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ABSTRACT: This research examines the finite-time stability of a specific category of neural networks with fractional
order. Using modified Gronwall inequality and estimations of Mittag—Leffler functions, we provide adequate
requirements to guarantee the finite-time stability of neural models with Caputo fractional derivatives.

In addition, we have also established insights about the asymptotic stability of fractional-order neural models ,this
research examines the Finite-time stability of a specific fractional-order neural network using the "generalized
Grunwald inequality”. This study introduces the concept of finite-time stability for neural models with fractional
derivatives. By utilizing the generalized Gronwall inequality and estimates of Mittag-Leffler functions, sufficient
conditions are derived to guarantee the finite-time stability of these models.

The study also establishes results regarding the asymptotical stability of fractional-order neural models,our results
suggest that our conclusions are more precise than the current literature on stability requirements, and we provide
examples demonstrating the proposed theory's significance

Keywords: neural networks, fractional-order, finite-time stability, Gronwall inequality

1. INTRODUCTION

Between Leibniz and L'Hospital in 1695, which became an extension of the conventional integer order differentiation
and integral analysis. Given the complexity and lack of application background, it drew very little interest. It has recently
been shown to be a valuable tool for modeling various engineering, physics, and economics phenomena, including heat
conduction, viscoelastic systems, electromagnetic waves, dielectric polarization, biology, and finance[1],[2],[3].
Researchers from various fields are getting increasingly involved, and it is becoming one of the main topics. The
fractional-order derivative is an effective instrument for analyzing memory and heredity. Artificial neural networks have
employed fractional calculus in recent years because of its limitless memory. This ability to compute may support
effective information processing, stimulus anticipation, and frequency-independent rhythmic neural firing phase changes.
The oculomotor integrator, which translates eye velocity into eye position instructions, may be of fractional order,
according to a proposal in Ref [4] .

It proved that higher levels of approximation were obtained when neural network approximation was performed at the
fractional level[5]. Furthermore, fractional-order recurrent neural networks are important in parameter estimation.
Therefore, studying fractional-order neural networks is essential, and adding memory terms (a fractional derivative or
integral operator) to neural network models is an important step forward.
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It is generally accepted that the dynamical characteristics of neural models, such as asymptotic and Lyapunov stability,
are critical to applications in the real world. Neural network stability thus became one of the most researched topics and
has been thoroughly examined. Several stability discoveries have been made in the last decades for integer-order neural
networks; see Refs for a list of these studies.[6],[7],[8] and the references therein. Several essential and wondrous
discoveries about the stability of fractional-order artificial neural networks have recently been made. For instance, Ref.
[9] examined the stability and multi-stability, bifurcations, and chaos of fractional-order neural networks of the Hopfield

type.

The topic of stability behaviors in noninteger-order cellular neural networks was covered. An energy-like function
was used [10] to look at the stability of a suggested fractional-order Caputa Hadmmard neural model

CHD&Hx(£) = Ay (£) — Cx(t) + A (D) (F (R’;D;’"”x(t))> + B, () (G (FEDF (e — r))) +BOu®  eqor]

(P(t) = ,t € [—T, 0]
(€Y)

Where ¢D* denotes the Caputo —Hadmmard Fractional Derivatives of order @, u > 0 FXD* denotes the Riemann—
Katugampola derivative of order C be aconstant, @ > 0 ,u > 0and A,(.),A,(.),B;(.),B,(.)and x(.) € R™" fort €
[0, T], where 0 < a < b < oo, *Ep™H denotes the Riemann-Hadamard Fractional derivative of order 0 < a < 1,u
be a positive value . F(.,.,.):R™ = R™ ,G(.,.,.):R™ = R", B, ., is a control matrix and u(t): [0, T] — R™ is a control
function. Finely the function x(t) is a nonlocal function defined on [—, 0], T € (—o0, 0).

Numerical simulations were used to examine the intricate dynamical characteristics of a proposed fractional-order
four-cell cellular neural network [11]. -stability and -synchronization for fractional-order neural networks were studied
by Yuetal. in [12] .

Once the initial states of a neural network complete a particular limitation and the states do not exceed a specific limit
within predetermined time intervals, the network is said to be finite-time stable. Real neural networks always function
across limited time intervals, compared to the infinite periods required by classical Lyapunov stability notions .

In addition, the asymptotic behavior is the primary goal of traditional Lyapunov stability. In reality, applications often
require keeping the states inside a set of parameters for some time.

