
Wasit Journal for Pure Sciences Vol. (2) No. (3)   

78 

 

Stabilization of Multi Fractional Order Differential Equation with 

Delay Time and Feedback Control   

https://doi.org/10.31185/wjps.210 

Badiea S. Hassoun1, * 

Raheam A. Al-Saphoy2  

1,2College of Education for Pure Sciences, Tikrit University, Iraq 
*badieass88@gmail.com 

 

Sameer Q. Hassan3 
3College of Education, Mustansiriyah University, Baghdad, Iraq  

Abstract: The purpose of this article is to introduce the original results which 

devoted with the nonlinear control system problems involves of nonlinear 

differential equations of fractional orders. Thus, this system is described with a 

mixed of ordinary derivatives in the first and second order that, are unstable 

before feedback gain. More precisely, we investigate and analysis the nonlinear 

control system in related to feedback gain matrix. In addition, we prove that the 

considered system is locally asymptotically stabilizable via certain conditions. 

Then, this work reinforce through some application examples that programmed 

for illustrating and showing the stabilizability of the current systems with high 

efficiency and accuracy. 
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1. Introduction  

The field of control and systems is currently one of the most important topics that 

play a good role in simplifying some systems. Thus, the control is involved in non-

linear systems and the interpretation of complex phenomena, which is of great benefit 

in modernizing human civilization day after day [1]. 

Fractional calculus contributes to many important aspects such as science, 

engineering and physical applications. We mention some of its applications with 

fractional optimal control problems (FOCPs) that are subject to dynamic constraints 

with the objective function problems, in, bioscience [2], economic [3], and so on .  

The stability of a nonlinear Langevin system of Mittag-Leffler (ML)-type fractional 

derivative affected by time-varying delays and differential feedback control stability 

has been studied by Zhao in ref.  [4]. Then, Li and et al. are studying of the global 

stability problem for feedback control systems of impulsive fractional differential 

equations on networks [5]. Another direction studied by Qasim and et for some classes 

with composition FOCPs as in [6]. The stabilization and destabilization of fractional 

oscillators via a delayed feedback control has been considered by Čermák et al. in [7]. 
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The Mittag-Leffler stabilization of fractional-order nonlinear systems with unknown 

control coefficients is verified and examined by Wang in [8].[19], [20] 

 

The main objective of this work is to study non-linear systems with multiple 

fractional orders between zero and one with an ordinary derivative for control systems. 

The systems that are unstable were examined, then a feedback describes gain matrix 

the presence of control. So, after that we investigate and demonstrate the local 

stabilizabiliy with complete accuracy for nonlinear systems. 

This outline of paper is organized as follows: Section 2, present some basic 

preliminaries concept and some auxiliary definitions. In section 3, we obtain the 

rigorous new results for the multiplying (fractional-one order ordinary) differential 

nonlinear feedback control system with some applications. Finally, we provide the 

results that have discovered which focused on the stabilizability problem of non-linear 

feedback control systems. 

 

2. Preliminaries  

 

     In this section, we will present some important definitions and characterizations 

which play a good role to achieve the stabilizability concept of the considered system. 

 

Definition 2.1 [9]: The formula for the Mittag-Leffler function is 

         𝐸𝛼(𝑧) = ∑∞
𝑟=0

𝑍𝑟

𝛤(𝑟𝛼+1)
 , where 𝑧 ∈ 𝐶  and 𝛼 > 0. 

And the Mittag-Leffler function with two parameters: 

          𝐸𝛼,𝛽(𝑍) = ∑∞
𝑟=0

𝑍𝑟

𝛤(𝑟𝛼+𝛽)
, where 𝑧 ∈ 𝐶  and 𝛼, 𝛽 > 0. 

Definition 2.2 [10]: The Gamma function is defined by the integral formula 

          𝛤(𝑍) = ∫
∞

0
𝑡𝑧−1𝑒−𝑡𝑑𝑡 𝑧 ∈ 𝐶 , (𝑅𝑒(𝑧) > 0) 

With the property of Gamma function 

          𝛤(𝑧 + 1) = 𝑧𝛤(𝑧). 

Definition 2.3 [10]: The Laplace transform of the function  𝑓(𝑡) , where 0 ≤ 𝑡 < ∞ 

and denoted 𝐿 {𝑓(𝑡)}  as 

          𝐿(𝑓(𝑡)) = 𝐹(𝑠) = ∫
∞

0
𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡, 𝑠 ∈ 𝑅+   

Where 𝑅+ is the domain of nonnegative real numbers. 

