D. Zuev, “Internet Class Moore and Zuev,” Sigmetrics, pp. 50–60, 2005.

S. García, M. Grill, J. Stiborek, and A. Zunino, “An empirical comparison of botnet detection methods,” Comput. Secur., vol. 45, pp. 100–123, 2014, doi: 10.1016/j.cose.2014.05.011.

S. Nanda, F. Zafari, C. Decusatis, E. Wedaa, and B. Yang, “Predicting network attack patterns in SDN using machine learning approach,” 2016 IEEE Conf. Netw. Funct. Virtualization Softw. Defin. Networks, NFV-SDN 2016, pp. 167–172, 2017, doi: 10.1109/NFV-SDN.2016.7919493.

I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a new intrusion detection dataset and intrusion traffic characterization,” ICISSP 2018 - Proc. 4th Int. Conf. Inf. Syst. Secur. Priv., vol. 2018-Janua, no. Cic, pp. 108–116, 2018, doi: 10.5220/0006639801080116.

A. Ferriyan, A. H. Thamrin, K. Takeda, and J. Murai, “Generating network intrusion detection dataset based on real and encrypted synthetic attack traffic,” Appl. Sci., vol. 11, no. 17, 2021, doi: 10.3390/app11177868.

Kurniabudi, D. Stiawan, Darmawijoyo, M. Y. Bin Bin Idris, A. M. Bamhdi, and R. Budiarto, “CICIDS-2017 Dataset Feature Analysis with Information Gain for Anomaly Detection,” IEEE Access, vol. 8, pp. 132911–132921, 2020, doi: 10.1109/ACCESS.2020.3009843.

I. Sharafaldin, A. Gharib, A. H. Lashkari, and A. A. Ghorbani, “Towards a Reliable Intrusion Detection Benchmark Dataset,” Softw. Netw., vol. 2017, no. 1, pp. 177–200, 2017, doi: 10.13052/jsn2445-9739.2017.009.

Z. Nazari, M. Noferesti, and R. Jalili, “DSCA: An inline and adaptive application identification approach in encrypted network traffic,” ACM Int. Conf. Proceeding Ser., no. January, pp. 39–43, 2019, doi: 10.1145/3309074.3309102.

A. S. Iliyasu and H. Deng, “Semi-Supervised Encrypted Traffic Classification with Deep Convolutional Generative Adversarial Networks,” IEEE Access, vol. 8, pp. 118–126, 2020, doi: 10.1109/ACCESS.2019.2962106.

M. E. Mihailescu et al., “The proposition and evaluation of the roedunet-simargl2021 network intrusion detection dataset,” Sensors, vol. 21, no. 13, pp. 1–20, 2021, doi: 10.3390/s21134319.

A. Alalousi, R. Razif, M. AbuAlhaj, M. Anbar, and S. Nizam, “A Preliminary Performance Evaluation of K-means, KNN and EM Unsupervised Machine Learning Methods for Network Flow Classification,” Int. J. Electr. Comput. Eng., vol. 6, no. 2, p. 778, 2016, doi: 10.11591/ijece.v6i2.8909.

Y. Wang, Y. Xiang, and J. Zhang, “A Novel Semi-Supervised Approach for Network Traffic Clustering,” pp. 169–175, 2011.

H. Alizadeh, “Traffic Classification and Verification using Unsupervised Learning of Gaussian Mixture Models,” 2015.

E. Min, J. Long, Q. Liu, J. Cui, and W. Chen, “TR-IDS : Anomaly-Based Intrusion Detection through Text-Convolutional Neural Network and Random Forest,” vol. 2018, 2018.

M. Al-qatf, M. Alhabib, and K. Al-sabahi, “Deep Learning Approach Combining Sparse Autoen- coder with SVM for Network Intrusion Detection,” IEEE Access, vol. PP, no. c, p. 1, 2018, doi: 10.1109/ACCESS.2018.2869577.

“Malware Traffic Classification Using Convolutional Neural Network for Representation Learning,” 2017.

A. Banitalebi and D. Mohammadreza, The DDoS attacks detection through machine learning and statistical methods in SDN, no. 0123456789. Springer US, 2020. doi: 10.1007/s11227-020-03323-w.

A. Javadpour, “Feature Selection and Intrusion Detection in Cloud Environment based on Machine Learning Algorithms,” 2017, doi: 10.1109/ISPA/IUCC.2017.00215.

K. A. Taher, “Network Intrusion Detection using Supervised Machine Learning Technique with Feature Selection,” 2019 Int. Conf. Robot. Signal Process. Tech., pp. 643–646, 2019.

D. Stiawan, “CICIDS-2017 Dataset Feature Analysis With Information Gain for Anomaly Detection,” vol. 8, pp. 132911–132921, 2020, doi: 10.1109/ACCESS.2020.3009843.

R. B. Basnet, R. Shash, C. Johnson, L. Walgren, and T. Doleck, “Towards Detecting and Classifying Network Intrusion Traffic Using Deep Learning Frameworks,” vol. 4, pp. 1–17, 2019.

Y. Zhou, H. Shi, Y. Zhao, W. Gao, and W. Zhang, “Based on 2D-CNN Model I :,” 2021 22nd Asia-Pacific Netw. Oper. Manag. Symp., pp. 238–241, 2021, doi: 10.23919/APNOMS52696.2021.9562636.

Downloads

Published

2024-06-30

Issue

Section

Computer

How to Cite

Adil, S., & Alfoudi, A. S. . (2024). Traffic data classification in SDN network based on machine learning algorithms. Wasit Journal for Pure Sciences , 3(2), 161-171. https://doi.org/10.31185/wjps.375