Study the Effect of Suction-Injection parameters Numerically and Analytically for Magneto hydrodynamic Jeffery Hamel Fluid Flow Problem

Authors

  • Ahmed Rasheed Department of Mathematics, Faculty of Education, University of Sumer, Thi-Qar, IRAQ
  • Abeer Majeed Jasim Department of Mathematics, Faculty of Science, University of Basrah, Basrah, IRAQ

DOI:

https://doi.org/10.31185/wjps.359

Keywords:

Jeffery-Hemal, Fluid Flow, Differential Transform Method, Optimal Differential Transform Method

Abstract

This paper processes numerically and analytically the magnetohydrodynamic flow among two porous solid plate intersections at an angle or through non-parallel porous walls, which can be interpreted as a mix of Jeffery Hamel fluid flow additives from suction-injection parameters. In fluid mechanics, the equations of governing, which are transferred to the non-linear ordinary differential equation of third order, are modeled instead of the conventional Navier-Stokes equations by Maxwell's electromagnetism. Results obtained from the DTM and the numerical method BVP4c are compared to those resulting from the optimal methods (ODTM), which consist of the collocation differential transform method (CDTM), the sub-domain differential transform method (SDTM), the least squares differential transform method (LSDTM), and the Galerkin differential transform method (GDTM). A comparison is made between the approximate analytical and numerical solutions for different parameters like open angles (ε), Reynolds numbers (Re), injection parameters (S), and Hartmann numbers (Ha). The results demonstrate that the two approaches are very similar.

References

Jeffery, G. B. (1915). L. The two-dimensional steady motion of a viscous fluid. The London Edinburgh and Dublin Philosophical Magazine and Journal of Science, 29(172), 455–465. https://doi.org/10.1080/14786440408635327

Adel, W., Biçer, K. E., & Sezer, M. (2021). A novel numerical approach for simulating the nonlinear MHD Jeffery–Hamel flow problem. International Journal of Applied and Computational Mathematics, 7(3). https://doi.org/10.1007/s40819-021-01016-3

Richard Onyango, E., Ngugi Kinyanjui, M., Kimathi, M., & Mohan Uppal, S. (2020). Heat and mass transfer on MHD Jeffrey-Hamel flow in presence of inclined magnetic field. Applied and Computational Mathematics, 9(4), 108. https://doi.org/10.11648/j.acm.20200904.11

Richard Onyango, E., Ngugi Kinyanjui, M., Kimathi, M., & Mohan Uppal, S. (2020). Heat and mass transfer on MHD Jeffrey-Hamel flow in presence of inclined magnetic field. Applied and Computational Mathematics, 9(4), 108. https://doi.org/10.11648/j.acm.20200904.11

Majeed, A. J., & Nabi, A. Z. J. A. (2020). Three iterative methods for solving Jeffery-Hamel flow problem. Kuwait Journal of Science, 1.

Rehman, S., Hashim, Trabelsi, Y., Alqahtani, S., Alshehery, S., & Eldin, S. M. (2023). A renovated Jaffrey-Hamel flow problem and new scaling statistics for heat, mass fluxes with Cattaneo–Christov heat flux model. Case Studies in Thermal Engineering, 43(102787), 102787. https://doi.org/10.1016/j.csite.2023.102787

Khan, M. I., & Alzahrani, F. (2021). Nonlinear dissipative slip flow of Jeffrey nanomaterial towards a curved surface with entropy generation and activation energy. Mathematics and Computers in Simulation, 185, 47–61. https://doi.org/10.1016/j.matcom.2020.12.004

Mebarek-Oudina, F., & Makinde, O. D. (2018). Numerical simulation of oscillatory MHD natural convection in cylindrical annulus: Prandtl number effect. Defect and Diffusion Forum, 387, 417–427. https://doi.org/10.4028/www.scientific.net/ddf.387.417

Reza, J., Mebarek-Oudina, F., & Makinde, O. D. (2018). MHD slip flow of cu-Kerosene nanofluid in a channel with stretching walls using 3-stage Lobatto IIIA formula. Defect and Diffusion Forum, 387, 51–62. https://doi.org/10.4028/www.scientific.net/ddf.387.51

Jasim, A. M. (2022). Study of the impact of unsteady squeezing magnetohydrodynamics Copper-water with injection-suction on nanofluid flow between two parallel plates in porous medium. Iraqi Journal of Science, 3909–3924. https://doi.org/10.24996/ijs.2022.63.9.23

Raza, J., Mebarek-Oudina, F., & Chamkha, A. J. (2019). Magnetohydrodynamic flow of molybdenum disulfide nanofluid in a channel with shape effects. Multidiscipline Modeling in Materials and Structures, 15(4), 737–757. https://doi.org/10.1108/mmms-07-2018-0133

