Connectedness In Ideal Approximation Spaces

Huda Mohsen1*, and Faik Mayah2

1Department of Mathematics, College of Education for Pure Science, Wasit University, IRAQ
2College of Science, Wasit University, IRAQ

*Correspondence Author: Huda Mohsen

DOI: https://doi.org/10.31185/wjps.369
Received 11 March 2024; Accepted 21 May 2024; Available online 30 Jun 2024

ABSTRACT: This paper we study the notion connectedness in approximation spaces and ideal connectedness are introduced, with an explanation of their distinctions.

Keywords: connected, ∗-connected, ∗∗-connected

1. INTRODUCTION

The development of set theory that addresses the uncertainty of intelligent systems is known as a rough set. Which are defined by incomplete and inaccurate information. Pawlak defines them in an approximation space [1]. The definition of rough sets is as a function of a generally. The equivalence relation R and the universal finite set Y, which is regarded as the principle behind a subset S ⊆ Y upper as well lower approximation. Both are Based on an equivalency relation on Y. An approximation space was described as (Y,R). Pawlak's rough set was generalized in a number of ways by changing the equivalence relation to any binary relationship. Many authors have studied the relationship between rough sets and topological space [4,6]. A transitive and reflexive relation was used to derive the upper and lower approximation operators, they were demonstrated to represent the topology's closure and interior operators. For the typical case, numerous research studies were presented with rough sets that included some therapeutic uses, as seen in [2,3]. In the paper, assume that Y is a universal set with a finite number of items. A subset of Y × Y is a relation R, which is a relation on Y from a universe Y to another universe Y. The formula (a, b) ∈ R, which can be shortened to aRb, indicates that a and b are related to each other in R. Additionally, the left and right neighborhoods of a ∈ Y are represented by Ra = {b : bRa} and aR = {b : aRb}, respectively. The intersection of a set < a > R (resp. R < a >) equals of every neighborhood on the right (resp. left) that has a. The lower (LR(S)), the upper UR(S)) and the boundary region BR(S) for S ⊆ Y have the following definitions [5,9].

• LR(S) = {a ∈ S : < a > R ⊆ S}.
• UR(S) = S ∪ {a ∈ Y : < a > R ∩ S ≠ ∅}.
• BR(S) = UR(S) − LR(S).

The terms LR(S), UR(S) and BR(S) denote the lower, upper, and boundary region approximation sets that are linked to the set S ⊆ Y and are predicated on the idea that < a > R is an approximation space (Y, R).
Definition [10]: Let D is a set that is not empty. If $I \subseteq P(D)$ meets these conditions, it is then referred to as an ideal on D:

- $\emptyset \in I$,
- If $S \in I$ as well $N \subseteq S$, then $N \in I$,
- If $S, N \in I$, then $S \cup N \in I$.

Definition [11]: Assume that $S \subseteq Y$, I is an ideal defined on Y, and R is a binary relation on Y. Then, $R(S)$ and $\overline{R}(S)$ of S, the lower and upper approximations, are outlined as follows:

- $R(S) = \{v \in S : <v > R \cap S^C \in I\}$,
- $\overline{R}(S) = S \cup \{v \in Y : <v > R \cap S \notin I\}$.

Where $<v > R$ is the intersection of all right neighborhoods contain v.

Definition [8]: Assume that $S \subseteq Y$, I is an ideal defined on Y, and R is a binary relation on Y. Then, $R(S)$ and $\overline{R}(S)$ of S, the lower and upper approximations, are outlined as follows:

- $R(S) = \{v \in S : R <v > R \cap S^C \in I\}$,
- $\overline{R}(S) = S \cup \{v \in Y : R <v > R \cap S \notin I\}$.

Where $R <v > R = R <v > R \cap <v > R$.

Definition: Given an ideal approximation space (Y, R, I) and an arbitrary set $S \subseteq Y$. Thus

1. The set operator $(LC)^* : P(Y) \rightarrow P(Y)$ is known a local function defined as follows:

 $S^* = \bigcup \{H \subseteq Y : H \cap S \in I, \overline{R}(H) = H\}$. Also the operator $cl_R(S) : P(Y) \rightarrow P(Y)$ is given as follows: $cl_R(S) = S \cup ((S^*)^C)$.

2. The set operator $(LC)^{**} : P(Y) \rightarrow P(Y)$ is known a local function defined as follows:

 $S^{**} = \bigcup \{H \subseteq Y : H \cap S \in I, \overline{R}(H) = H\}$. Also the operator $cl_R^{**}(S) : P(Y) \rightarrow P(Y)$ is given as follows: $cl_R^{**}(S) = S \cup ((S^{**})^C)$.

