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Abstract— In the current study, the researchers conduct computation of the
Stiefel- Whitney classes of real representations of non-prime power groups such
as Mathieu groups, symmetric groups, alternating groups and Janko groups.
Stiefel- Whitney classes are conducted by using orbit polytope convex hull and
steenrod squares of the non-prime power groups whick we get it by using the
sylow theorm and with vector in n-dimention our computation using the HAP
package (Homological Algebra Programming) of the GAP(general Algebra Pro-
gramming) Programming software in other word this paper demonstrates how
the underlying techniques can be used to get the SW-classes of the real represen-
tation for non-prime power groups .

Keywords— Cohomology operation, Steenrod square, Cup-i product, SW-
classes .

1 Introduction

In this paper, Steenrod squares with cupi- product, orbit polytopes and the
Thom isomorphism are used to compute the Stiefel — Whitney classes (pithiness
SW-classes) comparable to areal representation p : G — 0, (R) of a non-prime
power groups. The main obstacle was how to calculate the steenrod squares on
cohomology rings of non-prime power groups, which were computed by Mahmood
[1]. However, if the cohomology ring of the sylow subgroup of any non-prime power
groups is homeomorphic to finite groups then they are less than or equal to 128 groups.
The SW-classes comparable to a real representation p : G — 0,(R) of a finite
groups studies were taken up Ellis [2,3], Guillot [4] and Daher [5]

1.1 Definition [2, 5] A segment connecting any two points a, b € X, a subset X of R"
is called Convex, and it implies that for every pair and 1 e [0,1], which is real number,
one has Ala + (1 — A)b €X. The finite set X = {ay,a,, ..., aq} of points in R
called convex hull and denoted conv(X),

conv(X) = (T, A aeX, 4y = 0,3, 4 = 1}
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1.2 Definition1 [6] CW-complex is an abbreviation of what means "closure-finite weak
topology" which is obtained by taking the union of a sequence of topological spaces

XOCX1CX2C"'

Each space X,, is formed from X,,_; suchthat X,, = X,,_; [{. el where each el isan
open n-disk. X is called CW-complex if X = U, X,

1.3 Definition [5] if L and K are two R-modules over any ring R Their tensor product
is an R-modules such that L ®z K ={I{®k, for some | € L and k € K} subject to the
following relations

o (L+L)®k=(U®k) +(,8k)

4 l®(k1 + kz) = (l®k1) + (l®k2)

o 1.l®k=IQr.k,vreR,;,l, €Land ky,k, EK.

1.4 Definition [7] To construct a contractible CW-space EG, there are various ways
for any group G, where G acts freely; the action changes the cell when referring to
EG as a total space for G. The base space BG = EG /G is a quotient space. A classifi-
cation space for G is produced by omitting the action. We have a free ZG —
resolution which is the cellular chain complex C,(EG) and C,(BG) =

C.(EG) Q¢ Z. Thus, H*(BG, Z,) = H*(G, Z,).

A
1.5 Definition [8] let X —— X x X be the diagonal map C, ,4(X)
da @ u®v A
prg(X X X) —— C,(X) ® Ca(X) Z QL Z

— C

u—v) = ® v)p °dx€) =u® v (¢ (ds (C)) , € € Cp+q(X). As a result, the
cup product is the homomorphism —: HP(X) ® HI(X) —» HP*9(X) described
as u—v=dx(uxv).
(Coefficients belong to any commutative ring with unity). One direct effect of the cross
productrulesis that u — v =(-1)™u — v, inwhich p and g are the degrees of u and
v, respectively. The general case of cup product is the cup — i product such that they
areequal ifi=0,[ie:=u—yv=u—;Vv].
Forevery (i = 0;i € Z) aZ — linear cup — i product

CP(R¢ ) ®; CI(RE)— CcPTI~1 (RY), TQRQU > U—; T (1)

is explained by the formula (@ —; 9)(c) = (A @ D Pp4q (k' @ ¢ - (2)
forc € Ry,

1.6 Theorem [4,5] The operation C™ (RS)— C?"* (RY), it —; u ... (3)
Induces a homomorphism Sq': H"(G,Z,) » H?*""Y(G,Z,) .. @
The homomorphism Sqt = sq" L H™(G,Zy)— H" (G, Zy) ... (5)

2 Construct Stiefel- Whitney classes
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In this section, we discuss the method of computation or construction SW-classes. We
have some steps to find them.

1) Let p:G— 0,(R) or GL,(R) be an any (orthogonal) matrix
representation of a finite group G.
2) Take ve R™ be any vector.
3) LetQ(g,v) ={g.v: g €G} represents convex hull of Q(g,v) in R"
4) The vertices of the orbit polytope P = P(p,v) = p(g)v = g.v = Q(g,v),
convex hull of Q(g,v) in R",
We have the convex polytope by choosing a vector v e R",

P = P(p,v) = convip(g).v: g €G)

is a CW-space homotopy equivalent to a ball B"and P™~1is equivalence to a sphere
S™ 1. C,(P) is cellular chain complex of the polytope P which is a complex of ZG-
modules (may be not free). "A contractible m — dimensional and G acts on it by
permuting cells" is the polytope P, and "the action endows PS with structure of

a ZG — resolution of Z."