Definition 2.4 [11]: The point  𝑥∗ ∈ 𝑅𝑛 is an equilibrium point for the differential 

equation  

         𝑥̇ = 𝑓(𝑡, 𝑥), if  𝑓(𝑡, 𝑥∗) = 0 for all 𝑡. 

https://en.wikipedia.org/wiki/Differential_equation
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Definition 2.5 [12]: The equilibrium point  𝑥∗ is said to be asymptotically locally stable  

if every solution starting sufficiently close to 𝑥∗ converges to 𝑥∗as 𝑡 → ∞; that is when 

          𝑥(𝑡, 𝑥0) → 𝑥∗ as 𝑡 → ∞ for  𝑥0 sufficiently close to 𝑥∗. 

Definition 2.6 [12]: The equilibrium point  𝑥∗ is said to be asymptotically globally 

stable, if every solution converges to 𝑥∗as 𝑡 → ∞; that is 

          𝑥(𝑡, 𝑥0) → 𝑥∗ as 𝑡 → ∞ 

Regardless of the initial point 𝑥0 (or regardless of whether or not 𝑥0 is close to 𝑥∗). 

Definition 2.7[13]:   Let  𝛼 > 0  be a real number and let 

           𝑛 = [𝛼] + 1 for 𝛼 ∉ 𝑁0 . 
If  𝑓(𝑡) ∈ 𝐴С𝑛 [𝑎, 𝑏], then the Caputo fractional derivatives 𝑎𝐶𝐷𝑡

𝛼𝑓(𝑡) and 𝑡𝐶𝐷𝑏
𝛼𝑓(𝑡) 

exist almost everywhere on [𝑎, 𝑏]. 

               𝑎𝐶𝐷𝑡
𝛼𝑓(𝑡) =

1

Г(𝑛−𝛼)
  ∫

𝑡

𝑎
(𝑡 − 𝜏)𝑛−𝛼−1 𝑓(𝑛)(𝜏)𝑑𝜏,                                             (1) 

               𝑡𝐶𝐷𝑏
𝛼𝑓(𝑡) =

(−1)𝑛

Г(𝑛−𝛼)
  ∫

𝑏

𝑡
(𝜏 − 𝑡)𝑛−𝛼−1 𝑓(𝑛)(𝜏)𝑑𝜏,                                             (2)  

In particular, when 0 < 𝛼 < 1 and𝑓(𝑡) ∈ 𝐴С [𝑎, 𝑏],then  

 

                𝑎𝐶𝐷𝑡
𝛼𝑓(𝑡) =

1

Г(1−𝛼)
  ∫

𝑡

𝑎
(𝑡 − 𝜏)−𝛼  𝑓′(𝜏)𝑑𝜏,                                                      (3) 

  And       

                𝑡𝐶𝐷𝑏
𝛼𝑓(𝑡) =

−1

Г(1−𝛼)
  ∫

𝑏

𝑡
(𝜏 − 𝑡)−𝛼 𝑓′(𝜏)𝑑𝜏.                                                   (4) 

 

Definition 2.8 [13]: The power function and the constant function of the Caputo’s 

derivative, is: 

i. 𝑎𝐶𝐷𝑡
𝛼(𝑡 − 𝑎)𝛽 = {0,                                     𝑓𝑜𝑟   𝛽 ∈ 𝑁0    𝑎𝑛𝑑  𝛽 <

⌈𝛼⌉,   
Г(𝛽+1)

Г(𝛽−𝛼+1)
(𝑡 − 𝑎)𝛽−𝛼 ,   𝑓𝑜𝑟   𝛽 ∈ 𝑁0    𝑎𝑛𝑑 𝛽 ≥  ⌈𝛼⌉,                  (5) 

ii. 𝑎𝐶𝐷𝑡
𝛼𝑐 = 0,  where  𝑐 is a constant                                                                        (6) 

 

Lemma 2.9 [14]:  Let 𝐴 be an unbounded liner generator of a 𝐶°-semigroup 𝑇(𝑡) 

satisfies following conditions    

1.          ‖𝑇(𝑡)‖𝐿(𝑥) ≤ 𝑀𝑒𝑤𝑡, 

2. If  𝐴 + 𝐵 together with 

         𝐷(𝐴 + 𝐵)  =  𝐷(𝐴)  

is the generator of a perturbed 𝐶°-semigroup 𝑆(𝑡) on 𝑋. And   𝐵 is abounded linear 

operator on 𝑋, satisfying 

        ‖𝑆(𝑡)‖𝐿(𝑥) ≤ 𝑀𝑒(𝑤+𝑀‖𝐵‖)𝑡 . 

