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Abstract— malaria is one of the most severe diseases worldwide. However, the current 

diagnostic method that involves examining blood smears under a microscope is unreliable 

and heavily relies on the examiner's expertise. Recent attempts to use deep-learning algo-

rithms for malaria diagnosis have not produced satisfactory results. But, a new CNN-based 

machine learning model has been proposed in a research paper that can automatically de-

tect and predict infected cells in thin blood smears with 94.63% accuracy. This model 

accurately accentuates the region of interest for the stained parasite in the images, which 

increases its reliability, transparency, and comprehensibility, making it suitable for deploy-

ment in healthcare settings.  
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1 Introduction  

Malaria is a disease that affects a large portion of the world's tropical and subtropical regions 

and can be fatal. The disease has been well-known to humans for a long time and is transmitted 

by the parasite vector and mosquito species Anopheles. The parasite in the mosquito's saliva is 

injected into the bloodstream of the victim when it feeds on blood. The two most harmful parasite 

species responsible for malaria among individuals are P. falciparum and P. vivax [1][2]. 

According to the World Health Organization (WHO), around 247 million people suffered 

from malaria globally in the year 2021[3], and the disease caused approximately 619,000 deaths, 

with most fatalities occurring among children below the age of five. To eliminate malaria and 

reduce its devastating impact, A number of initiatives and regulations have been implemented, 

including the Sustainable Development Goals (SDGs) and Elimination 8. These programs aim to 
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eradicate malaria while also focusing on the most vulnerable societies. The year 2030 is set as 

the target to achieve these goals [4] [5].  

Every year, Expert pathologists painstakingly examine millions of blood smear films, and 

identifying malaria involves a large financial and human effort. Additionally, accurate disease 

diagnosis and grading depend on reliable parasite counts from blood films. For instance, if a 

patient did not have malaria cells but the doctor mistakenly gave medications, the patient would 

unnecessarily experience nausea or abdominal pain. Malaria diagnosis needs to be accurate and 

sensitive (few false negatives) To acquire parasites over the entire disease life cycle. For the 

treatment of malaria in endemic areas with a dearth of specialist pathologists and a heavy work-

load of screening blood films, an early and accurate diagnosis can be beneficial. 

Traditional approaches to automating the identification of malaria entail sophisticated image-

processing methods with manually crafted features, such as form, colour, intensity, size, and 

texture. These techniques use several segmentation algorithms to identify red blood cells from 

microscopic pictures. Following Segmentation photos are split into classes of infected and unin-

fected images using a computed set of features that are appropriate for red blood cells. Morpho-

logically based techniques are used to segment cell images with structuring features, which im-

proves the qualities of red blood cells, such as the roundness of the cells. This improves classifi-

cation accuracy. Numerous strategies are employed for the segmentation, feature extraction, and 

classification of malaria diagnosis. It is evident from contrasting conventional and contemporary 

malaria detection methods that model accuracy and computing complexity must be traded off, as 

model accuracy rises, so does computational complexity. For instance, a deep neural network is 

discovered to have superior accuracy than a support vector machine (SVM), despite the latter 

having a faster computation time for classification. 

Granulometry uses the intensity of picture pixels to gather important data. Bayesian learning 

and Support vector machine (SVM) are used to categorize malaria cells using the discriminative 

feature set. 

Deep learning (DL) techniques have recently been used to diagnose malaria automatically 

with decent rates of detection. Because the hidden layers of deep learning models automatically 

extract features from the data, they do not require the computation of manually produced features. 

Large datasets are needed for deep learning models in order to train neural networks and increase 

model accuracy. However, there are just a few tiny datasets available for medical applications 

like diagnosing malaria. This is due to the fact that creating pathologists' input is necessary for 

an annotated dataset, although this is not always possible.. Deep learning models newly presented 

picture augmentation approaches enable greater To get beyond the dataset's scarcity, limit over-

fitting and increase generalization. By employing methods like rotation, shear, and translation to 

divide the original image into many images, image augmentation expands the dataset and helps 

the model attain higher accuracy. The use of machine learning techniques to predict malaria out-

breaks involves employing algorithms that analyse and learn from data to make forecasts about 

the likelihood of malaria outbreaks occurring in a specific area. This can be achieved by utilizing 

decision trees, random forests, and neural networks are only a few examples of the various ma-

chine learning methods[6] [7]. The aforementioned algorithms have the ability to handle vast 

amounts of data, which can include various parameters such as weather conditions, population 

density, and past occurrences of malaria. By analyzing this data, the algorithms can predict the 

probability of future malaria outbreaks occurring[8] .The objective is to offer timely notifications 
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to public health authorities, enabling them to take necessary preventive actions and minimize the 

spread of the disease. 