2. CONNECTEDNESS OF SPACES

Definition 2.1: Assume that the approximation space is (Y, R). Then

1. Two subsets that are not empty S and V of Y are regarded as separated sets if

 $UR(S) \cap V = S \cap UR(V) = \emptyset$.

2. (Y, R) is known as disconnected space if there exists separated sets $S, V \subseteq D$ such that $S \cup V = D$. (Y, R) is an approximate space that is considered connected space if it is not disconnected.

Definition 2.2: Assume that the ideal approximation space is (Y, R, I). Then

1. Two subsets that are not empty S and V of Y are regarded as *- separated (resp. ** - separated) sets if

 $cl_R(S) \cap V = S \cap cl_R^{**}(V) = \emptyset$ (resp. $cl_R^{**}(S) \cap V = S \cap cl_R^{**}(V)= \emptyset$).

2. (Y, R, I) is known as *- disconnected (resp. **- disconnected) space if there exists *- separated (resp. **- separated) set $S, V \subseteq D$ such that $S \cup V = D$. (Y, R, I) is an ideal approximation space that is considered *- connected (resp. **- connected) space if not *- disconnected (resp. **- disconnected) space.
Remark 2.3: 1. we get the diagrams below:

Separated \rightarrow \star-separated \rightarrow $\star\star$-separated

And hence

$\star\star$-connected \rightarrow \star-connected \rightarrow connected

Figure 2.1 Relationships between types of connectedness

2. For $I = \{\emptyset\}$ observe that \star - connected and connected are identical.

The examples that follow demonstrate that the implied reverse meaning is incorrect, as shown in the figure 2.1.

Example 2.4:

1. Let $Y = \{a_1, a_2, a_3, a_4\}$, $R = \{(a_1, a_1), (a_1, a_4), (a_2, a_2), (a_2, a_3), (a_3, a_3), (a_1, a_4)\}$ then $a_1 > R = \{a_1, a_4\}$, $a_2 > R = \{a_2, a_3\}$, $a_3 > R = \{a_3\}$, $a_4 > R = \{a_1\}$. Also $R = \{a_1\}$, $R = \{a_2\}$, $R = \{a_3\}$, $R = \{a_4\}$. Therefore $a_1 > a_1 > \emptyset = \{a_1\}$, $a_1 > a_2 > R = \{a_2\}$, $a_1 > a_3 > R = \{a_3\}$, $a_1 > a_4 > R = \{a_4\}$. Then $I = \{\emptyset, \{a_1\}\}$ and $S = \{a_2, a_3, a_4\}$. Then $UR(V) = S \cup \{y \in Y : y \setminus R \setminus S \neq \emptyset\} = \{a_2\}$, and $UR(V) = \{a_2, a_2, a_3, a_4\}$. Also $S^* = \{a_1, a_2\}$, $V^* = \{a_2\}$. So $cl^*_R(S) = S \cup ((S^*)^c) = \{a_1\}$ and $cl^*_R(V) = V \cup ((V^*)^c) = \{a_2\}$. Thus $cl^*_R(S) \cap V = S \cap cl^*_R(V) = \emptyset$, but $S \cap UR(V) = \{a_1\} \neq \emptyset$. Hence S, V are $\star\star$-separated sets but are not separated sets.

2. Consider $I = \{\emptyset, \{a_2\}\}$ and $S = \{a_2\}$, $V = \{a_1, a_3\}$. Then $S^* = \emptyset, V^* = \{a_2\}$, $S^* = \emptyset, V^* = \{a_1, a_3\}$. Thus $cl^*_R(S) = S \cup ((S^*)^c) = \{a_2\}$ and $cl^*_R(V) = V \cup ((V^*)^c) = \{a_1, a_3\}$. Then $S^* = \{a_2\}$, $V^* = \{a_1, a_3\}$. Hence S, V are $\star\star\star$-separated sets however, they are not \star - separated sets.

3. Let $Y = \{b_1, b_2, b_3\}$, $R = \{(b_1, b_1), (b_2, b_3), (b_2, b_2), (b_2, b_2), (b_2, b_3), (b_2, b_3)\}$ then $b_1 > R = \{b_1\}$, $b_2 > R = \{b_2, b_3\}$, $b_2 > R = \{b_2\}$. Then $I = \emptyset, \{b_3\}, \{b_2, b_3\}$. Here the space Y is connected space because $UR(b_2) = \{b_2, b_3\}$ and $UR(b_1, b_3) = Y$. But is not \star - connected space since $Y = \{b_2\} \cup \{b_1, b_3\}, cl^*_R((\{b_2\} \cup \{b_1, b_3\}) \cap \{b_1, b_3\} = \emptyset$.