Lemma 2.10 [15]:  Suppose 𝛼 > 0 , u(t) is a continuous nonnegative, non-decreasing 

function defined on 0 ≤ 𝑡 < 𝑇, 𝑢(𝑡) < 𝑁 (constant). Let 𝑎(𝑡) is a nonnegative and 

locally integrable on 0 ≤ 𝑡 < 𝑇, and 𝑍(𝑡) is a nonnegative function integrable on 0 ≤

𝑡 < 𝑇 with  
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          𝑎(𝑡) ≤ 𝑍(𝑡) + 𝑢(𝑡) ∫
𝑡

0
(𝑡 − 𝑠)𝛼−1 𝑎(𝑠)𝑑𝑠, ∀𝑠 𝜖[0, 𝑇].  

Then, 

          𝑎(𝑡) ≤ 𝑍(𝑡) + ∫
𝑡

0
[∑∞

𝑘=1
(𝛤(𝛼)𝑢(𝑡))𝑘

𝛤(𝛼𝑘)
(𝑡 − 𝑠)𝛼𝑘−1𝑍(𝑠)] 𝑑𝑠   

In addition, if 𝑍(𝑡) is a nondecreasing function on 0 ≤ 𝑡 < 𝑇, we get 

         𝑎(𝑡) ≤ 𝑍(𝑡)𝐸𝛼(𝛤(𝛼)𝑢(𝑡)𝑡𝛼)   

Lemma 2.11 [16]: There are finite real constants 𝑁1 ≥ 1, 𝑁2 ≥ 1 , 𝑎𝑛𝑑 𝑁3 ≥ 1 for the 

Mittag-Leffler function 𝐸𝛼,𝛽(𝐴𝑡𝛼). Then the following properties verified 

i.  For any 0 < 𝛼 < 1 , there are finite real constants 𝑁1 , 𝑁2 such that 

          𝐸𝛼,1(𝐴𝑡𝛼) ≤ 𝑁1‖𝑒𝐴𝑡‖, 𝐸𝛼,𝛼(𝐴𝑡𝛼) ≤ 𝑁2‖𝑒𝐴𝑡‖ 

where 𝐴 ∈ 𝑅𝑛×𝑛. 

ii. For any 𝛼 ≥ 1 , 𝑎𝑛𝑑 𝛽 = 1, 2 , 𝛼 there are finite real constant 𝑁3 such that  

           𝐸𝛼,𝛽(𝐴𝑡𝛼) ≤ 𝑁3‖𝑒𝐴𝑡𝛼‖ . 

3. Main result   

In this section suppose that the following system  

          𝑥̇ = 𝐴𝑥 + 𝐾(𝑡 − 𝜏)𝑔 (𝑡, 𝑥(𝑡), 𝑎𝐶𝐷𝑡
𝛼1𝑥(𝑡), 𝑎𝐶𝐷𝑡

𝛼2𝑥(𝑡)) + 𝐾𝑥̇                            (7) 

With initial condition 

𝑥0 = 𝑥(0) 

When [𝑥1, 𝑥2, … , 𝑥𝑛]𝑇 ∈ 𝑅𝑛×1 is the state vector of the system, 𝐴 = [𝑎𝑖𝑗]
𝑛×𝑛

 is the constant 

matrix, and  𝑔(. ): 𝑅+ × 𝑅𝑛 → 𝑅𝑛 is a continuous nonlinear function, 𝐾(𝑡 − 𝜏): 𝑅+ →

𝑅𝑛 is represented the delay time. Then the system (7) is of type multi-first order and 

fractional dynamical nonlinear control system, where𝑎𝐶𝐷𝑡
𝛼1 and 𝑎𝐶𝐷𝑡

𝛼2 are the two 

of Caputo fractional derivative with   𝛼1, 𝛼2 ∈ (0,1). 
  𝑢(𝑡) = 𝐾𝑥̇ is the feedback, where 𝐾 ∈ 𝑅𝑛×𝑛. 

 

Theorem 3.1: The fractional nonlinear feedback control system (7) is locally 

asymptotically stable, if it satisfies the following conditions: 

i)   𝑅𝑒 (𝑒𝑖𝑔  (𝐼 − 𝐾)−1𝐴) < 0, and 

          𝜔 = −𝑅𝑒(𝑒𝑖𝑔  (𝐼 − 𝐾)−1𝐴) > 𝑀3 𝑚𝑎𝑥{(𝐼 − 𝐾)−1} ,   
          Where, 

              𝑀3 = 𝑀𝑀1𝑀2 ∈ 𝑅+. 

ii) ∥ 𝐾(𝑡 − 𝜏) ∥≤ 𝑀1,  𝑀1 ∈ 𝑅+. 

iii) ‖𝑔 (𝑡, 𝑥(𝑡), 𝑎𝐶𝐷𝑡
𝛼1𝑥(𝑡), 𝑎𝐶𝐷𝑡

𝛼2𝑥(𝑡)) ‖ ≤ 𝑀2(‖𝑥(𝑡)‖ + ‖𝑎𝐶𝐷𝑡
𝛼1𝑥(𝑡)‖ +

‖𝑎𝐶𝐷𝑡
𝛼2𝑥(𝑡)‖), 𝑀2 ∈ 𝑅+.  

