Hepatoxicity Induced from Exposure of Male Rats to Low Doses of Tributyltin Chloride
DOI:
https://doi.org/10.31185/wjps.321Abstract
Tributyltin (TBT) is a contaminant found all over the world. It is a member of the organotin class, which includes several widely disseminated, very hazardous compounds that have been linked to endocrine disruption. Consumption of TBT-contaminated seafood and drinking water are the most common routes of exposure among the susceptible population to man at low doses. The main goal of this study is to recognize the hepatotoxicity of low doses of TBT chloride (10-2000 µg/Kg body weight) in male rats for 45 days. TBT significantly induce hepatic impairment of antioxidant systems, oxidative stress, lipid peroxidation, and histological abnormalities in the liver architecture. In conclusion: the TBT at low doses could induce hepatotoxicity at low levels due to its lipophilic properties and the ability for accumulation in tissues.
References
Barbosa, C. M. D. L., Ferrão, F. M., & Graceli, J. B. (2018). Organotin compounds toxicity: focus on kidney. Frontiers in endocrinology, 9, 256.
Santos-Silva, A. P., Andrade, M. N., Pereira-Rodrigues, P., Paiva-Melo, F. D., Soares, P., Graceli, J. B., & Miranda-Alves, L. (2018). Frontiers in endocrine disruption: Impacts of organotin on the hypothalamus-pituitary-thyroid axis. Molecular and cellular endocrinology, 460, 246-257.
Dogan, A., Arihan, O., Erkec, O. E., & Celik, I. (2017). Protective effects of omega-3 against acute tributyltin toxicity in rats. Fresenius Environmental Bulletin, 26(4), 3067-3076.
Nakanishi, T. (2007). Potential toxicity of organotin compounds via nuclear receptor signaling in mammals. Journal of Health Science, 53(1), 1-9.
Li, Z. H., & Li, P. (2021). Effects of the tributyltin on the blood parameters, immune responses and thyroid hormone system in zebrafish. Environmental Pollution, 268, 115707.
Grün, F., & Blumberg, B. (2007). Perturbed nuclear receptor signaling by environmental obesogens as emerging factors in the obesity crisis. Reviews in Endocrine and Metabolic Disorders, 8(2), 161-171.
Casas-Grajales, S., & Muriel, P. (2015). Antioxidants in liver health. World journal of gastrointestinal pharmacology and therapeutics, 6(3), 59.
Kubes, P., & Jenne, C. (2018). Immune responses in the liver. Annual Review of Immunology, 36, 244-247.
European Food Safety Authority (EFSA). (2004). Opinion of the Scientific Panel on contaminants in the food chain [CONTAM] to assess the health risks to consumers associated with exposure to organotins in foodstuffs. EFSA Journal, 2(10), 102.
Rosen, E. D., Walkey, C. J., Puigserver, P., & Spiegelman, B. M. (2000). Transcriptional regulation of adipogenesis. Genes & development, 14(11), 1293-1307.
Burtis, C. A., & Bruns, D. E. (2015). Tietz Textbook of Clinical Chemistry and Molecular Diagnostics (7th ed). St Louis: Elsevier Saunders Company.
Omura, T., & Sato, R. (1964). The carbon monoxide-binding pigment of liver microsomes I. Evidence for its hemoprotein nature. Journal of Biological Chemistry, 239(7), 2370-2378.
Ellman, M. (1959). A spectrophotometric method for determination of reduced glutathione in tissues. Analytical biochemistry, 74, 214–226.
Paglia, D. E., & Valentine, W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. The Journal of Laboratory and Clinical Medicine, 70(1), 158–169.
Goldberg, D. M., & Spooner, R. J. (1983). Methods of enzymatic analysis. Bergmeyer HV, 3, 258-265.
Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. Journal of biological Chemistry, 249(22), 7130-7139.
Nishikimi, M., Rao, N. A., & Yagi, K. (1972). The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochemical and Biophysical Research Communications, 46(2), 849–854.
Sinha, A. K. (1972). Colorimetric assay of catalase. Analytical Biochemistry, 47(2), 389–394.
Norušis, M. J. (2006). SPSS 14.0 guide to data analysis. Upper Saddle River, NJ: Prentice Hall.
