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Abstract: The purpose of this article is to introduce the original results which
devoted with the nonlinear control system problems involves of nonlinear
differential equations of fractional orders. Thus, this system is described with a
mixed of ordinary derivatives in the first and second order that, are unstable
before feedback gain. More precisely, we investigate and analysis the nonlinear
control system in related to feedback gain matrix. In addition, we prove that the
considered system is locally asymptotically stabilizable via certain conditions.
Then, this work reinforce through some application examples that programmed
for illustrating and showing the stabilizability of the current systems with high
efficiency and accuracy.
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1. Introduction

The field of control and systems is currently one of the most important topics that
play a good role in simplifying some systems. Thus, the control is involved in non-
linear systems and the interpretation of complex phenomena, which is of great benefit
in modernizing human civilization day after day [1].

Fractional calculus contributes to many important aspects such as science,
engineering and physical applications. We mention some of its applications with
fractional optimal control problems (FOCPs) that are subject to dynamic constraints
with the objective function problems, in, bioscience [2], economic [3], and so on .

The stability of a nonlinear Langevin system of Mittag-Leffler (ML)-type fractional
derivative affected by time-varying delays and differential feedback control stability
has been studied by Zhao in ref. [4]. Then, Li and et al. are studying of the global
stability problem for feedback control systems of impulsive fractional differential
equations on networks [5]. Another direction studied by Qasim and et for some classes
with composition FOCPs as in [6]. The stabilization and destabilization of fractional
oscillators via a delayed feedback control has been considered by Cermak et al. in [7].
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The Mittag-Leffler stabilization of fractional-order nonlinear systems with unknown
control coefficients is verified and examined by Wang in [8].

The main objective of this work is to study non-linear systems with multiple
fractional orders between zero and one with an ordinary derivative for control systems.
The systems that are unstable were examined, then a feedback describes gain matrix
the presence of control. So, after that we investigate and demonstrate the local
stabilizabiliy with complete accuracy for nonlinear systems.

This outline of paper is organized as follows: Section 2, present some basic
preliminaries concept and some auxiliary definitions. In section 3, we obtain the
rigorous new results for the multiplying (fractional-one order ordinary) differential
nonlinear feedback control system with some applications. Finally, we provide the
results that have discovered which focused on the stabilizability problem of non-linear
feedback control systems.

2. Preliminaries

In this section, we will present some important definitions and characterizations
which play a good role to achieve the stabilizability concept of the considered system.

Definition 2.1 [9]: The formula for the Mittag-Leffler function is
o zr
Ea(Z) = 21':0 IYT-{—l) ,Wherez € C anda > 0.

And the Mittag-Leffler function with two parameters:
Eqp(Z) = X7%0
Definition 2.2 [10]: The Gamma function is defined by the integral formula

r@ =/ t='etdtzeC,(Re(z)>0)

ZT‘
Toath) wherez € C and a, f > 0.

With the property of Gamma function

I'(z+1)=zI(2).
Definition 2.3 [10]: The Laplace transform of the function f(t) , where 0 <t < o
and denoted L {f(t)} as

L(f®)=F@s)=[" e tf(t)dts € R*
Where R* is the domain of nonnegative real numbers.
Definition 2.4 [11]: The point x* € R™ is an equilibrium point for the differential
equation

x = f(tx),if f(t,x*) =0forallt.
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Definition 2.5 [12]: The equilibrium point x* is said to be asymptotically locally stable
if every solution starting sufficiently close to x* converges to x*as t — oo; that is when
x(t, xy) = x*ast — oo for x, sufficiently close to x™.
Definition 2.6 [12]: The equilibrium point x* is said to be asymptotically globally
stable, if every solution converges to x*as t — oo; that is
x(t,xg) > x*ast - oo
Regardless of the initial point x, (or regardless of whether or not x, is close to x*).