In some cases, the system's finite-time behavior is of greater importance than its asymptotic behavior. Thus, finite-
time stability was introduced, addressing systems with predetermined boundaries and limited time intervals [13], since
then, much research has been done on limited spatial stability; see, for instance, Refs.[14],[15],[16] .

The paper offered sufficient criteria for the finite-time stability of linear fractional-order systems. This research
examines the finite-time stability of cellular neural networks with fractional order. The finite-time stability is
demonstrated by using the generalized Gronwall inequality and using estimations of Mittag-Leffler functions. In addition,
conclusions about the asymptotic stability are also found,the main achievement of this study is the development of test
criteria for determining the finite-time stability of fractional networks. These conditions will be valuable in guiding the
development and execution of fractional networks .

Based on our extensive research, there is a need for more information on this particular matter. A significant number
of studies are being conducted on the dynamic behaviors of complex networks. Includes studies referenced in

The remaining content is organized in the following manner. Section 2 presents essential concepts and lemmas and
provides the fractional-order neural networks. The necessary conditions for guaranteeing the stability of the model within

a limited duration are derived in Section 3. A specific numerical illustration is provided in Section 4. in Section 5, we
have conclusion of the paper.

2. PRELIMINARIES

This section talks through certain definitions and lemmas relating to fractional calculus.

2.1 Definition , [17]
Let a >0,u>0, x€ L*([a,b]),R), 0 <a<b <o .The left and right Riemann—Katugampola fractional
derivatives (R-K FDs) of order « is defined by
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0{

RKD@Hy(t) = e )( 1= Mdt)f (tﬂ — x(1) dr

a,
REDx (1) = m( Bony [ W
2.2 Definition,[18]
Let a>0,u>0, x € L'([a,b]),R), 0<a<b <o .The left and right Riemann—Katugampola fractional
integrals (R-KFIs) of order « is defined by

1 ¢ t“—‘r” a-1
RKD_a.M t) = f )
De A @k

RK~—Q,UL b (Th-t#H a-1
D x(t) F(a) ( )

u
2.3 Definition, [17]

Leta € (0,1),u > 0,[a,b] €R,0 < a < b < oo, The left and right Caputo —Katugampola fractional derivatives
(C—KFDs) are defined respectively by

: u _, d t Tt
clgpf‘#x(t) = m(tl ua) fam (x(7) — x(b)) dr,

a, _ . d b u-1
KD x(t) = r(1u—a) (¢t #Z) ft (r:—tﬂ)“ (x(t) — x(b)) dr.
2.4 Definition,[19]
Let @ > 0 be a real number with n = [a] + 1. The left and right RH-FDs of order @ > 0 defined by

: a\" n—-a-1 )
RHD@Hy (1) = — (tz) fat (logf) %d‘[ T>a

r(n-a)
) d\" b n-a-1 (@
RHD@Hy () = — (—t—) S, (log%) %d‘r T<b

r(n-a) dt
RH pit A RH it (. a\" _
oD Tx(t) = t— x(t) and *yD, " x(t) = t— x(t) wherea = n
2.5 Definition,[19]:
Let a, b be two real
numbers with 0 < a < b. The left and right RH-FIs of order @ > 0 for function f: [a, b] = R is defined by

a-1
RED “Hx(t) = ﬁ t(logf) X(T) dt t>a

a—1
RED " x(t) = r( 5 J: b(logﬁ) %T)d‘r T<b

2.6 Definition,[19]:
Let @ > 0 be a real number with n = [a] + 1. The left and right CH-FDs of order « > 0 defined by

: a\" nmeml x@-x(a)
CHD®x(t) = — (tE) f; (log%) %dr T>a

rn-a)
: 1 d\™" b n-a-1 )—
B x(t) = (—t—) J; (logi) wm' T<b

r(n-a) dt
D () = (£2)" x(8) and D x(t) = (—t2) " x(t) where a = n
2.7 Definition ,[19]:
Let a, b be two real numbers with 0 < a < b. The left and right CH-FIs of order a > 0 for function f: [a, b] = R
is defined by

CHp-, 1t O x(@®-x(a)
HIR (t)_r( 5Ja (logT) . dt 1>a

CH =1 __1 b O* 1 x@)-x(a)
»Dp " x(t) @ (log T) — dt  1<b
2.1 Lemma ,[20]:

Leta > 0, g,(t) and g,(t) are nonnegative, nondecreasing function locally integrable on [0, T) (some T < +),
g(t) < M, and suppose that x(t) is nonnegative and locally integrable on [0, T) with

x(t) < g:1(1) + g2()aDy “x()
on thisinterval. Then x(t) < g,(t)E,(g,(O)t%), t € [0,T),

where E, is the Mittag-Leffler function defined by E,(v) =

2.2 Lemma, [20]:
Assume 0 < g, < g,,0a € (0,1].Theng; *— g, * < (91 — 9°

x(r) drt.

o vt
2E-07Czarn

3.PROPLEM FORMULATION FOR PROPOSAL SYSTEM

In this section, we look at the existence, uniqueness and stability theorems for -order nonlinear differential
equations.
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3.3 Lemma
The relation between Caputo—Hadmmard fractional integrals and Caputo—Hadmmard fractional derivatives have
the following formulation

<D,k (CADFF () = £
Proof
By definition (2.6 ) and (2.7)

<UDy (CADFF(6)) = CADPH(F (D) = F(&) or
1oy (4105 r0) = 0t (og2)” ™ G (12) £ (o82) * 22y

T T

CHp=~ tl#(CHDa#f(t)) ;ft (logf)a_l ((t d) fa (log >_a "(T);—xw)dr) drt

r(i-a)r(a)’a T dt

o (torere) - (5) [ (osd) "

f’;D;“'“ (4DfF(©)) = x(2)
3.4 Lemma, [21][6]:
Let f be a continuous function on a rectangle R = [a, b] x [c,d], then [ [ f(x,y)d(x,y) have the following

LU feydyyde= [ £ y)dxdy.

3.5 Lemma
Leta > 0,8 > 0,1<p<o0<a<b<oandletue Randc €R be such that u > c. Then for x €
X? (a,b) .Then CHp;“#(CHp Fix) = cHp—=Fhy ()
Proof:
By using definition (2.6),(2.7), we have that
B 1 x(s) — X(a) )X(t) —x(a) 4

CI;Dt—O(,Il(CI;IDt_B'“X(T)) = e )I‘(B)j log <j . -

Now we have that,

CHpy “*(CD; Px (1)) =—F(a)1F(B) fa t < f t (logf)a_l (log )B 1 X—(S);X(a) )Tdt

. ) 1 t a+B-2 ( ) — ( )
€4 (9D () = rearE f <f “’g) — )¥dr

) . 1 "‘*“ Fx@—x@
¢y (07 x() = @+ B-DI@I®) J, <l°g A

a+B 1
c‘th‘aru(cgpt—B,ux(r)) = ml ( 10 t x(r)rix(a)>dT

CHp;“Phy(r)

3.6Lemma,[22]: [17]
If f(t) € C"[0,4+w]andn—1<a<nez",
L REDFM(REDC (D) = £(©)
: _ : 1 f (@) -
2. CEDIF(R) = REDIMF(O) — s (¢ = at) ™
3.
3.7 Lemma

The relation between Caputo—Hadmmard fractional integrals and Caputo—Hadmmard fractional derivatives have
the following formulation

cup; “* (CADFHF(©) = £
Proof
By definitions (2.6) (2.7) we have get

CH p -k (CHDa,uf(t)) — CHDO.u(f(t)) = f(t) or
oo (40241 0) = 2 8) i (1) £ (o) 2

r(a) T r(i-a)
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G0 (Capr©) = Fmwre e t(logf)a_l (G (logg_a H S dn
ew; e (“4oer ) = [ (1g2) " ((e57) [ (o82) " *ate)a
oy (wor10) = [ (1) [ (o) =)

CHD au(cHD“#f(t)) (:t) J-t(log;)_l txl(-‘r) dt

“Up; " (4D F () = (@)
3.8 Lemma

A nonnegative function locally integrable v(t) on 0 <t<T (someT < +o00) and g(t) is a nonnegative,
nondecreasing continuous function defined on 0 <t < T g(t) < M (constant), a > 0, and suppose v(t) is nonnegative
and locally integrable on 0 < t < T with

u(t) = (v(t) —v(a@) + g(©) fat (logf)a_1 (v(s) —v(a))ds . Then
u(®) < v(e) + [ [Z;‘:’ LRl (10g 5" (wis) - v(a))] ds
v(@)E (9(0) (logt)")

u(t) < (v(t) —

proof
-1 _
Let Bo(t) = % fat (log%)a Md‘[ ,t =0 . Then u(t) < (v(t) — v(a)) (logé) + Bu(t) —u(a))
imply

u(t) < Z:;:Bkv(t) + B (u(t) — u(a))