Each year, a significant number of blood films are analyzed under a microscope for the pur-

pose of diagnosing malaria [9].Although the method of examining films under a microscope is 

widely used, it is prone to errors and can be time-consuming. Hence, numerous studies have 

proposed computer-aided systems to detect malaria [10].  

 Additionally, recent research has demonstrated that deep learning architectures for malaria 

diagnosis greatly outperformed by models based on traditional classifiers. ZahidAlam Khan et 

al. [11] the utilization of deep learning-based algorithms, such as Deep Deterministic Policy Gra-

dient (DDPG), has demonstrated better performance in managing the transmission of diseases 

and their impact on human health within a population, compared to traditional algorithms like Q-

Learning or SARSA. 

 

Masud, Mehedi [12] demonstrated the effectiveness and accuracy of deep learning architecture, 

specifically the convolutional neural network (CNN), in real-time malaria detection using input 

images. The goal is to minimize manual labor through the integration of a mobile application. 

The study involves the assessment of a customized CNN model employing a cyclical stochastic 

gradient descent (SGD) optimizer equipped with an automatic learning rate finder. The results 

showcase an impressive 97.30% accuracy in distinguishing between healthy and infected cell 

images, characterized by both high precision and sensitivity. 

 

 Anupama Raskar et.al [13] convolutional neural networks (CNNs) have been employed to 

identify malaria and dengue in under 60 seconds, as opposed to traditional diagnostic methods.  

Ren Qi et.al [14]showcased a comprehensive evaluation and recommended a gene cluster 

analysis and classification by assessing the pros and cons of various techniques utilizing updated 

variations of clustering and classification frameworks, including both linear and non-linear ap-

proaches. The study further integrated and provided an RNA-seq clustering and classification, as 

well as dimension reduction methodologies for short conditional RNA-seq (scRNA-seq) data. 

 Qiong Cai et al. [15]conducted a thorough examination of the techniques employed in smart 

healthcare systems, with a particular emphasis on decision-making processes that employ multi-

modal association mining and fine-grained data semantics. Michelle Viscaino et al. [16]used 

SVM, KNN, DT, and SVM to suggest a multi-classification model with 93.9% accuracy for 

identifying external and middle ear conditions. 

 S. Sharma et al. [17]proposed a dataset of histopathological image data, a CNN model for 

multiclass classification of breast cancer. Using the suggested CNN approach, 80.47% accuracy 

was attained.  

Jinzhu Lu et al  [18]analyzed the most recent CNN networks relevant to the classification of 

plant leaf diseases  and outlined the Basic concepts used to classify plant diseases. Also, outlined 

CNN's primary issues and their associated fixes for classifying plant diseases. Also, the direction 

of future development for plant disease classification was explored. 

 Teja Kattenborn et. al. [19] expounded upon the guiding principles of CNN and explained 

why vegetation remote sensing is a suitable application for them. The main section provided an 

overview of  the latest trends and developments, considering factors such as spectral resolution, 

spatial grain, various sensor types, methods for generating reference data, existing sources of 

reference data, and various CNN techniques and architectures. Elliot Mbunge et al. [20] 
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employed decision trees, support vector machines, random forests, and logistic regression to pre-

dict malaria; the study shows that, with 83% accuracy, 82% precision, and 90% F1-score, logistic 

regression surpasses alternative machine learning classifiers. 

 G.Hanitha et al. [21] processed the slide images for the blood cells that were both disease-

infected and uninfected, and this process was done without the involvement of any humans. By 

using the technique, the pathologist will obtain better outcomes, aid in the decision-support sys-

tem for doctors, provide correct results, and complete the inspection fast or in a shorter amount 

of time. 

 

In this study, we apply deep learning to identify parasite-infected white blood cells in smears 

on conventional microscope slides by using a deep learning model called the convolutional neural 

network (CNN). All existing deep learning models are outperformed by the suggested custom-

ized CNN-based algorithm. This study makes a contribution by suggesting a custom CNN model 

that performs better than every deep learning method currently available. Bilateral filtering and 

picture enhancement techniques are used to highlight white blood cell properties before training 

the model. The tailored CNN model is generalized and prevents over-fitting thanks to image 

augmentation methods [22]. Malaria Dataset is used for all experimental evaluations, and the 

results demonstrate that when recognizing malaria from microscopic blood smears, the suggested 

approach is 94.63% accurate. The rest of this paper is ordered as; Sect. II will introduce the 

Materials and methods (data set, system design and architecture) followed by Sect. III which 

clarify the results and discussion and conclusion included in the final section. 