Definition 2.7[13]: Let a > 0 be areal number and let

n=[a]l+1fora &N, .
If f(t) € AC"[a, b], then the Caputo fractional derivatives aCDZ f(t) and tCDj f (t)
exist almost everywhere on [a, b].

aCDEf®) = o Jy =" fP (@, )

(COEF(O) = [P G- 0" T fM @y, ©)
In particular, when 0 < @ < 1 andf(t) € AC[a, b],then

aCDEf®) =t Ju € =D ™ f' (@, 3)
And

CDFf(D) = s J, =07 (@, @)

Definition 2.8 [13]: The power function and the constant function of the Caputo’s
derivative, is:
i. aCDE(t —a)P = {0, for BEN, and B <

(@], s (e = @)%, for BEN, andf = [a] (5)

ii. aCDfc = 0, where c is a constant (6)

Lemma 2.9 [14]: Let A be an unbounded liner generator of a C.-semigroup T(t)
satisfies following conditions
1 ITOlloey < Me™,

2. If A+ B together with
D(A+B) = D(4)

is the generator of a perturbed C.-semigroup S(t) on X. And B is abounded linear
operator on X, satisfying

ISl < MeWHMIBDE,
Lemma 2.10 [15]: Suppose a > 0, u(t) is a continuous nonnegative, non-decreasing
function defined on 0 <t < T, u(t) < N (constant). Let a(t) is a nonnegative and
locally integrable on 0 < t < T, and Z(t) is a nonnegative function integrable on 0 <
t < T with
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a(t) < Z() +u(t) fot (t —s)* Ya(s)ds, Vs €[0,T].
Then,

k
a®<z®O+[; [z CEEE (- 9™z(s)|ds
In addition, if Z(¢t) is a nondecreasing functionon 0 < t < T, we get
a(t) < Z)EL(T(@)u(t)t®)
Lemma 2.11 [16]: There are finite real constants N; = 1,N, > 1,and N; = 1 for the

Mittag-Leffler function E, z(At*). Then the following properties verified

i. Forany 0 < a < 1, there are finite real constants N; , N, such that
Eq1(At®) < Nylle||, Eqq (At®) < Nplle®||

where A € R™*",

ii. Foranya = 1,and 8 = 1,2, a there are finite real constant N5 such that
Eop(At®) < Ns|le®*]|.

3. Main result

In this section suppose that the following system
X=Ax+K(t—1)g (t, x(), aCDx (D), aCDf‘zx(t)) e @)
With initial condition
xo = x(0)
When [x, X5, ..., x,]7 € R™! is the state vector of the system, 4 = [aij]nxn is the constant
matrix, and g(.): Rt x R™ - R™ is a continuous nonlinear function, K(t — 7): R* —
R™ is represented the delay time. Then the system (7) is of type multi-first order and
fractional dynamical nonlinear control system, whereaCD;* and aC D, are the two

of Caputo fractional derivative with «,, @, € (0,1).
u(t) = Kx is the feedback, where K € R™",

Theorem 3.1: The fractional nonlinear feedback control system (7) is locally
asymptotically stable, if it satisfies the following conditions:
i) Re (eig (I —K)™'A) <0, and
w = —Re(eig (I — K)™*4) > My max{(I — K)™'},
Where,
M; = MM;M, € R*.
i) Il K(t—1) <M, M; € R*.

i) [lg (tx(t), aCD{ x(t), aCDx(t) ) Il < My (Ilx(®) ]| + llaC D x()]| +
llacD2x(6)||), M, € R*.

Proof:
From (7), we get

(I = K)it = Ax + K(t = g (£, x(t), aCD{x(£), aCDF?x(1)),
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i = (1 = K) [Ax + K(¢ = g (£, x(), aCD{* x(6), aCDfx(8) )|
8)

Applying the Laplace transform in equation (8), we have
SX(s) —xo=(U—-K)1AX(s)+ (I - K)?
L {K(t -1)g (t, x(t), aCD*x(t), aCDtazx(t))},