Now to prove B (u(t) — u(a)) < f;%( o™ " (u - u(@) &

B™u(t) > 0asn — 4+ Vte[0,T)
We know this relation (2) is true for n = 1. Assume that it is true for some n = k. If n = k +1, then the induction

hypothesis implies
a1l s (gr@)”
1¢(0g2) | gy e

B**1y(t) = B(BY) < 48
Since g(t) is nondecreasing, it follows that

2

(log ;)ka_l (u(r) — u(a))d‘[] ?

r(a)
(g(t))k+1

Kk+1
Bt lu(t) < )

fi (10g?)™”

fs (I’(a))k
a r(ka)

ka-1
(log E) u(‘r)d‘r] Sf—_su

By interchanging the order of integration, we have

Bertu(e) < OV O (100 17 ((g) ds] (@) - u@)®

Where z € [0, T],Bisa biata function

B¥*1yu(t) < (gf_t()ifﬂ fat f: (If((:;))n <(log£) 1- Z))O[_1 z (logg)ka_1 ds] (u(r) — u(a))?
B lyu(t) < (gf_t()ijﬂ fat -f: (;((:i))n (logé)a_1 (logﬁ)m_1 (1 —z)® zke-1 dz] (u() — u(a))%
pestuge) < O™ L0 (g 07 o]y g

Bk iy(t) < [f

Since B™u(t) _f (o¢

u(t) < (v(®) - v(@) 1

(9@r@)**
a |r@r(k+Da)

r(a)r((k+1)a)( og

(108 E)(km“_l ] (us) — u(@) ™

t)F(a))n ] (u(s) —u(a))ds - 0,n > oVt € [0,T)

LOr@) (16g)" ™ (v(e) - v(@)] %,

@ na) 0<t<T

og;) + fa [Zn 1

u@® = (v(0) - v(@) (10g ) (1 + £z, LK ¢ [( 9
u(®) < v(®) ~ v(a) (log) (F(a) 2= 0%>
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u(t) < (v(t) — v(a)) (log 2) E, (g(t) (logg)a) .

3.9 Lemma
Let @ > 0,u>0,and x(t) € Ll([a b]),R), 0<a<b <o then (||(*XDf*)x(t) — (*ED*)y(©)||
G (Ollx (@) — y(@)|l where €, (t) = m - ((t* —aM))

Proof:
From Definition (2.4), we have that

RH L, 1 d\" rt n-a-1 ( )
aD; " x (1) = rtn-— 0()( ) L (log;) -
((me - (wa) ) ) 0 ) 0

1
=F(1—a) ta U; log; (x('[)_}’(f))?]

Therefore
1 d t —-a d
(@) = (40O = r—o5 (42 U 10g£ ||x(r)—y(r)||—T]
d
[((*api)x@ = (4DF* )y )| < l1x(®) = yOll s dt U og 77]

(02300 - 102m00)] = o s (o))
set C,(t) = tm—la)((lOgZ) ),we get

[((F1pe)x@) = (*4pE*)y©)|| < cuOlx@® - y@l @)
3.10 Lemma
Let a>0,u>0, and x(t) € L'([a,b]),R), 0<a<bh<om
- - H_gh
IR0 “*x(6) = *ED; “y(©)]] < C(OlIx(©) = YO where €;(8) = —— (=)
Proof:

From Definition (2.2), we have that

t“—‘r" dr 1 [ttt — g\
RKD a,u RKD a,u — f ) — f ( )
x(t) — J’(t) '@ X(T) A T ), P
tll
T (a)fa u
Therefore
RK )~ RK—QH 1 Lotk — g T
’ <
|50 x(®) =50y O < s | (<)
07450 ~ 0L 0] 2 1400 - 00 (-
¢ e - pal (a) n
th—_qk
set C, (t)a ar (a) (T_a) we get
|RED; “#x(t) — *ED “Hy ()| < C,OIx () — ¥ (4)
3.3 Theorem

Let x: [—7,T] = R™ be continuous differential function, T > 0 then x(t) is a solution of the Caputo —Katugampola
fractional order nonlinear differential control nonlocal system (1.1), if and only if

cHp @ (Al(t) —Cx(t) + Ay(D) (F (Rng"*‘x(t))) + By () <G (*EDE#x (e r))) + Bz(t)u(t)>
x(t) =

p(t) for—t<t<0
()