4. Let $Y = \{b_1, b_2, b_3\}$, $R = \{(b_1, b_1), (b_2, b_2), (b_2, b_2), (b_2, b_2), (b_2, b_3), (b_2, b_3)\}$ then $b_1 > R = \{b_1, b_3\}$, $b_1 > R = \{b_1, b_2\}$. Also $R = \{b_1, b_2\}$. Then $b_1 > R = \{b_1\}$, $b_3 > R = \emptyset$. Therefore $b_1 > b_1 > R = \{b_1\}, b_3 > R = \emptyset$. Then $I = \emptyset, \{b_2\}$. Here the space Y is \star - connected space because $cl^*_R(\{b_1\}) = cl^*_R(\{b_3\}) = cl^*_R(\{b_2, b_2\}) = cl^*_R(\{b_2, b_3\}) = cl^*_R(\{b_2\}) = Y$ and $cl^*_R(\{b_2\}) = \{b_2\}$. But is not $\star\star\star$-connected space since $Y = \{b_2\} \cup \{b_1, b_3\}, cl^*_R(\{b_2\}) \cap \{b_1, b_3\} = \emptyset$.
Proposition 2.5: The following statements for an ideal approximation space \((Y, R, I)\), are equivalent.

1. \(Y\) is \(\ast\)-connected.
2. For every \(S, V \subseteq Y\) with \(S \cap V = \emptyset, int_R^+(S) = S, \ int_R^+(V) = V\) and \(S \cup V = Y\) then \(S = \emptyset\) or \(V = \emptyset\).
3. For every \(S, V \subseteq Y\) with \(S \cap V = \emptyset, cl_R^+(S) = S, cl_R^+(V) = V\) and \(S \cup V = Y\) then \(S = \emptyset\) or \(V = \emptyset\).

Proof.

1. \((1) \Rightarrow (2)\) Let \(S, V \subseteq Y\) with \(\emptyset, int_R^+(S) = S, \ int_R^+(V) = V\) so that \(S \cap V = \emptyset\) and \(S \cup V = Y\) then \(cl_R^+(S) \subseteq cl_R^+(V) = (int_R^+(V))^C = V^C, cl_R^+(V) \subseteq cl_R^+(S^C) = (int_R^+(S))^C = S^C\).

Hence \(cl_R^+(S) \cap V = S \cap cl_R^+(V) = \emptyset\) that is, \(S, V\) are \(\ast\)-separated sets, so that \(S \cap V = Y\), but \((Y, R, I)\) is \(\ast\)-connected implies that \(S = \emptyset\) or \(V = \emptyset\).

2. \((2) \Rightarrow (3)\) Let \(S, V \subseteq Y\) with \(S \cap V = \emptyset, cl_R^+(S) = S, cl_R^+(V) = V\) and \(S \cup V = Y\) then \(cl_R^+(S) \cap V = S \cap cl_R^+(V) = \emptyset\), thus \(int_R^+(S) \cap V = S \cap int_R^+(V) = \emptyset\), so \(int_R^+(S) = S\) and \(int_R^+(V) = V\).

Hence \(S = \emptyset\) or \(V = \emptyset\).

3. \((3) \Rightarrow (1)\) Directly from \((2)\) there are no two proper \(\ast\)-separated sets \(S, V \subseteq Y\) such that \(S \cup V = Y\). Therefore \((Y, R, I)\) is \(\ast\)-connected.

Corollary 2.6: The following statements for an ideal approximation space \((Y, R, I)\), are equivalent.

1. \(Y\) is connected.
2. For every \(S, V \subseteq Y\) with \(S \cap V = \emptyset, LR(S) = S, LR(V) = V\) and \(S \cup V = Y\) then \(S = \emptyset\) or \(V = \emptyset\).
3. For every \(S, V \subseteq Y\) with \(S \cap V = \emptyset, UR(S) = S, UR(V) = V\) and \(S \cup V = Y\) then \(S = \emptyset\) or \(V = \emptyset\).

Corollary 2.7: The following statements for an ideal approximation space \((Y, R, I)\), are equivalent.

1. \(Y\) is \(\ast\ast\)-connected.
2. For every \(S, V \subseteq Y\) with \(S \cap V = \emptyset, int_R^{\ast\ast}(S) = S, \ int_R^{\ast\ast}(V) = V\) and \(S \cup V = Y\) then \(S = \emptyset\) or \(V = \emptyset\).
3. For every \(S, V \subseteq Y\) with \(S \cap V = \emptyset, cl_R^{\ast\ast}(S) = S, cl_R^{\ast\ast}(V) = V\) and \(S \cup V = Y\) then \(S = \emptyset\) or \(V = \emptyset\).