Therefore,
X)) =(G6-U-K) A % +(s—U—-K)1A)™?
. ((1 —K)"L {K(t ~0)g (t, x(t), aCDFx(t), aCDt“Zx(t)>}),
By using the Laplace inverse transform for both sides, we get
() I e~ x| + || [y U= AC= (] — )
k(0 —1)g (0,x(0), aCD{x(0), aCD*x(0) ) do|],
Now, by using lemma (2.9), we get
I x(t) 1< Me~||xo|| + (U —K) [,  Me™®®
NIK (o = Dllllg (7, x(0), aCDx(0), aCDx(a) ) Il do,
By condition (ii), we have that
I x(t) IS Me~||xo|| + (U —K) [,  Me~®®
.Mi|lg (a,x(a),aCDflx(a),aCDt“Zx(a)) |ldo, M, € R*.
And by using condition (iii), we get

1 x(t) IS Me™t x|l + (I —K)"'Ms ] e~
- (Ilx(@)l + llaCD*x ()| + llaCD*x(o)||) do,

Where,

M; = MM;M, € R*.
Let

ki(t) = [laCD x(0)||
And

k(t) = [laCDZx @) ||
Where k,(t) and k,(t) can describe as follows:

ko () = | [ (t — W@2x(dp

r(1-a3)
and

Il x(6) IS Me™||x, || +(I—K)‘1M3(f0t e~ x(0)||do
+] k®e™CNdo+ [ ky(te " do),
< Me!|xol| + (I — K) 7' Ms(f, e ¢~ lx(0)||do
+hy (e~ [ e%tdo + ky()e @ [ e%tdo),
< Me™®Ixo|l + (I — K)'lMs(fot e~*=|x(0)||do
7 G (0 + (0,

HAUMMf“Mﬂ+mOe)U K)™(ky (8) + k(£))
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A=K My fy e x() ] do, ©
Multiplying the equation (9) by the term (e®*), to get
M3z(e®t-1)

Ihx(6) Il e < Mllxol + ==——=( = K)7 (ks () + k2 (1))
+(U - KM, [, e“’||x(0)ldo,
Now, by using lemma (2.10), we get
eWt_
() I e < (M[Jxgl] +22=2)
A0 = K) 7 (ky () + Fep (£))eMs0 =07 (10)
Therefore, by multiplying the equation (10) by the term (e~“t), becomes
wt_ -
1 x() 1< (Mllxoll +220 (1 = K)2ky (8) + hep (£)))e (o U=07 -0t
When
t— oo, |lx(®)] -0
For w > My max{(I — K)™1}.
Consequently, the system (1) is asymptotically locally stable. m

Example 3.2: Consider the following differential nonlinear without feedback control
system:

% = Ax + K(t — D)g (£ x(t), aCD x(), aCDx(t) ), (11)
This nonlinear control system consists of nonlinear differential equations of fractional
orders with a mixed of ordinary derivatives of the first order that are unstable before
feedback gain matrix.
Thus, we examine this nonlinear control system after applying feedback gain matrix
and prove the asymptotic local stabilizability of the system by using the conditions in
the theorem (3.1).

5(1 = _15x1 + 15x2 (12)
4
)‘Cz = 110x1 — Xy + xe1§ (13)
2
3'63 = xlng - 3X3 (14)

Where,

A=[-15150110 —1000 — 1],

Kt—-1)=t—-1,

x(8) = [x1(t) x2(6) x3(8) ],
And

a a 1 4 2
g (t,x(t), aCD, " x(t),aCD, 2x(t)) == [O X313 X1X53 ]

By using the definition (2.5) of power function

a p _ r(1+p) B-a
aCDixP = F(1+[3’—a)x , We get
i) When a; = § and f(x) = x?
Then
2 ra 2% g & 4
aCD}x} = P ==l = 1.68x}

T T

i)  When a, g and f(x) = x,
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Then

2
= x5 = 1.127x5

Thus,
a a 1 4 2
K(t-1)g (t,x(t), aCD x(t), aC D} Zx(t)) =(t-1= [0 Xp%Xy3 X1%y3 ]