Proof
For —t < t < 0, we have the solution is x(t) = ¢(t), now from lemma (3.7) , we have that
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x(t) = CHp;ek (Al(t) — Cx(b) + Ay() (F (Rsz"“x(t))) + By () (G (REDE#x (e T))) + B, (t)u(t)> 0 <

t < T ,implies that

CUDE (x(t) = ChDE* (C’;D;“'“ <A1<t) = cx(0) + 4, (F (Dx(©))) + B, ©) (6 (D x(e - 1) ) +
B, (t)u(t))) using lemma (3.7), we obtain

CHDTH (x(1)) = (Al(t) —Cx(t) + A,(t) (F (RIZDf'“x(t))) + B, (t) (a (Rlépf'“x(t - r))) + B, (t)u(t)>
The other side of proving which given by:
CHD®h (1) = Ay (£) — Cx(t) + A (£) <F (RgD;’"“x(t)» +B,(0) (G (R&D&x(t r))) + B,(Ou(t)

D (CADFHx(6)) = D <A1(t) = Cx(0) + 4,(0) (F (M0f*x)) + B, ©) (6 (6D (e =) ) +
B, (t)u(t)) , therefore

x(£) = ;o (Al(t) = cx() + 4, (F (FD*x(©))) + B0 (6 (5D x(e = 1) ) + Bz(t)u(t)),

3.4 Theorem
Consider the following Caputo —Katugampola fractional order nonlinear differential control nonlocal system and

CHD@Hy (£) = Ay(€) — Cx(t) + Ay (0) <F (RI;Df"*‘x(t)» +B,(0) (G (RED&#x (e r))) + B, (O)u(t) with
(f(t,0,0) = [0, ...,0]7) has a unique continuous solution

Proof

X(©) = y(0) = "D, “H (=€ (x(0) = ¥(©) + 4,(0) (F (MDE () — F (F4DE*y(0) ) +
B, (D) (G (*DE#x(t — 1)) — G (*EDEHy (¢ - r))))

(@) - y(Oll < || f t (10g5)a_1 —C(x® = y@) + 4,0 (F (b x(@) - F (R’;D;’""y(r))) + \ar
“||{F@ ), N T By (v) (G (R{in‘#x(r - s)) -G (R’gug'uy(r - s))) — (2@ +y@) | °
og2)|
lle®Il < C(lle®) — e(@ID %_( Oir)

_l_

%f: (logg>a—1 < A, (1) <F (RZDf'”e(t))) + )e(‘[) —e(a) -

B,(s) (G (R<DEte(t - s))) T

1o = €01e® = @ [y og)

#O(HGOE) o [ (o) 20220
B, (t) (LZG< s[up ]e(t + 19))) ra)J, 57 T
YE[-T,0

(t) = supre_re(®) ,9(6) = C(le® — (@I || == (1og2) ]| +

arl(a)
B, (t) (LZG ( sup e(t+ 19)))
Y€E[-1,0]

1 t a-1 _
lle®)l <0+ g(t) mj (log;) <19€s[1£)0]e(t + ﬁ))e&)r—e@dTH

+

4, (11 (e()) +
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t a
el < 0E, (9(0) (1og=) )
le@®ll <0
Then system (1) has a unique continuous solution.
3.1 Stability of the Caputa— Katugampola and Riemann —Katugampola Fractional order
nonlinear differential control nonlocal system with maximal interval (0,T]

3.1.5 Theorem
The solution to the Caputo ~Hadmmard fractional derivatives Riemann—Katugampola and Hadmmard fractional
order nonlinear differential control nonlocal system (1) is x(t) € R™ Then the following inequalities holds:

I x(®) Il < (8(8) = 8@))E, (w(®) (log?)") (6)

Proof
Since x(t) has the following formulation,

Y - {CzD;“"‘ (Al(t) = Cx(0) + 4,(0) (F (MDf*x)) + B, ©) (6 (6D (e =) ) + B, (t)u(t))

