Neurotoxicity and Oxidative Damage Induced from Exposure of Male Rats to Low doses of the Synthetic Environmental Contaminant Tributyltin
DOI:
https://doi.org/10.31185/wjps.320Abstract
Tributyltin chloride (TBT) is an organotin compound widely used in several high biocides for agro-industrial applications, such as fungicides, and marine antifouling paints leading to endocrine disrupting actions, such as imposex development in mollusks. The current study investigates DNA damage, changes in brain drug-metabolizing enzymes, lipid profile, and oxidative damage of TBT at low doses 10, 100, 250, 500, 1000, and 2000 μg/kg B.W. in male rats. The animals were divided into eight equal groups which treated daily by oral gavage for 45 days. Administration of TBT induced a dose-dependent increase in the DNA damage and TBARS. Also, it decreases the expression of the regulator of the antioxidant response (the levels of glutathione and the activities of GR, GPX, CAT, and SOD). TBT did not show any significant effect of brain drug-metabolizing enzymes (cytochrome b5 and cytochrome p450). TBT at 250, 500, 1000, and 2000 μg/kg B.W. showed significant increase in lipid profile (total cholesterol, triglyceride, and LDL), but HDL showed significant decrease. In conclusion, the obtained results provide evidence that exposure to TBT at low doses causes oxidative stress, DNA damage, and changes in biochemical parameters in a dose dependent manner.
References
Ghazi, D., Rasheed, Z., & Yousif, E. (2018). Review of organotin compounds: chemistry and applications. development, 3, 4.
Antizar-Ladislao, B. (2008). Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. A review. Environment international, 34(2), 292-308.
Podratz, P. L., Merlo, E., de Araújo, J. F., Ayub, J. G., Pereira, A. F., Freitas-Lima, L. C., ... & Graceli, J. B. (2020). Disruption of fertility, placenta, pregnancy outcome, and multigenerational inheritance of hepatic steatosis by organotin exposure from contaminated seafood in rats. Science of the Total Environment, 723, 138000.
California Food and Agricultural, 2021. Sections 14005, 14006, and 14151, California Food and Agricultural Code (CCCSD FACT SHEET ON TRIBUTYLTIN, https://www.centralsan.org/sites/main/files/fileattachments/bmp_fact_sheet_on_tributylin.pdf?1511394649. Coated 6 pm, 27 July, 2021).
Tu, X., Li, Y. W., Chen, Q. L., Shen, Y. J., & Liu, Z. H. (2020). Tributyltin enhanced anxiety of adult male zebrafish through elevating cortisol level and disruption in serotonin, dopamine and gamma-aminobutyric acid neurotransmitter pathways. Ecotoxicology and Environmental Safety, 203, 111014.
Mitra, S., Gera, R., Singh, V., & Khandelwal, S. (2014). Comparative toxicity of low dose tributyltin chloride on serum, liver, lung and kidney following subchronic exposure. Food and chemical toxicology, 64, 335-343.
Von Ballmoos, C., Brunner, J., & Dimroth, P. (2004). The ion channel of F-ATP synthase is the target of toxic organotin compounds. Proceedings of the National Academy of Sciences, 101(31), 11239-11244.
Batista-Andrade, J. A., Caldas, S. S., Batista, R. M., Castro, I. B., Fillmann, G., & Primel, E. G. (2018). From TBT to booster biocides: levels and impacts of antifouling along coastal areas of Panama. Environmental pollution, 234, 243-252.
Mitra, S., Siddiqui, W. A., & Khandelwal, S. (2015). Differential susceptibility of brain regions to tributyltin chloride toxicity. Environmental Toxicology, 30(12), 1393-1405.
Hossen, M. S., Ali, M. Y., Jahurul, M. H. A., Abdel-Daim, M. M., Gan, S. H., & Khalil, M. I. (2017). Beneficial roles of honey polyphenols against some human degenerative diseases: a review. Pharmacological Reports, 69(6), 1194-1205.
Goldberg, D. M., & Spooner, R. J. (1983). Methods of enzymatic analysis. Bergmeyer HV, 3, p258-265.
Ellman, M. (1959). A spectrophotometric method for determination of reduced glutathione in tissues. Analyt Biochem, 74, 214–226.
Wu, B., Ootani, A., Iwakiri, R., Sakata, Y., Fujise, T., Amemori, S., & Fujimoto, K. (2006). T cell deficiency leads to liver carcinogenesis in Azoxymethane-treated rats. Experimental Biology and Medicine, 231(1), 91-98.
Omura, T., & Sato, R. (1964). The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J biol Chem, 239(7), 2370-2378.