4 2
= [O X313 X1X53 ]
Now, the figures 3.1: (a), (b) and (c) show the nonlinear fractional control system (11)
is unstable before applying feedback gain matrix, as follows:
x1 X2 x3

T 10 T 2

; i
| 1
x1(t) ) Y x3At) k

u- 17

"o 0.1 0.2 -8 -6 -4 -2 0 0 2 4 6
t t 1

Fig. 3.1: Show the unstable nonlinear fractional control system.
a) The state solutionx; of the nonlinear fractional control system (11) without feedback.
b) The state solution x, of the nonlinear fractional control system (11) without feedback.
¢) The state solution x;of the nonlinear fractional control system (11) without feedback.

Now, we study the stabilizability notion of the nonlinear control system after applying
feedback gain control input

u(t) = Kx
For system (1), as follows:

x=U-K)1* [Ax +K(t—1)g (t,x(t), aCD/*x(t), aCDtazx(t))]

(15)
The feedback matrix was chosen, as follows:
K=[11501100000 — 3],

I-K=[0-150 —-11010004],

(I -—K)™*=[-0.0006 —0.0009 0 1.0005 — 1.0005000 — 0.25],
And,

(I—K)"'A=[-0.981001.0005 — 1.0005000 — 0.25],
then,

(1 = K)'K(t — g (£, x(t), aCD{ x(t), aC D x(t) )
= [-0.0006 — 0.0009 0 1.0005 — 1.0005000 —
4 2 4 4 2
0.25] [0 Xy X3 Xy Xy ] = [—0.0009x2x13 — 1.0005x,%,3 — 0.25x,X,5 ]
The nonlinear control system (25) with feedback takes the following form:
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4
%, = —0.981x; — 0.0009x,%,3 (16)
4 4
562 = 1.0005(?61 - xz) + X2x1§ - 1.0005.%‘2.%’15 (17)
2 2
563 = xlng - O.ZSX3 - 0.253"1.%2E (18)

Then, prove and satisfy the asymptotic local stabilizability of the system (11) by using
the conditions in the theorem (3.1), as follows:
i) Re (eig (I — K)~'A) = —0.981,—1.0005,—0.25
And
w = —Re(eig (I —K)™'4) = 0.25 > My max{(I — K)™'},
= %(—0.25) =-0.125

Where M5 = % € R*.

i) IKEt=Dl=llt—=11, 0<t<t

<ItleRr*
aq ay 1 2 2 2 2
i) 1lg (tx(t), aCD{x(t), aCDFx()) Il = 1| Z Illly 22192 + (a2

= timl 1 G )7 + G )
=0 ,whent »wandM, =1€R*
llg (t,x(t), aCD/*x(t), aCDtazx(t)) I
< My(lIx@®)l + llaCD* x(0) || + laCD{*x(D)]|), M, € R*.

Thus, the figures 3.2: (a), (b) and (c) display the simulation result of theorem (3.1),
which proves that the zero solution of the nonlinear system in (11) is asymptotically
locally stabilizable.

x1 x2 x3

3 T 5 & T

Fig. 3.2: Show the stabilizable nonlinear fractional control system.
a) The state solution x; of the nonlinear fractional control system (11) with feedback.

b) The state solution x, of the nonlinear fractional control system (11) with feedback.
c) The state solution x5 of the nonlinear fractional control system (11) with feedback.
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4. Conclusions

A new outcomes has been explored in nonlinear dynamical systems for double
fractional with ordinary order in this paper related to some necessary conditions. Then,
the stabilizability of nonlinear systems with control was obtained by feedback gain for
the nonlinear systems class. So that, the precise results are obtained in locally case
according to the conditions of theorem 3.1, which have demonstrated their accuracy in
some applications. Also, as the work technology has been programmed and reinforced
with the illustrative examples that have shown the efficiency of the stabilizability of the
considered systems. Finally, may be interested to extend the obtained results in this
work to the case of regional observer problem in distributed parameter systems as in
[17-18].
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