. Thus,
¢ t € [-1,0]
for 0 <t<T, we have
x(t) = $ t (log E)a—l (A1(t)—Cx(t)+A2(t)(F(RI;D?'”x(t))>+Bi(t)(G(RléDél'”x(t—r)))+Bz(t)u(t))_x(a) -
a1 [ (A1O-cx@+ax(F(REpE#x®) ) +81 (0 6(FEDEHx(t-D) J+Bau(®) )-x(@)
(Ol = || I (log?) 1<< ( ) T ( ) ) )dT
IOl =7 (Al(t) = €x(@ + 4,0 (F (40x(0) = FO)) + B, (0) (6 ("6 x(t = 1) = 6(0)) +
B, (t)U.(t)> —x(a) fat (logg)a—1 %
lx@®Il < ((”Al(t)” — Cllx(@®)l + A,(t) ||F (R’;Dt“'“x(t)) — F(0) ” + By (t) ||G (RléDta..ux(t _ T))” +
1, ©u©N) - @) 75 fo “(log!)" "
1 N\ 1 ar
i (l"g;) T
Where x(t) = sup x(t+9)
Y€[-1,0] B
lxOIl < (Cllx@Il + A, ||L1 (CL(Ox(®))]| + By (O ||L2(C.(D)x(®))]| — ||x(a)||)r(a) ( gf) ? LA O +
4,0) + 1B Ou® ) = [ (logl) T &

t

IOl < (€ +A;O||La ()| + B OLa (GO s 1 (togl) ™ x(8) — x(a) &
+4,(t) + IIBz(t)u(t)ll)

Set8(t) = )( ) NAL O +4,() + 1B, (Ou(®)]]) , we have that

wt)=(C +4 (t)||L1(Cl(t))|| + B, (0)||L(C,(®)]]), implies that

t t a—
(@l <6(t)+a)(t)m ( g_) ‘

lx@®Il < 8@) + w(t) (CZD;%#

(10g%)" lla, @)l

+
a[‘(a)

sup x(t+9) —x(a)
YE[-1,0]

sup x(t+9) —x(a)
YE[-1,0]

Ix(8) 1< (88) = 8(@))Eq ((®) (l0g)").

) By using lemma (3.8)
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3.2 Stability of the Caputa— Hadmmard and Riemann —Katugampola and Hadmmard Fractional
order nonlinear differential control nonlocal system with by using step method.

Theorem (3.2.6)
Assume that Caputo —Katugampola fractional order nonlinear differential control nonlocal system (1) satisfy the
following conditions lemma (3.4). Then the solution of (1) is finite-time stable, if the following conditions is satisfied:

a
857(1)E0o(T) (Tu—”) < & where

1 (6) = 6Ty DIl (1085) ] #01 DI 0 (OB 05 (1o2) 1720

r(1+o)
ar (log—T)*
s (O + 1) (g 22| )

(i + D7) = (@ + D)+, (G + D) [[ncpnc (logg)“]]ﬂa((i + DT)[Z-1 0541 (DE 00 ()

(i+1))°‘

(log E)a]i(log .

a r(1+a)

6:1(1) = w,(t) = (6:(1) + aullelle)

Proof
From formula (5)

X(6) = D Ay (©) = Cx(®) + A, (0) (F (MDEH() ) + B (o) (6 (MDE (e = D) ) + Ba(@u(®),
x(©) = D7 (43(0) = €x(©) + 4,(0) (F (FDE#x(0) ) +) 4D, “H (s () + By ()

(6 (Fspi*x(e - 1)) + Ba(eyu(®)

llx(@Il < 4D “ (1ALl + L lIBy O [| (C2(0)x(t = D)|[+ 1B (O)u(®) I-ClIx ) II+L1 1A, O]
(G @x@)])

lx@Il < 4D, “* (1AL (O + Lo 1By NN (C Ol @I+ B2 (O)u®)I-Cllx () 1+L, [|42 (O]
I(c@x@)])

llx (I < 4D, “*(8,(6)-C+Le[|42()(CL(®)) ) where o = Ly [|42(6)(C.(®))]| - €

81(t) = D “H (1AL + 1B (u), a1 = Lo lIBy O] (C2(0) |

@l < 8,(O)+ arllglle +4D, “*(Ly||42()(C.®)]| = O)Cllx @)

lx@Il < 8:() + arllpll+ao () 5D, “H Cllx(E)ID)

lx@Il < 8:(8) +a1llgllctao () GD; “* Cllx @)

Using the Lemma (3.8) for t € [0, ], we have that

lx(OIl < 8,(t) + ayllolle + oo(®)ED, “ x(¢) for t € [0,7] , we have that

IOl < ) + a1llpll) Ealon(@ (l0g=) )
0® =GO +alol)

IO < 01 (1) Ee(op(@) (log-)

Fort € (ir,(i + 1],1 < i < n,we have

X1 < D7 “ (1AL Ol + L lIBy O (€)%t — )|+ 1B2 () u®I-Cllx () 1+Ly [| A2 (E) ]
l(c.®x@®)]])