Theorem 2.8: Let \((Y, R, I)\) be an ideal approximation space, \(N \subseteq Y\) is \(\ast\)-connected if \(S, V \subseteq Y\) are \(\ast\)-separated sets with \(N \subseteq S \cup V\) then either \(N \subseteq S\) or \(N \subseteq V\).

Proof.

Let \(S, V\) are \(\ast\)-separated sets with \(N \subseteq S \cup V\), thus \(cl_R^+(S) \cap V = S \cap cl_R^+(V) = \emptyset\) and \(N = (N \cap S) \cup (N \cap V) \subset cl_R^+(S) \cap (N \cap V) = cl_R^+(S) \cap (N \cap V) = N \cap \emptyset = \emptyset\).

By similar way since \(cl_R^+(N \subseteq V) \cap N \subseteq V \subseteq cl_R^+(N) \cap cl_R^+(V) \cap (N \cap V) = cl_R^+(N) \cap N \cap cl_R^+(V) \cap V = N \cap \emptyset = \emptyset\). Then \((N \cap S)\) and \((N \cap V)\) are \(\ast\)-separated sets with \(N = (N \cap S) \cup (N \cap V)\).

But \(N\) is \(\ast\)-connected implies that \(N \subseteq S\) or \(N \subseteq V\).

Corollary 2.9: Let \((Y, R, I)\) be an ideal approximation space and \(N \subseteq Y\) is connected if \(S, V \subseteq Y\) are separated sets with \(N \subseteq S \cup V\) then either \(N \subseteq S\) or \(N \subseteq V\).

Corollary 2.10: Let \((Y, R, I)\) be an ideal approximation space and \(N \subseteq Y\) is \(\ast\ast\)-connected if \(S, V \subseteq Y\) are \(\ast\ast\)-separated sets with \(N \subseteq S \cup V\) then either \(N \subseteq S\) or \(N \subseteq V\).

Theorem 2.11: If \(N\) is \(\ast\)-connected subset of \((Y, R, I)\) as well \(N \subseteq M \subseteq N^\prime\) then \(M\) is also a \(\ast\)-connected subset of \(Y\).

Proof.
Assume M isn’t a \(\ast \)-connected subset of \((Y, R, I) \) thus there are \(\ast \)-separated sets \(S \) and \(V \) such that \(M = S \cup V \). This that suggests \(S \) and \(V \) are not empty and \(\text{cl}_R^*(V) \cap S = V \cap \text{cl}_R^*(S) = \emptyset \) by theorem 2.8, we have that either \(N \subset S \) or \(N \subset V \). Suppose that \(N \subset S \) then \(N^* \subset S^* \) this implies that \(V \subset M \subset N^* \) and \(V = N^* \cap V = \emptyset \), thus \(V \) is an empty set. Since \(V \) is not empty this is a contradiction. Assume that \(N \subset V \) in similar manner it follows that \(S \) is empty. This contradiction. Hence \(M \) is \(\ast \)-connected.

Corollary 2.12: If \(N \) is \(\ast \ast \)-connected subset of \((Y, R, I) \) as well \(N \subset M \subset N^\ast \) then \(M \) is also a \(\ast \ast \)-connected subset of \(Y \).

Corollary 2.13.

1. If \(N \) is \(\ast \)-connected subset of \((Y, R, I) \) then \(N^* \) is \(\ast \)-connected.
2. If \(N \) is \(\ast \ast \)-connected subset of \((Y, R, I) \) then \(N^\ast \) is \(\ast \ast \)-connected.

Theorem 2.14: If \(\{Z_i : i \in I\} \) is not empty family of \(\ast \)-connected sets of an ideal approximation space with \(\bigcap_{i \in I} Z_i \neq \emptyset \), then \(\bigcup_{i \in I} Z_i \) is \(\ast \)-connected.

Proof.

Assume that \(\bigcup_{i \in I} Z_i \) is not \(\ast \)-connected. Then we obtain \(\bigcup_{i \in I} Z_i = S \cup V \) where \(S \) and \(V \) are \(\ast \)-separated sets in \(Y \). Since \(\bigcap_{i \in I} Z_i \neq \emptyset \) we’ve a point \(y \in \bigcap_{i \in I} Z_i \) since \(y \in \bigcup_{i \in I} Z_i \) either \(y \in S \) or \(y \in V \). Assume that \(y \in S \) since \(y \in Z_i \) for all \(i \in I \) then \(Z_i \) and \(S \) intersect for every \(i \in I \) according to Theorem 2.8 \(Z_i \subset S \) or \(Z_i \subset V \) since \(S \) and \(V \) are disjoint \(Z_i \subset H \) for every \(i \in I \) consequently \(\bigcup_{i \in I} Z_i \subset S \) This means that \(V \) is empty. This is a contradiction. Assume that \(y \in V \) in a similar manner, we have that \(S \) is empty. This is a contradiction thus \(\bigcup_{i \in I} Z_i \) is \(\ast \)-connected.