 

Proof:  

From (7), we get  

         (𝐼 − 𝐾)𝑥̇ = 𝐴𝑥 + 𝐾(𝑡 − 𝜏)𝑔 (𝑡, 𝑥(𝑡), 𝑎𝐶𝐷𝑡
𝛼1𝑥(𝑡), 𝑎𝐶𝐷𝑡

𝛼2𝑥(𝑡)),  
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         𝑥̇ = (𝐼 − 𝐾)−1 [𝐴𝑥 + 𝐾(𝑡 − 𝜏)𝑔 (𝑡, 𝑥(𝑡), 𝑎𝐶𝐷𝑡
𝛼1𝑥(𝑡), 𝑎𝐶𝐷𝑡

𝛼2𝑥(𝑡))],                  

(8) 

Applying the Laplace transform in equation (8), we have  

         𝑠𝑋(𝑠) − 𝑥0 = (𝐼 − 𝐾)−1𝐴𝑋(𝑠) + (𝐼 − 𝐾)−1  

        . 𝐿 {𝐾(𝑡 − 𝜏)𝑔 (𝑡, 𝑥(𝑡), 𝑎𝐶𝐷𝑡
𝛼1𝑥(𝑡), 𝑎𝐶𝐷𝑡

𝛼2𝑥(𝑡))},  

Therefore,  

          𝑋(𝑠) = (𝑠 − (𝐼 − 𝐾)−1𝐴)−1𝑥0 + (𝑠 − (𝐼 − 𝐾)−1𝐴)−1  

                        . ((𝐼 − 𝐾)−1𝐿 {𝐾(𝑡 − 𝜏)𝑔 (𝑡, 𝑥(𝑡), 𝑎𝐶𝐷𝑡
𝛼1𝑥(𝑡), 𝑎𝐶𝐷𝑡

𝛼2𝑥(𝑡))}),  

By using the Laplace inverse transform for both sides, we get  

           ∥ 𝑥(𝑡) ∥≤ ‖𝑒(𝐼−𝐾)−1𝐴𝑡𝑥0‖ + ‖ ∫
𝑡

0
  𝑒(𝐼−𝐾)−1𝐴(𝑡−𝜎)(𝐼 − 𝐾)−1  

                           . 𝐾(𝜎 − 𝜏)𝑔 (𝜎, 𝑥(𝜎), 𝑎𝐶𝐷𝑡
𝛼1𝑥(𝜎), 𝑎𝐶𝐷𝑡

𝛼2𝑥(𝜎)) 𝑑𝜎‖,  

Now, by using lemma (2.9), we get  

           ∥ 𝑥(𝑡) ∥≤ 𝑀𝑒−𝜔𝑡‖𝑥0‖ + (𝐼 − 𝐾)−1 ∫
𝑡

0
 𝑀𝑒−𝜔(𝑡−𝜎)  

                         . ‖𝐾(𝜎 − 𝜏)‖‖𝑔 (𝜎, 𝑥(𝜎), 𝑎𝐶𝐷𝑡
𝛼1𝑥(𝜎), 𝑎𝐶𝐷𝑡

𝛼2𝑥(𝜎)) ‖𝑑𝜎,  

By condition (ii), we have that     

           ∥ 𝑥(𝑡) ∥≤ 𝑀𝑒−𝜔𝑡‖𝑥0‖ + (𝐼 − 𝐾)−1 ∫
𝑡

0
 𝑀𝑒−𝜔(𝑡−𝜎)  

                           . 𝑀1‖𝑔 (𝜎, 𝑥(𝜎), 𝑎𝐶𝐷𝑡
𝛼1𝑥(𝜎), 𝑎𝐶𝐷𝑡

𝛼2𝑥(𝜎)) ‖𝑑𝜎,  𝑀1 ∈ 𝑅+.  