IXOI < 8,0+ (D x(6) +0:(0) [ 7 (108" (s =) = x(@l £ 55 17 (10g )" et =) -

x@)l d:+ ...... +$ M (10g 5)0(—1 x5 — 1) — x| %]]

KO < 8,(O+06()AD;“*x(8)+01 (O)[[02(1) Ea(0o() (l0g ) ] [M]]

r(1+ow)
+[02(v) Ea (0 (1) (log ;)“][%h ...... +0141(1) Ea(0 1) (log ) ] [%]

KON < 8, (G + D)+oy (G + DOl (1ogT) T+01 (G + 1)7)[Ees 0741 (DEq 06(T)
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(lo E)a](log@)a +0 ((i+ l)T)CHD_a'#x(t)
g a r1+o) 0 a=t

(i + D7) = &, (G + D)+, (G + D) [[ucpuc (logg)“]]ﬂn((i + DT)[Z)=1 0541 (DE 06 ()

i\ & (log(i-;—n)(x
(log%) T
Ix(O1l < w((i + 1)) +0o(( + 1)) 4D, “*x(¢)

Using lemma (3.8) , we obtain that for t € (it, (i + 1)t ], implies that
o
XDl < 0341 (D)Eq00 (G + 1) (l0g?)

KON < @i41 (B0 (G + 1) (log 12%)°

Finally, fort € ((n+ 1)1, T]1 < i < n, we get that

lx@Il < 4D, “* (1A, Ol + Lo 1By N[ (€. (0 x (e — D) ||+ 1B, @ u@) [I-Cllx (D I+L, A, ]
[(c:®x®)])

Ix@®Il < “ED;““ (14, Ol + 1B, @u®)l + L 1By O] (C2(O)x(t — ) ||-Cllx (O I+Ly 1Az (D)l
[(c:®x@®))

ao(t) = L[| 4,0 (C: ()] = €).01(8) = L lIBy DI (C. ()|, 6:(8) = D “* (1A, (DI + 1B, (©)u(®)]I))
lx(@Il < 81(8)+00() 4D, “*x(t) +0, (&) 4D “H[|(x(t — D) ||

+ [0 (T)Eq0,(T) (log g)a] [7(log;)r(;fzgz) ]+...... + [w,, (T)Eq0,(nT) (log %) 0(] [(logﬁ) le(ff)(n-i-—l)r )

@ t
(n+DT\* ((“’g%) ‘1°g(+—m)
)] nEDY

[0n41(DEa0o ((n + 1)) (log I(1+a)

X < 840+ D, (e, OO L T 0, (0B 00 (o) (10g)” 1L+

r(1+a) r(l+o)
o o a log - t - o
------ +|wn (B0 (1) (l0g™) | (L"(gljz [+[@n41(DEa00((n + 1)7) (log ®£2) ][( rélitx))) 1.

IO < 8, (G + D) +oy (( + DTl (logZ) T 401 (( + DT)[Ty w0y (DEq 06GT)

& (logs * o IOgnT T i -
(log g) ]% +[wn+1(‘t)Ea00((n + 1)1‘) (log (n?)r) ] [( 1"21:())) +ao((n + 1)‘[) CHD;“Hx(t)

Where

w((n + 11) = 8:;(N+o (D[l el (logﬁ)a] +0, (T[Z; 0;(1)Eq 6 (T) (logg)a]g;gfl) +

[wn+1(T)Ea00((n + 1)‘[) (log (n-;l)r)a] [(lofﬁ) |
Ix®Il < w((i + 1)1’) +o'0((i + 1)T)Cth_a‘”x(t)

Using lemma (3.8), we obtain that for t € ((n + 1)t, T ], implies that
T o
Xl < 0 (D Eeo0o(D) (log> )

3.1 Remark
The Caputo —Hadmmard fractional order nonlinear differential control nonlocal system (1)is finite-time stable if

satisfy the following condition wq(t)Eq0(T) (1og§)a <& where w((n + 1)7) = 8,(T) +o, (D[ [l (1og§)°‘]

+04 (T) [Zjn:1 wj (T)Ea Oy (]T) (log g)a](log—g) .

r(1+a)

o
(n:,m)a] [(“’gﬁ)

rro IfT € (0,7].