C.(P): 0 = Cx(P) = Cx_1(P) = -+ = Co(P)
And  C,(PX71):0 - Cx_1(P) = Cx_z(P) = =+ > Co(P)
RS is 7.G — resolution of Z
Then the tensor product R¢ ® C,(P) if (non- free) ZG —resolution with
g(a = b) = ga* gb,where P =P(p,v) = ball, P""! = sphere.
And we have the equivalence R¢ ® C.(P) = EG x B™

R¢ @ C,(P" 1) = EG x §S™1
In general the module Ck (P) is not always free for 1 < m < K, such that K repre-
sents the dimension of P. The free abelian group on one generator is
the module C (P) given a possibly non-trivial G action, we denote Ci (P) by ZE. For
the it" orbit of p-cells, let G¥ € G represent "the stabilizer group of some cell in

koo
the orbit", and let R”t designate some "free ZGK — resolution of Z ".

k k k k
G; G; G; G;
R':..—>R," —>R' >R}
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The polytope P has dimension K = dim(P). In addition, RS = RS denotes a
free ZG —resolution, when the unique K-dimensional cell has stabilizer group GX =
G. The direct sum of ZG-modules is a module C, (P).

Cp(P) = @1sisdeG ®ZGikZ

k
By defining Dpq = @1sisdeG®ZGkR§i to obtain a free ZG-resolution

Dp,:w. »Dpg— -+ =Dy = Dy

of the module Cy(P). The boundary maps in C,(P) induce chain maps oh :
D, q = D,_1,4 10 yield a diagram D, , of free ZG-module

The vertical maps 9, : D, ; — Dy, 4—4 in D, , Satisfy 990" = 0.
a a
.>RSQZ->REQRZ—->RS QL
a a
.2 C,(P) > C(P) = Co(P)
011 0o®!
= CPYBRE ®L— Ci(P) QR @Z— Co(P) O RS Q.

I®a; I1Qa I®a,

o GP) ORI ®LES C,(P) @RS @ L2 Co(P) ® RS @ Z

I ® a, I Q ay \L 1® a

oGP ORE QLD €, (P)® RS @225 ) (P) ® R ® 2

Co(P) @ Rf @ L

00 RIPIRa1P01QIBIQ g 0 RIBIRQag
s
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Now, Hom(R¢ ® C,(P))=E¢, and it is denoted by E¢, that can construct a second ZG-
resolution. This second resolution has

k
G _ _ Gi
En —@p+q=n D —@p+q:n@15isd R t @ k ZG
v.q p 4 ZG;
0<p<D 0<ps<D

We can define F¢ < ES as a "ZG — subchain complex "by setting

k
G _ _ G
Ey =@ ptg=n Dpq =@ p+q=n Disica, Ry’ D er ZG
0<psD-1 0<p<D-1 i

We let R, = ES/ES Then

— 0 n<kK
R, = {Rg_,(@ﬂe n>K ...(3) An Ad-
dition, there is a short exact sequene .

F¢ —» E¢ » R, o (4)

Taking Z, as a field and applying the contravariant functor Homg,¢(-, Z;) we ac-
quire "the short exact sequence of cochain complexes™

Homy,;(R., Z;) = Homy,;(Ef,Z,) » Homy,c(FE, Z,;) - (5)

The explanation behind working over Z, is that we can ignore the action of G on ZE€.
In equation (5) the inclusion of cochain complexes induces cohomology homomor-
phisms

pt HY(G,Z,) » HYK(G,Z,) ..(6)

The cohomology homomorphism p* is only dependent on " p " and to a certain extent
on the vector u. The cochain complexes in (5) as

L= HOmZZG(R*, Zz) , M* = HOmZZG(E*G, Zz) , M*/L* = HOmZZG(EG, Zz)

The relative cohomology can be define by setting

H™(M", L") = H" (]Z) .. (8)

in low dimension n < K
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H"(G,Z;) = H*(M", L") .. (9)
We obtain the isomorphism from (3)
. HY(G,Zy) = H™X¥M*, L)), n>0  ..(10)

And H*(M*,L*) = 0, where n < K. The isomorphism 7 is called the Thom isomor-
phism (for more information see [9, 6] ) .

The cohomology cup product is defined as
o HP(M*) x H1(M*) - HP*9(M*) ..(11)
A cup product can extend to
HP(K*, L) &, HI(M*, L) > HP*(M*, L") ..(12)

Taking 1 to signify the non-zero component of HX(M*, L"), it is possible to demon-
strate that the formula (2) yields the Thom isomorphism in terms of (12).

(x) =yYoux ..(13)
And by using the properties of a cup-i product
vt MP @, M9 - MPHaL
We can restrict L* < M* be the subcochain complex producing a cup-i product
it lP @y L1 - [P (14).

We can use properties of Steenrod square and formula (5) in order to define Steenrod
squares on relative cohomology, with the restricted cup-i product.