Krajnc, E.I., Wester, P.W., Loeber, J.G., van Leeuwen, F.X., Vos, J.G., Vaessen, H.A., & van der Heijden, C.A. (1984). Toxicity of bis(tri-n-butyltin) oxide in the rat. I. Shortterm effects on general parameters and on the endocrine and lymphoid systems. Toxicology and applied pharmacology, 75(3), 363-386.
Mushak, P., Krigman, M. R., & Mailman, R. B. (1982). Comparative organotin toxicity in the developing rat: somatic and morphological changes and relationship to accumulation of total tin. Neurobehavioral toxicology and teratology, 4(2), 209-215.
Cooke, G. M. (2004). Oral (gavage), in utero and postnatal exposure of Sprague-Dawley rats to low doses of tributyltin chloride. Part I: Toxicology, histopathology and clinical chemistry. Food and chemical toxicology, 42, 217-226.
Zhu, R., Wang, Y., Zhang, L., & Guo, Q. (2012). Oxidative stress and liver disease. Hepatology Research, 42(8), 741-749
Grote, K., Stahlschmidt, B., Talsness, C. E., Gericke, C., Appel, K. E., & Chahoud, I. (2004). Effects of organotin compounds on pubertal male rats. Toxicology, 202(3), 145-158.
Mitra, S., Gera, R., Singh, V., & Khandelwal, S. (2014). Comparative toxicity of low dose tributyltin chloride on serum, liver, lung and kidney following subchronic exposure. Food and chemical toxicology, 64, 335-343.
Cooke, G. M., Forsyth, D. S., Bondy, G. S., Tachon, R., Tague, B., & Coady, L. (2008). Organotin speciation and tissue distribution in rat dams, fetuses, and neonates following oral administration of tributyltin chloride. Journal of Toxicology and Environmental Health, Part A, 71(6), 384-395.
Grun, F., Watanabe, H., Zamanian, Z., Maeda, L., Arima, K., Cubacha, R. & Blumberg, B. (2006). Endocrine-disrupting organotin compounds are potent inducers of adipogenesis in vertebrates. Molecular endocrinology, 20(9), 2141-2155.
Ueno, S., Kashimoto, T., Susa, N., Shiota, Y., Okuda, M., Mutoh, K. I. & Sugiyama, M. (2003). Effects of butyltin compounds on mitochondrial respiration and its relation to hepatotoxicity in mice and guinea pigs. Toxicological Sciences, 75(1), 201-207.
Gingold, J. L., & DiPasquale, G. (1976). Serum amylase in rats following the administration of endotoxin. Toxicology and Applied Pharmacology, 36(3), 603-606.
Kanimozhi, V., Palanivel, K., Akbarsha, M. A., & Kadalmani, B. (2016). Tributyltin-mediated hepatic, renal and testicular tissue damage in male Syrian hamster (Mesocricetus auratus): a study on impact of oxidative stress. Springerplus, 5(1), 1-11.
Koh, P. H., Mokhtar, R. A. M., & Iqbal, M. (2012). Antioxidant potential of Cymbopogon citratus extract: alleviation of carbon tetrachloride-induced hepatic oxidative stress and toxicity. Human & experimental toxicology, 31(1), 81-91.
Muraca, M., Fevery, J., & Blanckaert, N. (1987). Relationships between serum bilirubins and production and conjugation of bilirubin: Studies in Gilbert's syndrome, Crigler-Najjar disease, hemolytic disorders, and rat models. Gastroenterology, 92(2), 309-317.
Bigoniya, P., Singh, C. S., & Shukla, A. (2009). A comprehensive review of different liver toxicants used in experimental pharmacology. International Journal of Pharmaceutical Sciences and Drug Research, 1(3), 124-135.
Ishikawa, T. O., Griffin, K. J., Banerjee, U., & Herschman, H. R. (2007). The zebrafish genome contains two inducible, functional cyclooxygenase-2 genes. Biochemical and biophysical research communications, 352(1), 181-187.
Grondin, M., Marion, M., Denizeau, F., & Averill-Bates, D. A. (2007). Tributyltin induces apoptotic signaling in hepatocytes through pathways involving the endoplasmic reticulum and mitochondria. Toxicology and applied pharmacology, 222(1), 57-68.
Dorneles, P. R., Lailson-Brito, J., Fernandez, M. A., Vidal, L. G., Barbosa, L. A., Azevedo, A. F. & Malm, O. (2008). Evaluation of cetacean exposure to organotin compounds in Brazilian waters through hepatic total tin concentrations. Environmental Pollution, 156(3), 1268-1276.