And by using condition (iii), we get  

 

           ∥ 𝑥(𝑡) ∥≤ 𝑀𝑒−𝜔𝑡‖𝑥0‖ + (𝐼 − 𝐾)−1𝑀3 ∫
𝑡

0
  𝑒−𝜔(𝑡−𝜎)  

                          . (‖𝑥(𝜎)‖ + ‖𝑎𝐶𝐷𝑡
𝛼1𝑥(𝜎)‖ + ‖𝑎𝐶𝐷𝑡

𝛼2𝑥(𝜎)‖) 𝑑𝜎,  

Where, 

           𝑀3 = 𝑀𝑀1𝑀2 ∈ 𝑅+. 
Let 

           𝑘1(𝑡) = ‖𝑎𝐶𝐷𝑡
𝛼1𝑥(𝑡)‖  

And 

           𝑘2(𝑡) = ‖𝑎𝐶𝐷𝑡
𝛼2𝑥(𝑡)‖ 

Where  𝑘1(𝑡) and 𝑘2(𝑡)  can describe as follows: 

 

          𝑘2(𝑡) = ‖
1

Г(1−𝛼2)
∫

𝑡

0
  (𝑡 − 𝜇)𝛼2𝑥̇(𝜇)𝑑𝜇‖     

and        

         ∥ 𝑥(𝑡) ∥≤ 𝑀𝑒−𝜔𝑡‖𝑥0‖  + (𝐼 − 𝐾)−1𝑀3(∫
𝑡

0
  𝑒−𝜔(𝑡−𝜎)‖𝑥(𝜎)‖𝑑𝜎  

                      + ∫
𝑡

0
 𝑘1(𝑡)𝑒−𝜔(𝑡−𝜎)𝑑𝜎 + ∫

𝑡

0
 𝑘2(𝑡)𝑒−𝜔(𝑡−𝜎)𝑑𝜎),  

                      ≤ 𝑀𝑒−𝜔𝑡‖𝑥0‖ + (𝐼 − 𝐾)−1𝑀3(∫
𝑡

0
  𝑒−𝜔(𝑡−𝜎)‖𝑥(𝜎)‖𝑑𝜎   

                      +𝑘1(𝑡)𝑒−𝜔𝑡 ∫
𝑡

0
  𝑒𝜎𝑡𝑑𝜎 + 𝑘2(𝑡)𝑒−𝜔𝑡 ∫

𝑡

0
 𝑒𝜎𝑡𝑑𝜎) ,  

                      ≤ 𝑀𝑒−𝜔𝑡‖𝑥0‖ + (𝐼 − 𝐾)−1𝑀3(∫
𝑡

0
  𝑒−𝜔(𝑡−𝜎)‖𝑥(𝜎)‖𝑑𝜎   

                     +
(1−𝑒−𝜔𝑡)

𝜔
(𝑘1(𝑡) + 𝑘2(𝑡))),  

         ∥ 𝑥(𝑡) ∥≤ 𝑀𝑒−𝜔𝑡‖𝑥0‖ +
𝑀3(1−𝑒−𝜔𝑡)

𝜔
(𝐼 − 𝐾)−1(𝑘1(𝑡) + 𝑘2(𝑡))     
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                         +(𝐼 − 𝐾)−1𝑀3 ∫
𝑡

0
  𝑒−𝜔(𝑡−𝜎)‖𝑥(𝜎)‖𝑑𝜎 ,                                           (9) 

Multiplying the equation (9) by the term (𝑒𝜔𝑡), to get  

          ∥ 𝑥(𝑡) ∥ 𝑒𝜔𝑡 ≤ 𝑀‖𝑥0‖ +
𝑀3(𝑒𝜔𝑡−1)

𝜔
(𝐼 − 𝐾)−1(𝑘1(𝑡) + 𝑘2(𝑡))  

                                +(𝐼 − 𝐾)−1𝑀3 ∫
𝑡

0
  𝑒𝜔𝜎‖𝑥(𝜎)‖𝑑𝜎 ,             

Now, by using lemma (2.10), we get  

         ∥ 𝑥(𝑡) ∥ 𝑒𝜔𝑡 ≤ (𝑀‖𝑥0‖ +
𝑀3(𝑒𝜔𝑡−1)

𝜔
  

                               . (𝐼 − 𝐾)−1(𝑘1(𝑡) + 𝑘2(𝑡))𝑒𝑀3(𝐼−𝐾)−1𝑡  ,                                  (10) 

Therefore, by multiplying the equation (10) by the term (𝑒−𝜔𝑡), becomes  

          ∥ 𝑥(𝑡) ∥≤ (𝑀‖𝑥0‖  +
𝑀3(𝑒𝜔𝑡−1)