 

2. Malaria Classification System 
The conventional pipeline for automating the diagnosis of malaria : Feature selection, cell 

segmentation, image pre-processing, and classification of malaria-infected and -uninfected cells. 

In the literature, various methods are suggested for each phase Figure 1 illustrates the four pro-

cesses that make up [23]. 

2.1. Image pre-processing 

 In order to increase the accuracy of subsequent processing procedures including feature ex-

traction, cell segmentation, and classification, approaches are used to improve images showing 

blood smear quality [24]. Any type of impurity in the images has the potential to degrade the 

effectiveness of the subsequent processing steps could leave malaria cells vulnerable to incorrect 

diagnosis. Several smoothing filters, including Gaussian, median, and geometric mean filters, are 

used to lessen noise in microscopic images, are frequently utilized. Additionally, morphological 

operators have been employed to control noise by filling gaps and removing contaminants by 

enhancing cell outlines. Adaptive threshold and histogram equalization are also used to enhance 

the photographs' quality and contrast.  Some malaria detection methods aim to reduce the varia-

tion in cell illumination, such as HSV colour space and grayscale colour normalization, was ap-

plied [25]. Low-pass filters have also been employed to remove noise-related frequency compo-

nents from the microscopic images. The Laplacian filter was employed in several approaches to 

increase the red blood cell (RBC) borders and sharpen edges in images .  
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Fig 1. Traditional automated pipeline for detecting malaria 

 

2.2 . Cell Segmentation 

 Red blood cells (RBC), white blood cells (WBC), malaria parasites, and other artefacts are 

separated from pre-processed microscopic images into small, non-overlapping sections. This is 

the most crucial step in any automated malaria identification approach. Unsupervised cell seg-

mentation is often done using image-based techniques like Chan-Vese segmentation, holefilling 

algorithms, and histogram-based techniques. In low-contrast pictures, cells are segmented using 

the RGB image's green channel. In order to separate RBCs from improved pictures, we apply the 

Otsu threshold. To separate cells from microscopic images, The S and V channels of the Hue-

Saturation-Value (HSV) colour space employ thresholding algorithms. For cell segmentation, 

the fuzzy divergence technique is employed [26]. The fuzzy rule-based segmentation approach 

separates malaria cells from images using three different colour schemes. To identify regional 

extrema and divide cells, morphological-based approaches employ grayscale granulometry. Cells 

are separated from unlabeled data using K-means clustering, and RBCs are identified using the 

Hough transform depending on the morphology of the RBC. To remove the overlapping cells 

that obstruct segmentation, use a marker-controlled watershed method [27]. 

 

2.3. Feature Selection 

Red blood cells' dimensions, hue, and texture are used to create cell images. The HSV colour 

space and the green channel of the RGB colour space are preferred for feature extraction since 

colour characteristics are prominent in stained blood pictures. Haralick's texture features, local 

binary patterns, the histogram of oriented gradients (HOG) features, and other feature-selection 

methods have all been used to extract features from cell images [28]. Using the colour and shape 

details in cell images, different types of parasites can be recognized. Morphological transfor-

mations like grayscale and thinning to find malaria cells in blood smear images, the malaria de-

tection technique employs a Poisson distribution-based linear Euclidean distance classifier with 

a Gabor filter. To identify different malaria infection species, an adaptable neuro-fuzzy interface 

system (ANFIS) employed to identify cells that have been infected with malaria, Also employed 

is a genetic strategy based on chromosome-encoding techniques and mutation tactics [29]. For 

the unsupervised detection of cells harbouring malaria, K-means clustering is employed. SVM 

and artificial neural networks (ANN) use the information of normalized red, green, and blue, as 

well as the textural characteristics that are invariant to staining fluctuations, to identify the ma-

laria parasite. 

 

 



Wasit Journal for Pure Sciences Vol. (2) No. (3)  

170 

 

3. MATERIALS AND METHODS 
 

3.1. Data Set  

   In this paper, the dataset contains blood smear images from 150 malaria cases, with an av-

erage of 12 images per patient. The dataset contain 13780 images for each parasitized and un 

infected.  The data were obtained from National Library of Medicine, National Institutes of 

Health, Bethesda, MD, USA[30] . Fig. (2) data samples from the categories of parasitized and 

non-parasitized people should be displayed. 

 

 
 

(a) 

 
(b) 

Fig.2. Samples from Malaria dataset: (a) Parasitized      white blood Cell Images and (b) uninfected 

white blood Cell Images. 