Antizar-Ladislao, B. (2008). Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. A review. Environment international, 34(2), 292-308.
Shim, W. J. (2000). A study on the environmental chemistry and toxicology of organotins in the marine environment of Korea. (Ph. D thesis). Seoul National University.
Shim, W. J., Jeon, J. K., Hong, S. H., Kim, N. S., Yim, U. H., Oh, J. R., & Shin, Y. B. (2003). Accumulation of tributyltin in olive flounder, Paralichthys olivaceus: its effect on hepatic cytochrome P450. Archives of environmental contamination and Toxicology, 44(3), 0390-0397.
Mortensen, A. S., & Arukwe, A. (2007). Modulation of xenobiotic biotransformation system and hormonal responses in Atlantic salmon (Salmo salar) after exposure to tributyltin (TBT). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 145(3), 431-441.
Li, Z. H., Zhong, L. Q., Mu, W. N., & Wu, Y. H. (2016). Effects of chronic exposure to tributyltin on tissue-specific cytochrome P450 1 regulation in juvenile common carp. Xenobiotica, 46(6), 511-515.
Li, Z. H., Zlabek, V., Velisek, J., Grabic, R., Machova, J., Kolarova, J. & Randak, T. (2011). Acute toxicity of carbamazepine to juvenile rainbow trout (Oncorhynchus mykiss): effects on antioxidant responses, hematological parameters and hepatic EROD. Ecotoxicology and environmental safety, 74(3), 319-327.
Berntssen, M. H., Aatland, A., & Handy, R. D. (2003). Chronic dietary mercury exposure causes oxidative stress, brain lesions, and altered behaviour in Atlantic salmon (Salmo salar) parr. Aquatic toxicology, 65(1), 55-72.
Yildirim, Z., & Kilic, N. (2011). Effects of taurine and age on cerebellum antioxidant status and oxidative stress. International Journal of Gerontology, 5(3), 166-170.
Pokorny, J. (1987). Major factors affecting the autoxidation of lipids. Autoxidation of unsaturated lipids, 141-206.
Zhang, J., Zuo, Z., Wang, Y., Yu, A., Chen, Y., & Wang, C. (2011). Tributyltin chloride results in dorsal curvature in embryo development of Sebastiscus marmoratus via apoptosis pathway. Chemosphere, 82(3), 437-442.
Maria, V. L., Ahmad, I., Oliveira, M., Serafim, A., Bebianno, M. J., Pacheco, M., & Santos, M. A. (2009). Wild juvenile Dicentrarchus labrax L. liver antioxidant and damage responses at Aveiro Lagoon, Portugal. Ecotoxicology and Environmental Safety, 72(7), 1861-1870.
Mitra, S., Srivastava, A., & Khandelwal, S. (2013). Tributyltin chloride induced testicular toxicity by JNK and p38 activation, redox imbalance and cell death in sertoli-germ cell co-culture. Toxicology, 314(1), 39-50.
Jia, X., Zhang, Z., Wang, S., Lin, P., Zou, Z., Huang, B., & Wang, Y. (2009). Effects of tributyltin (TBT) on enzyme activity and oxidative stress in hepatopancreas and hemolymph of small abalone, Haliotis diversicolor supertexta. Chinese Journal of Oceanology and Limnology, 27(4), 816-824.
Wang, C., Zhao, Y., Zheng, R., Ding, X., Wei, W., Zuo, Z., & Chen, Y. (2006). Effects of tributyltin, benzo [a] pyrene, and their mixture on antioxidant defense systems in Sebastiscus marmoratus. Ecotoxicology and environmental safety, 65(3), 381-387.
Kanayama, T., Kobayashi, N., Mamiya, S., Nakanishi, T., & Nishikawa, J. I. (2005). Organotin compounds promote adipocyte differentiation as agonists of the peroxisome proliferator-activated receptor γ/retinoid X receptor pathway. Molecular pharmacology, 67(3), 766-774.
Sykiotis, G. P., & Bohmann, D. (2008). Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila. Developmental cell, 14(1), 76-85.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Sura Alkadhimy, Mokhtar I. Yousef
This work is licensed under a Creative Commons Attribution 4.0 International License.