𝜔
(𝐼 − 𝐾)−1(𝑘1(𝑡) + 𝑘2(𝑡)))𝑒(𝑀3(𝐼−𝐾)−1−𝜔)𝑡  ,                   

When 

          𝑡 → ∞, ‖𝑥(𝑡)‖ → 0  

For 𝜔 > 𝑀3 𝑚𝑎𝑥{(𝐼 − 𝐾)−1}. 
Consequently, the system (1) is asymptotically locally stable. ∎ 

 

Example 3.2: Consider the following differential nonlinear without feedback control 

system:  

                    𝑥̇ = 𝐴𝑥 + 𝐾(𝑡 − 𝜏)𝑔 (𝑡, 𝑥(𝑡), 𝑎𝐶𝐷𝑡
𝛼1𝑥(𝑡), 𝑎𝐶𝐷𝑡

𝛼2𝑥(𝑡)),                         (11) 

This nonlinear control system consists of nonlinear differential equations of fractional 

orders with a mixed of ordinary derivatives of the first order that are unstable before 

feedback gain matrix.  

Thus, we examine this nonlinear control system after applying feedback gain matrix 

and prove the asymptotic local stabilizability of the system by using the conditions in 

the theorem (3.1).  

                  𝑥̇1 = −15𝑥1 + 15𝑥2                                                                              (12) 

                  𝑥̇2 = 110𝑥1 − 𝑥2 + 𝑥2𝑥1

4

3                                                                     (13) 

                  𝑥̇3 = 𝑥1𝑥2

2

3 − 3𝑥3                                                                                  (14) 

 

Where, 

          𝐴 = [−15 15 0 110 − 1 0 0 0 − 1 ], 
          𝐾(𝑡 − 𝜏) = 𝑡 − 1, 

          𝑥(𝑡) = [𝑥1(𝑡) 𝑥2(𝑡) 𝑥3(𝑡) ], 
And 

          𝑔 (𝑡, 𝑥(𝑡), 𝑎𝐶𝐷𝑡
𝛼1𝑥(𝑡), 𝑎𝐶𝐷𝑡

𝛼2𝑥(𝑡)) =
1

𝑡−1
[0 𝑥2𝑥1

4

3 𝑥1𝑥2

2

3 ] 

By using the definition (2.5) of power function 

          𝑎𝐶𝐷𝑡
𝛼𝑥𝛽 =

Г(1+𝛽)

Г(1+𝛽−𝛼)
𝑥𝛽−𝛼, we get 

i) When 𝛼1 =
2

3
  and 𝑓(𝑥) = 𝑥1

2 

Then 

          𝑎𝐶𝐷𝑡

2

3𝑥1
2 =

Г(3)

Г(3−
2

3
)

𝑥1

2−
2

3 =
2

Г(
7

3
)

𝑥1

4

3 = 1.68𝑥1

4

3 

ii) When 𝛼2 =
3

5
  and 𝑓(𝑥) = 𝑥2 
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Then 

          𝑎𝐶𝐷𝑡

3

5𝑥2 =
Г(2)

Г(2−
3

5
)

𝑥2

1−
3

5 =
1

Г(
7

5
)

𝑥2

2

5 = 1.127𝑥2

2

5 

Thus,  

        𝐾(𝑡 − 𝜏)𝑔 (𝑡, 𝑥(𝑡), 𝑎𝐶𝐷𝑡
𝛼1𝑥(𝑡), 𝑎𝐶𝐷𝑡

𝛼2𝑥(𝑡)) = (𝑡 − 1)
1

𝑡−1
[0 𝑥2𝑥1

4

3 𝑥1𝑥2

2

3 ] 

                                                                           = [0 𝑥2𝑥1

4

3 𝑥1𝑥2

2

3 ] 

Now, the figures 3.1: (a), (b) and (c) show the nonlinear fractional control system (11) 

is unstable before applying feedback gain matrix, as follows: 

 
Fig. 3.1: Show the unstable nonlinear fractional control system. 

a) The state solution𝑥1 of the nonlinear fractional control system (11) without feedback. 

b) The state solution  𝑥2 of the nonlinear fractional control system (11) without feedback. 

c) The state solution 𝑥3of the nonlinear fractional control system (11) without feedback. 