3.2. Data Analysis 

Biomedical images can vary greatly various clinical interactions, both between individuals 

and even within the same person, due to factors such as lighting conditions, different marker 

stains used in pathological tests, variations in the image extraction process, and differences in 

image dimensions. To ensure consistency and eliminate irrelevant noise in research, image pre-

processing is used to standardize the images to a common format. In this study, all images were 

scaled to a dimension of (64,64) and padded by repeating the same pixel, provides input to train 

the customized model, with an RGB scale. Only RGB channel photos were permitted during the 

pre-processing step of resizing. To increase generality in the dataset and reduce overfitting, data 

augmentation was done using the Kerass Image Data Generator. A method for changing an ex-

isting dataset to generate new data is called data augmentation. Expanding the collection and 

introducing heterogeneity is beneficial since it offers researchers access to more images. The 

dataset's high level of randomization also helps to reduce overfitting. A few of the data augmen-

tation methods used were rotation, shearing, zooming, horizontal flipping, feature-wise normal-

ization, and width and height shifts. The data became more diverse as a result of the addition of 

shifts and rotations.  
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3.3. Data Split 

Once the picture enhancement and data processing are finished. The training set used to train 

the model and the validation set to verify it. The dataset is split into three sets: a training set, a 

validation set, and a test set with an 80:20 split to allow deep learning systems to recognize all of 

the underlying visual patterns and representations. In particular, 80% of the data are in the train-

ing set, while 20% of the data are split between the validation set and test set. 

 

 

3.4.  System Architecture and Design 

 

All models and tests will be based on convolution neural networks (CNNs). An array of pixel 

values represents an image in its raw form. The highly connected neighboring pixels serve as the 

foundation for feature extraction most of the time. CNNs use techniques to deepen the overall 

architecture, such as local receptive fields, weight sharing, pooling, and the use of many layers 

take advantage of this correlation [31] [32]. 

 

3.4.1. Transfer Learning 

In essence, CNNs are feature extractors that are trained to understand how to represent an 

image [33]. Modern CNN models have mastered the art of extracting information from millions 

of photos Transfer learning is the process of using these  models'  abilities to address a similar 

issue [34]. The absence of appropriate structured data and computational resources are the key 

justifications for leveraging the previously trained models' information. Deep learning is being 

used in the field of digital pathology, transfer learning is crucial because there aren't enough 

properly labeled bio-medical images. 

 A CNN's early layers collect generic features (corners and edges), whereas it's later layers 

aggregate these generic features to extract abstract features.edges, while the final few layers are 

used to categorize photos using the retrieved characteristics.  

The pre-trained models' last layers could not be helpful in categorizing the ill images and 

might be eliminated. To make sure that all of the prior data from the base model is remembered 

and used, a slower learning rate is used. Inception-v3, Xception, InceptionResNet-V2, ResNet50-

V2, DenseNet121, Inception-v3, and EfficientNet are examples of contemporary architectures 

will be used for transfer learning because they have been trained on millions of images and have 

obtained the best performance [35] [36] . Only 13780 images from each category are included in 

the collection. Massive amounts of data are needed for deep learning algorithms to learn every 

potential representation and function at their best in real-world settings. 

 

3.4.2.  Custom  Model 

Input and output layers, two convolutional layers, a layer for global average pooling, two max-

pooling layers, and 64 filter units make up the total of 15 layers in the custom model. Batch 

normalization is used to activate the ReLU of each convolutional unit. The input is convolved 

using filters of size (2x2) with padding set to "same." The pool window for the Max Pool layers 

is (2x2). The dense layer is made up of one unit and sigmoid activation,the top layer of classifi-

cation. The model design is shown in Fig. (3). 
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Fig. 3.  Custom model design 

 

3.4.3.   Hyperparameters & Callbacks 

 

The hyperparameters and callbacks listed in Table 1 will be used for all model experiments. 

Table 1. Model Training Tarameters. 

Hyperparameters Value 

Activation Function ReLU, Sigmoid 

Cost Function Categorical Cross Entropy 
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Optimizer Adam 

Epochs 7 

Dropout Ratio 0.2 

Batch Size 64 

 

Loss Function A function or parameter that is frequently used to gauge the model's effective-

ness in terms of loss is the cross-entropy loss function. The binary cross-entropy loss function is 

used for problems whose output is binary labels (often referred to as binary classification). The 

categorical cross-entropy. Loss function is used for a multiclass problem with multiple labels as 

its output (commonly referred to as multiclass classification). Given that the dataset utilized in-

cludes two labels and that binary classification is the problem at hand, we employed the binary 

cross-entropy loss function in the suggested model [37]. 