Asghar, Z., Saif, R. S., & Ali, N. (2022). Investigation of boundary stresses on MHD flow in a convergent/divergent channel: An analytical and numerical study. Alexandria Engineering Journal, 61(6), 4479–4490. https://doi.org/10.1016/j.aej.2021.10.004

Dinarvand, S., Berrehal, H., Pop, I., & Chamkha, A. J. (2023). Blood-based hybrid nanofluid flow through converging/diverging channel with multiple slips effect: a development of Jeffery-Hamel problem. International Journal of Numerical Methods for Heat & Fluid Flow, 33(3), 1144–1160. https://doi.org/10.1108/hff-08-2022-0489

Nadeem, S., Akbar, N. S., Hayat, T., & Hendi, A. A. (2012). Influence of heat and mass transfer on Newtonian biomagnetic fluid of blood flow through a tapered porous arteries with a stenosis. Transport in Porous Media, 91(1), 81–100. https://doi.org/10.1007/s11242-011-9834-6

Chutia, M. (2018). Effect of variable thermal conductivity and the inclined magnetic field on MHD plane poiseuille flow in a Porous channel with non-uniform plate temperature. Journal of Computational & Applied Research in Mechanical Engineering (JCARME), 8(1), 75–84.

Jasim, A. M. (2022). Exploration of no-slip and slip of unsteady squeezing flow fluid through a derivatives series algorithm. Advanced Research in Fluid Mechanics and Thermal Sciences, 100(1), 11–29. https://doi.org/10.37934/arfmts.100.1.1129

Jasim, A. M. (2023). Study effect of MHD on squeezing flow of water-based Casson nanofluid in a porous medium between two parallel plates.THE SECOND INTERNATIONAL SCIENTIFIC CONFERENCE (SISC2021): College of Science, Al-Nahrain University.

Saqib, M., Khan, I., & Shafie, S. (2018). Natural convection channel flow of CMC-based CNTs nanofluid. European Physical Journal Plus, 133(12). https://doi.org/10.1140/epjp/i2018-12340-3

Saqib, M., Khan, I., & Shafie, S. (2019). Application of fractional differential equations to heat transfer in hybrid nanofluid: modeling and solution via integral transforms. Advances in Difference Equations, 2019(1). https://doi.org/10.1186/s13662-019-1988-5

Mebarek-Oudina, F. (2017). Numerical modeling of the hydrodynamic stability in vertical annulus with heat source of different lengths. Engineering Science and Technology an International Journal, 20(4), 1324–1333. https://doi.org/10.1016/j.jestch.2017.08.003.

Raza, J., Mebarek-Oudina, F., & Mahanthesh, B. (2019). Magnetohydrodynamic flow of nano Williamson fluid generated by stretching plate with multiple slips. Multidiscipline Modeling in Materials and Structures, 15(5), 871–894. https://doi.org/10.1108/mmms-11-2018-0183

Mahanthesh, B., Gireesha, B. J., Shashikumar, N. S., Hayat, T., & Alsaedi, A. (2018). Marangoni convection in Casson liquid flow due to an infinite disk with exponential space dependent heat source and cross-diffusion effects. Results in Physics, 9, 78–85. https://doi.org/10.1016/j.rinp.2018.02.020

Gireesha, B. J., Kumar, P. B. S., Mahanthesh, B., Shehzad, S. A., & Abbasi, F. M. (2018). Nonlinear gravitational and radiation aspects in nanoliquid with exponential space dependent heat source and variable viscosity. Microgravity Science and Technology, 30(3), 257–264. https://doi.org/10.1007/s12217-018-9594-9

Gudekote, M., Choudhari, R., Vaidya, H., & Prasad, K. V. (2018). Peristaltic flow of Herschel-Bulkley fluid in an elastic tube with slip at porous walls. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 52(1), 63–75.

Usman, M., Hamid, M., Khan, U., Mohyud Din, S. T., Iqbal, M. A., & Wang, W. (2018). Differential transform method for unsteady nanofluid flow and heat transfer. Alexandria Engineering Journal, 57(3), 1867–1875. https://doi.org/10.1016/j.aej.2017.03.052

Kundu, B., Das, R., & Lee, K.-S. (2015). Differential transform method for thermal analysis of exponential fins under sensible and latent heat transfer. Procedia Engineering, 127, 287–294. https://doi.org/10.1016/j.proeng.2015.11.370

Rasheed, M. A., & Kadhim, S. N. (2022). Numerical solutions of two-dimensional vorticity transport equation using Crank-Nicolson method. Baghdad Science Journal, 19(2), 0321. https://doi.org/10.21123/bsj.2022.19.2.0321

Noon, N. J. (2021). Numerical analysis of least-squares group finite element method for coupled Burgers’ problem. Baghdad Science Journal, 18(4(Suppl.)), 1521. https://doi.org/10.21123/bsj.2021.18.4(suppl.).1521

Ali, W. S., & Ali, H. S. (2022). Numerical solution for linear state space systems using Haar wavelets method. Baghdad Science Journal, 19(1), 0084. https://doi.org/10.21123/bsj.2022.19.1.0084

Sepasgozar, S., Faraji, M., & Valipour, P. (2017). Application of differential transformation method (DTM) for heat and mass transfer in a porous channel. Propulsion and Power Research, 6(1), 41–48. https://doi.org/10.1016/j.jppr.2017.01.001

Patel, N. D., & Meher, R. (2017). Differential transform method for solving for fingero-imbibition phenomena arising in double phase flow through homogeneous porous media. Mathematical Sciences, IMRF Journals, 6(1), 1–5.