Corollary 2.15: If \(\{Z_i : i \in I\} \) is not empty family of \(\ast \ast \)-connected sets of an ideal approximation space with \(\bigcap_{i \in I} Z_i \neq \emptyset \), then \(\bigcup_{i \in I} Z_i \) is \(\ast \ast \)-connected.

Corollary 2.16:

1. If \(N \) is a subset of the ideal approximation space \((Y, R, I) \) that is a \(\ast \)-connected and \(N \cap N^* \neq \emptyset \) then \(\text{cl}_R^*(N) \) is a \(\ast \)-connected.
2. If \(N \) is a subset of the ideal approximation space \((Y, R, I) \) that is a \(\ast \ast \)-connected and \(N \cap N^\ast \neq \emptyset \) then \(\text{cl}_R^*(N) \) is a \(\ast \ast \)-connected.

Theorem 2.17: Let \((Y, R, I) \) be an ideal approximation space, \(\{N_\beta : \beta \in \Delta\} \) be a family of \(\ast \)-connected subset of \(Y \) and \(N \) be a \(\ast \)-connected subset of \(Y \). If \(N \cap N_\beta \neq \emptyset \) for all \(\beta \) then \(N \cup (\cup N_\beta) \) is \(\ast \)-connected.

Proof.

Since \(N \cap N_\beta \neq \emptyset \) for every \(\beta \in \Delta \) according to Theorem 2.14 \(N \cap N_\beta \) is \(\ast \)-connected for each \(\beta \in \Delta \). Moreover \(N \cup (\cup N_\beta) = (N \cup N_\beta) \) and \(\cap (N \cup N_\beta) \supseteq N \neq \emptyset \). Thus, by Theorem 2.14 \(N \cup (\cup N_\beta) \) is \(\ast \)-connected.

Corollary 2.18: Let \((Y, R, I) \) be an ideal approximation space, \(\{N_\beta : \beta \in \Delta\} \) be a family of \(\ast \ast \)-connected subset of \(Y \) and \(N \) be a \(\ast \ast \)-connected subset of \(Y \). If \(N \cap N_\beta \neq \emptyset \) for all \(\beta \) then \(N \cup (\cup N_\beta) \) is \(\ast \ast \)-connected.

Theorem 2.19: Assume that \(h : (Y, R_1, I) \rightarrow (W, R_2) \) be an \(\ast \)-continuous function. Then \(h(D) \subseteq W \) is connected set if \(D \) is \(\ast \)-connected in \(Y \).
Proof.
Let \(h(D) \) be disconnected then there exists two separated sets \(S, V \subseteq W \) with \(h(D) \subseteq S \cup V \). That is \(U_{R_2}(S) \cap V = S \cap U_{R_2}(V) = \emptyset \). Then \(D \subseteq h^{-1}(S) \cap h^{-1}(V) \) and since \(h \) is \(\star \)-continuous we get that:

\[
cl_{R_1}^z(h^{-1}(S)) \cap h^{-1}(V) = h^{-1}(U_{R_2}(S)) \cap h^{-1}(V) = h^{-1}(U_{R_2}(S) \cap V) = h^{-1}(\emptyset) = \emptyset.
\]

and in similar way we have \(cl_{R_1}^z(h^{-1}(V)) \cap h^{-1}(S) \subseteq h^{-1}(U_{R_2}(V)) \cap h^{-1}(S) = h^{-1}(U_{R_2}(V) \cap S) = h^{-1}(\emptyset) = \emptyset \). Hence \(h^{-1}(S) \) and \(h^{-1}(V) \) are \(\star \)-separated sets in \(Y \) so that \(D \subseteq h^{-1}(S) \cap h^{-1}(V) \). So \(D \) is \(\star \)-disconnected which contradicts that \(D \) is \(\star \)-connected this is because of the incorrect assumption that \(h(D) \) is disconnected and so \(h(D) \) is connected set.

Corollary 2.20: Assume that \(h: (Y, R_1, I) \rightarrow (W, R_2) \) be an \(\star \star \)-continuous function. Then \(h(D) \subseteq W \) is connected set if \(D \) is \(\star \star \)-connected in \(Y \).

REFERENCES