 

Activation function It is thought of as a gateway between the input layer and its output layer, 

the activation function. It is a type of function, in other words, that restricts the output signals to 

a finite value. Therefore, it is crucial to include an activation function in order to limit the output 

value to a particular finite value. The input and hidden layers of the proposed model used a Rec-

tified Linear Unit (ReLU) as an activation function. Given that our data includes a binary label, 

the sigmoid function is utilized as the activation function in the output layers [38]. 

Optimizer Optimizers are regarded as a collection of specific algorithms that are used to mod-

ify neural network properties like weights and learning rates in order to minimize loss. There are 

several different optimizers, including SGD, RMSprop, Adam, and Adamax. We have selected 

the Adam optimizer for our model out of all of these optimizers. The Adam optimizer can be 

viewed as a hybrid of momentum-based stochastic gradient descent and RMSprop [39]. 

Validation and Testing the verification of model using random batches of 7 samples after 

training it in each epoch. After each epoch's training is complete, this validation takes place. By 

selecting random photos from the test set after the model has been validated, we are evaluating 

our model, and the testing accuracy after thorough analysis comes out to be 94.63%. 

 

4. RESULTS AND DISSCUSION 
Several CNN models are utilized as pre-trained models to address the unique applications. 

Choosing the ideal CNN network depends on how well you can categorize the target dataset. 

The dataset is divided into three subsets: a training set, and a test set, following an 80 % for 

training and 20 % for testing distribution. This division facilitates comprehensive recognition of 

underlying visual patterns and representations by deep learning systems. 

 The customized model is set up to train for 7 epochs and then stop early. The evolution of certi-

fication and verification is seen in Fig. (3). Sufficient convergence is achieved by the model on 

the training and validation data. A test dataset was used to evaluate the model after training for 7 

epochs, resulting in an accuracy of 94.63% and demonstrating overall good performance.  

The graphs indicate a gradual increase in both training and testing accuracy over time, indicating 

effective learning by the model. Additionally, a decrease in loss is observed in the model. 
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Fig. 4.  CNN performance. 

 

The model is being assessed based on several critical parameters for result analysis. It is 

important to note that accuracy alone is not always the best metric for evaluating a classifier's 

performance. Other metrics, such as precision, and recall, should also be considered to ensure 

that the model is performing well on all aspects of the data. Precision denotes a classification 

model's competence in singling out only the relevant data components. In mathematical terms, 

precision is computed by dividing the total count of true positives by the sum of true positives 

and false positives. Recall denotes a model's ability to identify all relevant occurrences within 

a dataset. Mathematically, recall is determined by multiplying the count of true positives by the 

reciprocal of the sum of true positives and false negatives. Table 2 indicate the proposed model 

metrics. 

Table 2: Performance metrics for the base model. 

 accuracy recall precision 

Proposed model 94.63% 96% 95% 

 

The recall of the model is also high for both classe. This means that the model correctly 

identified of all negative samples and  of all positive samples in the test set. The precision of the 

proposed model is high. This means that when the model predicts a sample to be in a certain 

class. 

 

5. CONCLUSION 
 

The most fatal infections, especially in tropical or warm climates, are malaria. A pathologist 

uses a microscope primarily to use to diagnose the disease. Nevertheless, this is not just a time-

consuming operation; it also directly depends on the pathologist's knowledge and the available 

machinery and software, which are extremely scarce, particularly in rural regions. With the use 

of advanced algorithms and electronic systems, an automated approach for diagnosing diseases 

has become more and more popular in recent years. 

This study developed a deep learning algorithm that uses thin blood smear full slide images 

to diagnose malaria. The algorithm was built through several experiments and utilized transfer 

learning, which is a useful approach for creating high-performance models in healthcare, where 
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there is often a shortage of accurately labelled data. The study achieved an accuracy of 94.63% 

in detecting malaria using medical imaging. 

The suggested approach may be expanded in the future to include classification of more ma-

laria parasite types. Moreover, the performance of the suggested technique may be enhanced by 

creating a fresh CNN model and adding more photos to the malaria corpus. Because the strength 

of deep learning is strongly correlated with the number of samples in the training set, future study 

will try to train the system with a large data collection. Moreover, the utilization of parallel com-

puting tools like Graphics Processor Units and/or multi-core computers is intended to cut down 

on training time. Lastly, establishing settings properly might lead to improved accuracy. 
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