Stern, R. H., & Rasmussen, H. (1996). Left ventricular ejection: Model solution by collocation, an approximate analytical method. Computers in Biology and Medicine, 26(3), 255–261. https://doi.org/10.1016/0010-4825(96)00007-8

Nabati, M., Salehi, G., & Taherifar, S. (2023). Numerical solution for a porous fin thermal performance problem by application of Sinc collocation method. Mathematical Methods in the Applied Sciences, 46(10), 11373–11391. https://doi.org/10.1002/mma.7740

Vaferi, B., Salimi, V., Dehghan Baniani, D., Jahanmiri, A., & Khedri, S. (2012). Prediction of transient pressure response in the petroleum reservoirs using orthogonal collocation. Journal of Petroleum Science & Engineering, 98–99, 156–163. https://doi.org/10.1016/j.petrol.2012.04.023

Biswal, U., Chakraverty, S., Ojha, B. K., & Hussein, A. K. (2021). Numerical simulation of magnetohydrodynamics nanofluid flow in a semi-porous channel with a new approach in the least square method. International Communications in Heat and Mass Transfer, 121(105085), 105085. https://doi.org/10.1016/j.icheatmasstransfer.2020.105085

Shaoqin, G., & Huoyuan, D. (2008). Negative norm least-squares methods for the incompressible magnetohydrodynamic equations. Acta Mathematica Scientia. Series B. English Edition, 28(3), 675–684. https://doi.org/10.1016/s0252-9602(08)60069-7

Abbaszadeh, M., Dehghan, M., Khodadadian, A., Noii, N., Heitzinger, C., & Wick, T. (2021). A reduced-order variational multiscale interpolating element free Galerkin technique based on proper orthogonal decomposition for solving Navier–Stokes equations coupled with a heat transfer equation: Nonstationary incompressible Boussinesq equations. Journal of Computational Physics, 426(109875), 109875. https://doi.org/10.1016/j.jcp.2020.109875

Hendi, F. A., & Albugami, A. M. (2010). Numerical solution for Fredholm–Volterra integral equation of the second kind by using collocation and Galerkin methods. Journal of King Saud University. Science, 22(1), 37–40. https://doi.org/10.1016/j.jksus.2009.12.006

Liberty, E., & Miracle, G. (2020). The Comparison of Weighted Residual Methods of Solving Boundary Value Problems in Science and Engineering. African Scholars Journal of Pure and Applied Science (JPAS-9), 18(9), 19–32.

Zhou, J. X., Li, M. E., Zhang, Z. Q., Zou, W., & Zhang, L. (2007). A subdomain collocation method based on Voronoi domain partition and reproducing kernel approximation. Computer Methods in Applied Mechanics and Engineering, 196(13–16), 1958–1967. https://doi.org/10.1016/j.cma.2006.10.011

Rashidi, M. M., Muhammad, A., Behnam, R., Mohammad, T. R., & Sumra, B. (2016). Mixed convection boundary layer flow of a micro polar fluid towards a heated shrinking sheet by homotopy analysis method. Thermal Science, 20, 21–34.

Salim, H., Fateh, M., & Mohamed, R. S. (2019). Analysis of MHD Jeffery Hamel flow with suction-injection by homotopy analysis method. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 58(2), 173–186.

Meher, R., & Patel, N. D. (2019). Analytical Investigation of MHD Jeffery–Hamel flow problem with heat transfer by differential transform method. SN Applied Sciences, 1(7). https://doi.org/10.1007/s42452-019-0632-z.

Patel, N. D., & Ramakanta, M. (2018). Analytical investigation of Jeffery-Hemal flow with magnetic field by differential transform method. Int. J. Adv. Appl. Math, 6(1), 1–9.

Downloads

Published

2024-06-30

Issue

Section

Mathematics

How to Cite

Rasheed, A., & Majeed Jasim, A. . (2024). Study the Effect of Suction-Injection parameters Numerically and Analytically for Magneto hydrodynamic Jeffery Hamel Fluid Flow Problem. Wasit Journal for Pure Sciences , 3(2), 47-61. https://doi.org/10.31185/wjps.359