Bruns, D. E., Burtis, C. A., Gronowski, A. M., McQueen, M. J., Newman, A., Jonsson, J. J., & on Ethics, I. T. F. (2015). Variability of ethics education in laboratory medicine training programs: Results of an international survey. Clinica Chimica Acta, 442, 115-118.
Norušis, M. J. (2006). SPSS 14.0 guide to data analysis. Upper Saddle River, NJ: prentice hall.
He, K., Zhang, J., & Chen, Z. (2014). Effect of tributyltin on the food intake and brain neuropeptide expression in rats. Endokrynologia Polska, 65(6), 485-490.
Inadera, H., & Shimomura, A. (2005). Environmental chemical tributyltin augments adipocyte differentiation. Toxicology letters, 159(3), 226-234.
Ishihara, Y., Shiba, D., & Shimamoto, N. (2006). Enhancement of DMNQ-induced hepatocyte toxicity by cytochrome P450 inhibition. Toxicology and applied pharmacology, 214(2), 109-117.
Kulbay, Benabdoun, H. A., M., Rondon, E. P., Vallières, F., Shi, Q., Fernandes, J., ... & Benderdour, M. (2019). In vitro and in vivo assessment of the proresolutive and antiresorptive actions of resolvin D1: relevance to arthritis. Arthritis Research & Therapy, 21(1), 1-14.
Reader, S., Moutardier, V., & Denizeau, F. (1999). Tributyltin triggers apoptosis in trout hepatocytes: the role of Ca2+, protein kinase C and proteases. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1448(3), 473-485.
Feissner, R. F., Skalska, J., Gaum, W. E., & Sheu, S. S. (2009). Crosstalk signaling between mitochondrial Ca2+ and ROS. Frontiers in bioscience: a journal and virtual library, 14, 1197-1218.
Ishihara, Y., Kawami, T., Ishida, A., & Yamazaki, T. (2012). Tributyltin induces oxidative stress and neuronal injury by inhibiting glutathione S-transferase in rat organotypic hippocampal slice cultures. Neurochemistry international, 60(8), 782-790.
Milaeva, E. R. (2006). The role of radical reactions in organomercurials impact on lipid peroxidation. Journal of inorganic biochemistry, 100(5-6), 905-915.
Mitra, S., Posarac, A., & Vick, B. (2013). Disability and poverty in developing countries: a multidimensional study. World Development, 41, 1-18.
Fortier, L. A., Potter, H. G., Rickey, E. J., Schnabel, L. V., Foo, L. F., Chong, L. R., ... & Nixon, A. J. (2010). Concentrated bone marrow aspirate improves full-thickness cartilage repair compared with microfracture in the equine model. JBJS, 92(10), 1927-1937.
Magara, G., Elia, A. C., Dörr, A. J. M., Abete, M. C., Brizio, P., Caldaroni, B.,... & Prearo, M. (2021). Metal load and oxidative stress driven by organotin compounds on rainbow trout. Environmental Science and Pollution Research, 28(26), 35012-35022
Zhang, C. N., Zhang, J. L., Ren, H. T., Zhou, B. H., Wu, Q. J., & Sun, P. (2017). Effect of tributyltin on antioxidant ability and immune responses of zebrafish (Danio rerio). Ecotoxicology and environmental safety, 138, 1-8.
Jenkins, S. M., Ehman, K., & Barone Jr, S. (2004). Structure–activity comparison of organotin species: dibutyltin is a developmental neurotoxicant in vitro and in vivo. Developmental Brain Research, 151(1-2), 1-12.
Saifi, M. A., Khan, W., & Godugu, C. (2018). Cytotoxicity of nanomaterials: Using nanotoxicology to address the safety concerns of nanoparticles. Pharmaceutical nanotechnology, 6(1), 3-16.
Mortensen, A. S., & Arukwe, A. (2007). Modulation of xenobiotic biotransformation system and hormonal responses in Atlantic salmon (Salmo salar) after exposure to tributyltin (TBT). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 145(3), 431-441.
Li, Q., Verma, I.M., (2013). NF-κB regulation in the immune system. Nat. Rev. Immunol. 2, 725–734. https://doi.org/10.1038/nri910
Whyte, J. J., Jung, R. E., Schmitt, C. J., & Tillitt, D. E. (2000). Ethoxyresorufin-O-deethylase (EROD) activity in fish as a biomarker of chemical exposure. Critical reviews in toxicology, 30(4), 347-570.
Li, P., & Li, Z. H. (2021). Neurotoxicity and physiological stress in brain of zebrafish chronically exposed to tributyltin. Journal of Toxicology and Environmental Health, Part A, 84(1), 20-30.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Sura Alkadhimy, Mokhtar I. Yousef

This work is licensed under a Creative Commons Attribution 4.0 International License.