 

Now, we study the stabilizability notion of the nonlinear control system after applying 

feedback gain control input 

          𝑢(𝑡) = 𝐾𝑥̇  

For system (1), as follows:  

           𝑥̇ = (𝐼 − 𝐾)−1 [𝐴𝑥 + 𝐾(𝑡 − 𝜏)𝑔 (𝑡, 𝑥(𝑡), 𝑎𝐶𝐷𝑡
𝛼1𝑥(𝑡), 𝑎𝐶𝐷𝑡

𝛼2𝑥(𝑡))]               

(15) 

The feedback matrix was chosen, as follows: 

           𝐾 = [1 15 0 110 0 0 0 0 − 3 ], 
 

           𝐼 − 𝐾 = [0 − 15 0 − 110 1 0 0 0 4 ], 
 

           (𝐼 − 𝐾)−1 = [−0.0006 − 0.0009 0 1.0005 − 1.0005 0 0 0 − 0.25 ], 
And, 

 

           (𝐼 − 𝐾)−1𝐴 = [−0.981 0 0 1.0005 − 1.0005 0 0 0 − 0.25 ], 
 𝑡ℎ𝑒𝑛, 

       (𝐼 − 𝐾)−1𝐾(𝑡 − 𝜏)𝑔 (𝑡, 𝑥(𝑡), 𝑎𝐶𝐷𝑡
𝛼1𝑥(𝑡), 𝑎𝐶𝐷𝑡

𝛼2𝑥(𝑡))  

                    = [−0.0006 − 0.0009 0 1.0005 − 1.0005 0 0 0 −

0.25 ] [0 𝑥2𝑥1

4

3 𝑥1𝑥2

2

3 ] = [−0.0009𝑥2𝑥1

4

3  − 1.0005𝑥2𝑥1

4

3  − 0.25𝑥1𝑥2

2

3 ] 

The nonlinear control system (25) with feedback takes the following form:   
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                  𝑥̇1 = −0.981𝑥1 − 0.0009𝑥2𝑥1

4

3                                                            (16) 

                  𝑥̇2 = 1.0005(𝑥1 − 𝑥2) + 𝑥2𝑥1

4

3 − 1.0005𝑥2𝑥1

4

3                                   (17) 

                  𝑥̇3 = 𝑥1𝑥2

2

3 − 0.25𝑥3 − 0.25𝑥1𝑥2

2

3                                                       (18) 

Then, prove and satisfy the asymptotic local stabilizability of the system (11) by using 

the conditions in the theorem (3.1), as follows:  

i)   𝑅𝑒 (𝑒𝑖𝑔  (𝐼 − 𝐾)−1𝐴) = −0.981, −1.0005, −0.25 

And 

          𝜔 = −𝑅𝑒(𝑒𝑖𝑔  (𝐼 − 𝐾)−1𝐴) = 0.25 > 𝑀3 𝑚𝑎𝑥{(𝐼 − 𝐾)−1} ,   

              =
1

2
(−0.25) = −0.125  

          Where   𝑀3 =
1

2
∈ 𝑅+.  

ii) ∥ 𝐾(𝑡 − 𝜏) ∥=∥ 𝑡 − 1 ∥ ,       0 < 𝜏 < 𝑡 

                                 ≤∥ 𝑡 ∥∈ 𝑅+  

 

iii) ‖𝑔 (𝑡, 𝑥(𝑡), 𝑎𝐶𝐷𝑡
𝛼1𝑥(𝑡), 𝑎𝐶𝐷𝑡

𝛼2𝑥(𝑡)) ‖ = ‖
1

𝑡−1
‖‖√(𝑥2𝑥1

4

3)2 + (𝑥1𝑥2

2

3)2‖ 

                                                       = 𝑙𝑖𝑚
𝑡→∞

‖
1

𝑡−1
‖‖√(𝑥2𝑥1

4

3)2 + (𝑥1𝑥2

2

3)2‖  

                                                           = 0   , 𝑤ℎ𝑒𝑛 𝑡 → ∞ and 𝑀2 = 1 ∈ 𝑅+ 

              ‖𝑔 (𝑡, 𝑥(𝑡), 𝑎𝐶𝐷𝑡
𝛼1𝑥(𝑡), 𝑎𝐶𝐷𝑡

𝛼2𝑥(𝑡)) ‖  

                  ≤ 𝑀2(‖𝑥(𝑡)‖ + ‖𝑎𝐶𝐷𝑡
𝛼1𝑥(𝑡)‖ + ‖𝑎𝐶𝐷𝑡

𝛼2𝑥(𝑡)‖), 𝑀2 ∈ 𝑅+.   

 

Thus, the figures 3.2: (a), (b) and (c) display the simulation result of theorem (3.1), 

which proves that the zero solution of the nonlinear system in (11) is asymptotically 

locally stabilizable. 

 
Fig. 3.2: Show the stabilizable nonlinear fractional control system. 