Sqt: H(M*, L") » H"*{(M*, L")
2.1 Definition [5] the i®® SW- class wi € H'(G, Z,) is described by the formula
w; = T(Sq'W))

If we have the representation p : G — 0, (R) of a finite group G, andv e R"asa
vector, or similarly Yow; = Sqt(P), where 021 € HY(M*, L*) =7Z,.

In particular wo =1 and = 1(1).

The total SW- class can be explained as w(p,v) = wg + w; + = + wg
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We recommend reading [10, 9] for a theoretical explanation of SW-classes. A direct
computer implementation of specification (2.1) may not be practical because "the size
of the resolution E¢ underlying the definition”. Although, the homomorphism p° :
HO(M~, L") — HX(G, Z,) it is feasible to calculate p°(1) =1 . If it occurs that p°(1) is
non-zero, then p° is an isomorphism. The Naturality formula is

0
HOM*, 1) S HX (G, Z,)

TINE

HIM", 1) 5 H<(G, 7,)

P (Sq' (1)) = Sq'(p°(1))

Hence, any solution w; to ¢ vw; = Sqi(y) yields p°(1) vw; = Sqi(p°(1)). s

totally within the ring H*(M) = H*(G, Z,). This final formula can be used to calculate

the multiple p°(1) U w;. No doubt, this multiple contains helpful information when
0

p°(1) #0.

3 Computing method SW- classes of real representations of non-
prime power groups

We previously learned the method of computing method SW-classes. As for the non-
prime power groups the method revolves around how to compute Steenrod square for
this type of groups. To compute Steenrod square on cohomology rings of non —
prime power groups are less than or equal to 128 group. However, if the cohomology
ring of the sylow subgroup of the given group known, we could calculate
the steenrod square on cohomology rings of several non-prime groups
whose sylow subgroup is order< 128. For example, the group Ggs of order 8 and
number 5 belong to syl,(G). Structure Description is Z, X Z, X Z,, where G isomor-
phic to J; (janko group) is a realizable group of type Ji. Also, Gissthe group of order
16 and number 8 in GAP library belong to syl,(G) where Structure Description is QD1s
\Wwhere G = M, . Is means that Gis3s is a realizable group of type M,,.We applied the
above for all groups, and it is realizable .

3.1 Example Consider the group G= Syl>(M11) of order 16 and number 5, emerging
as the sylow 2 — subgroup of the M1, . let p signify the representation that transfers
each permutation g € G to 11 X 11 permutation matrix p(g) and let v =
(1,2,3,4,5,6,7,8,9,10,11) € R, The total SW-class will be calculated at the next GAP
session.
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gap > G:= SylowSubgroup(MathieuGroup(11), 2);
Group([ (2,4)(5,9)(6,11)(7,8),(3,10)(5,9)(6,8)(7,11),(2,5)(3,10)(4,9)
(7,8),(2,6,9,8,4,11,5,7)(3,10) ])
gap > A:= Mod2SteenrodAlgebra(G,12);;
gap > gens: = ModPRingGenerators(A);
[v.1,v.2,v.3,v.6,v.8 ]
gap > List(gens,Al.degree);
[0,1,1,3,4]
gap > rho:= PermToMatrixGroup(G);
[ (2,4)(5,9)(6,11)(7,8), (3,10)(5,9)(6,8)(7,11), (2,5)(3,10)(4,9)(7,8),
(2,6,9,8,4,11,5,7)(3,10) ] ->
[rro,o,o0,o0,0,0,0,0,0,01,[0,0,0,1,0,0,0,0,0,0,017,
[o,0,1,0,0,0,0,0,0,0,0],{0,1,0,0,0,0,0,0,0,0,0]......
gap> v:=[1,2,3,4,5,6,7,8,9,10,11];;
gap > sw:
= FundamentalMultiplesOfStiefelWhitneyClasses(rho, v, A, true);
[[0*v.],v.1],[ 0*v.1,v.3, v.2, v.2+v.3 ], [ 0*v.1, v.5, v.4, v.4+v.5 ], [ 0*v.1,
v.7,v.6,v.6+v.7 |,[ 0¥v.1,v.10,v.9, v.9+v.10, v.8, v.8+v.10, v.8+v.9,
v.8+v.9+v.10 |,.....
gap > TotalStiefelWhitneyClass: =
sw[1][2]+sw[2][2]+sw[3][2]+sw[4][2]+sw[S5][2]+sw[6][2]+sw[T][2]+sw[8][2]+s
w[9][2];
V. 1+v.3+v.5+v.7+v.10+v.14+v.18+v.22+v.27
gap > PrintAlgebraWordAsPolynomial (A, TotalStiefelWhitneyClass);
V.1+v3+v2¥v2+v2¥v3+v2*¥v2¥v2+ V.2 *xV.2%V.2*xV.2+
V.2¥V.2¥v.2¥v.2*¥v.2 + v.6Fv.2*V.2 + v.2¥v 2RV 2*V.2¥v. 2% V.2 + v.6*v.2¥v.2*v.2 +
Vv.2¥v.2¥v.2¥\ v.2¥v. 2% v.2*y.2 + v.2Rv. 2*y.2¥v. 2Ry 2 ¥ V. 2%y 2¥y.2
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