[0n11(DEa00((n + 1)7) (log
4 ILLUSTRATIVE EXAMPLE

In this section, we provide an example to illustrate the finite time stability of the Caputo —Katugampola fractional order
nonlinear differential control nonlocal system (1).
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4.1 Example

Consider the following the Caputo —Hadmmard fractional order nonlinear differential control nonlocal system (1.1).,

—0.1 0.05 - -
cps(e) = (3O 095) 4 (27)eo) + (12
—-0.1 0.2

(o )f(x(—0.1) + ( 0.2 0.1) u(t).
f (x,. (t)) = fi(x®) = g (xj(t)) =05(x+1]—|x—1],j = 1,2 ult) =1
_(—0.1 0.05 _ (=01 0.2 _ (03 0.02 _ (=04 0.2
A = (0.05 0.1 ) r ( 0.2 0.1)"42 - (0.02 0.1 ) B, = ( 0.2 —0.4)
€ =0.7L; =G =1,||4,(®)] = 0.1118,B, (¢) = 0.2236,||4,(t)]| = 0.3020, B, (¢) = 0.4200

By theorem 3.2.5 (8(t) — 6(a))E, ( w(t) (logé)a) we get

(F (%Df""x(t))) + (3%

Tablel. The value of ¢, for a = 0.1, = 0.1

<G (R’;D;’""x(t - 0.1))) +

t u=01|puy=02 | u=03 | u=0.4 u=a u=06 | u=0.7 | u=0.8 | u=0.9
0.2 | 0.1343 0.0833 0.0675 0.0602 0.0561 0.0536 0.0519 0.0507 0.0499
0.4 | 04913 0.2711 0.2019 0.1696 0.1516 0.1403 0.1327 0.1272 0.1232
0.6 | 0.8181 0.4395 0.3201 0.2641 0.2328 0.2133 0.2001 0.1908 0.1838
0.8 1.1078 0.5894 0.4255 0.3488 0.3059 0.2792 0.2615 0.2490 0.2398

1 1.3676 0.7248 0.5214 0.4263 0.3733 0.3406 0.3192 0.3043 0.2936

Table 2. The value of &, for a =0.1, = 0.5
t u=01]| u=02 | u=03 | pu=0.4 U=a«a u=06 | u=0.7 | u=08 | u=0.9
0.2 3.1601 1.9219 1.5372 1.3612 1.2655 1.2076 1.1700 1.1440 1.1251
0.4 8.2470 4.4626 3.2727 2.7216 2.4185 2.2340 2.1132 2.0297 1.9689
0.6 | 12.1112 6.3846 4.5750 3.7331 3.2690 2.9868 2.8034 2.6779 2.5882
0.8 | 15.2442 7.9618 5.6545 4.5794 3.9874 3.6294 3.3994 3.2452 3.1383
1 17.8985 9.3147 6.5915 5.3224 4.6256 4.2075 3.9430 3.7704 3.6558
Table 3. The value of &, for a =0.1,a = 0.9
t u=01| pu=02 | u=03 | u=0.4 u=a u=06 | u=0.7 | u=0.8 | u=0.9
0.2 3.2368 1.9980 1.6130 1.4377 1.3437 1.2880 1.2527 1.2290 1.2122
0.4 | 11.0164 6.0190 4.4458 3.7206 3.3269 3.0927 2.9445 2.8461 2.7779
0.6 | 17.8665 9.4856 6.8324 5.6030 4.9343 4.5379 4.2903 4.1302 4.0238
0.8 | 23.8278 | 12.5140 8.9216 7.2535 6.3472 5.8139 5.4869 5.2829 5.1561
1 29.1097 | 15.2177 | 10.7988 8.7460 7.6338 6.9856 6.5968 6.3652 6.2344
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—&—p=01
—S—p=02
—&—p=03
[|[—e—u=04
—&—p=05

Figure 2. of table 2.

Figure 1. of tablel.

—e—u=0.1
—&—p=02
H—=—up=03
—S—u=04
—&—u=05
=06
—6—u=07
—o—p=038
H—S—u=0.9

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fiaure 3. of table3.

5. CONCLOTION

1. The Caputa Caputa— Hadmmard Fractional order nonlinear differential control nonlocal system (1) was complex for
studding since the fractional derivative types has expression are difficult constriction.

2. The uniqueness, existence, Necessary, and sufficient condition depended on Generalized Gronwall Inequality of the
Riemann — Caputa fractional derivative was presented first time and make good role in stability of the system.

3. The stability of finite time for our presented system was depended on maximal interval or on step size of maximal
interval to obtain the guarantee estimation of epsilon
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