 

a) The state solution  𝑥1 of the nonlinear fractional control system (11) with feedback. 

b) The state solution  𝑥2 of the nonlinear fractional control system (11) with feedback. 

c)  The state solution 𝑥3 of the nonlinear fractional control system (11) with feedback. 
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4. Conclusions  

A new outcomes has been explored in nonlinear dynamical systems for double 

fractional with ordinary order in this paper related to some necessary conditions. Then, 

the stabilizability of nonlinear systems with control was obtained by feedback gain for 

the nonlinear systems class. So that, the precise results are obtained in locally case 

according to the conditions of theorem 3.1, which have demonstrated their accuracy in 

some applications. Also, as the work technology has been programmed and reinforced 

with the illustrative examples that have shown the efficiency of the stabilizability of the 

considered systems. Finally, may be interested to extend the obtained results in this 

work to the case of regional observer problem in distributed parameter systems as in 

[17-18]. 

 

References   

[1] Al-Saphory, R.,  Khalid, Z. and  El-Jai A. 2020. Reginal boundary gradient closed 

loop control system and Γ*AGFO-observer. Journal of Physics: Conference Series, 

1664 (012061): 1-19,. 

[2] Ameen, I. G., and Ali, H. M. (2020) Application of fractional optimal control 

problems on some mathematical bioscience. Advanced Applications of Fractional 

Differential Operators to Science and Technology, 41-56. 

[3] Thiao, A., and Sene, N. (2019) Fractional optimal economic control problem 

described by the generalized fractional order derivative. International Conference on 

Computational Mathematics and Engineering Sciences, 36-48. 

 [4] Zhao, K. (2022). Stability of a nonlinear Langevin system of ML-type fractional 

derivative affected by time-varying delays and differential feedback control. Fractal 

and Fractional, 6 (725), 1-22. 

[5] Li, H. L., Jiang, Y. L., Wang, Z. L., and Hu, C. (2015) Global stability problem for 

feedback control systems of impulsive fractional differential equations on 

networks. Neurocomputing, 161, 155-161. 

[6] Qasim Hasan, S., & Abbas Holel, M. (2018) Solution of Some Types for 

Composition Fractional Order Differential Equations Corresponding to Optimal 

Control Problems. Journal of Control Science and Engineering, 2018, 1-12. 

[7] Čermák, J., and Kisela, T. (2023). Stabilization and destabilization of fractional 

oscillators via a delayed feedback control. Communications in Nonlinear Science and 

Numerical Simulation, 117 (106960). 

[8]  Wang, X. (2018). Mittag-Leffler stabilization of fractional-order nonlinear systems 

with unknown control coefficients. Advances in Difference Equations, 2018, 1-14. 

[9] Sabatier, J. A., Agrawal, O. P., and Machado, J. T. (2007). Advances in fractional 

calculus, 4 (9). Dordrecht: Springer. 

[10] Schiff, J. L. (1999). The Laplace transform: theory and applications. Springer 

Science and Business Media. 

[11] Perko, L. (2013). Differential equations and dynamical systems, 7. Springer 

Science & Business Media. 



Wasit Journal for Pure Sciences Vol. (2) No. (3)   

87 

 

[12] Takayama, A. (1993). Analytical methods in economics. University of Michigan 

Press. 

[13]  Zhou, Y. (2016). Basic theory of fractional differential equations. 2nd Edition, 

World Scientific, 1-380. 

[14] Pazy, A.( 1983).Semigroup of linear operator and applications to partial 

differential equation. Springer-Verlag, New York, Inc. 

[15] Ye, H., Gao, J., & Ding, Y. (2007). A generalized Grönwall's inequality and its 

application to a fractional differential equation, Journal of Mathematical Analysis and 

Applications, 328(2), 1075-1081. 

[16] De la Sen, M. (2011). About robust stability of Caputo linear fractional dynamic 

systems with time delays through fixed point theory. Fixed Point Theory and 

Algorithms for Sciences and  Engineering. 

[17]  Al-Saphory, R.,  Khalid Z., and  Jasim M. (2023). Junction interface conditions 

for asymptotic gradient full-observer in Hilbert space. Italian Journal of Pure and 

Applied Mathematics, 49, 1-16. 

[18] Al-Saphory R., (2002). Asymptotic regional boundary observer in distributed 

parameter systems via sensors structures, Sensors, 2, 137-152. 

[19]  Al-Hachami, A. K. (2019), Magnetic Reconnection in the Absence of Three-

Dimension Null Point. Herald of the Bauman Mosco state Technical University. (6), 

50-66 

[20] Al-Hachami, A. K. (2019), Some Feebly Separation Properties.  The 2nd 

international scientific conference for science college- Al-Qadisieh University 

Article submitted 15 July 2023.  Accepted at 22 August 2023. Published at 30 

September 2023. 

 


