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Abstract— In the current study, the researchers conduct computation of the 

Stiefel- Whitney classes of real representations of non-prime power groups such 

as Mathieu groups, symmetric groups, alternating groups and Janko groups. 

Stiefel- Whitney classes are conducted by using orbit polytope convex hull and 

steenrod squares of the non-prime power groups whick we get it by using the 

sylow theorm and with vector in n-dimention our computation using the HAP 

package (Homological Algebra Programming) of the GAP(general Algebra Pro-

gramming) Programming software in other word this paper demonstrates how 

the underlying techniques can be used to get the SW-classes of the real represen-

tation for non-prime power groups . 
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1 Introduction 

 

In this paper, Steenrod squares with cupi- product, orbit polytopes and the 

𝑇ℎ𝑜𝑚 𝑖𝑠𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚  are used to compute the Stiefel − Whitney classes  (pithiness 

SW-classes) comparable to a real representation  𝜌 ∶ 𝐺 → 𝑂𝑛(ℝ)  of a non-prime 

power groups. The main obstacle was how to calculate the steenrod squares  on 

cohomology rings of non-prime power groups, which were computed by Mahmood 

[1]. However, if the cohomology ring of the sylow subgroup of any non-prime power 

groups is homeomorphic to finite groups then they are less than or equal to 128 groups. 

The SW-classes comparable to a real representation  𝜌 ∶  𝐺 → 𝑂𝑛(ℝ) of a finite 

groups studies were taken up Ellis [2,3], Guillot [4] and Daher [5][11] 

1.1 Definition [2, 5] A segment connecting any two points 𝑎, 𝑏  𝑋, a subset 𝑋 𝑜𝑓 ℝ𝑛 

is called Convex, and it implies that for every pair and 𝜆  [0,1], which is real number,  

one has 𝜆𝑎 + (1 −  𝜆)𝑏  𝑋 . The finite set 𝑋 =  {𝑎1, 𝑎2, … , 𝑎𝑑}  of points in ℝ𝑛 

called convex hull and denoted conv(X), 

𝑐𝑜𝑛𝑣(𝑋) = {∑ 𝜆𝑖𝑎𝑖:
𝑑
𝑖=1 𝑎𝑖𝜖𝑋, 𝜆𝑖 ≥ 0,∑ 𝜆𝑖 = 1

𝑑
𝑖=1 } 
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1.2 Definition1 [6] CW-complex is an abbreviation of what means "closure-finite weak 

topology" which is obtained by taking the union of a sequence of topological spaces      

𝑋0 ⊂ 𝑋1 ⊂ 𝑋2 ⊂ ⋯ 

Each space 𝑋𝑛 is formed from 𝑋𝑛−1   such that  𝑋𝑛 = 𝑋𝑛−1∐ 𝑒∝
𝑛

∝   where each 𝑒∝
𝑛 is an 

open n-disk. X is called CW-complex if 𝑋 = ⋃ 𝑋𝑛𝑛  

1.3 Definition [5] if L and K are two R-modules over any ring R Their tensor product 

is an R-modules such that  𝐿 ⊗𝑅 𝐾 ={𝑙⨂𝑘, for some 𝑙 ∈ 𝐿 𝑎𝑛𝑑 𝑘 ∈ 𝐾} subject to the 

following relations 

• (𝑙1 + 𝑙2)⨂𝑘 = (𝑙1⨂𝑘) + (𝑙2⨂𝑘) 

• 𝑙⨂(𝑘1 + 𝑘2) = (𝑙⨂𝑘1) + (𝑙⨂𝑘2) 

• 𝑟. 𝑙⨂𝑘 = 𝑙⨂𝑟. 𝑘 , ∀𝑟 ∈ 𝑅, 𝑙1, 𝑙2 ∈ 𝐿 𝑎𝑛𝑑 𝑘1, 𝑘2 ∈ 𝐾. 

1.4 Definition [7] To construct a contractible CW-space 𝐸𝐺, there are various ways 

for any group 𝐺,  where 𝐺 acts freely; the action changes the cell when referring to 

EG as a total space for 𝐺. The base space 𝐵𝐺 = 𝐸𝐺/𝐺 is a quotient space. A classifi-

cation space for 𝐺 is produced by omitting the action. We have a free ℤG −

 resolution which is the cellular  chain complex 𝐶∗(𝐸𝐺) and 𝐶∗(𝐵𝐺) =

𝐶∗(𝐸𝐺) ⊗ℤ𝐺 ℤ. Thus, 𝐻∗(𝐵𝐺, ℤ𝑝) = 𝐻
∗(𝐺, ℤ𝑝). 

1.5 Definition [8] let 𝑋 
        ∆       
→      𝑋 ×  𝑋 be the diagonal map 𝐶𝑝 +𝑞(𝑋)  

      𝑑∆      
→      𝐶𝑝+𝑞(𝑋 ×  𝑋) 

     𝜑        
→       𝐶𝑝(𝑋) ⨂ 𝐶𝑞(𝑋) 

      uv     
→       ℤ ⨂ℤ 

      ∆       
→       ℤ  

𝑢 ⌣ 𝑣(c) = (𝑢 ⊗  𝑣)φ ◦ 𝑑∆(c) = 𝑢 ⊗ 𝑣 (φ (𝑑∆ (c))) , c ∈ Cp +q(X). As a result, the 

cup product is the homomorphism     ⌣: 𝐻𝑝(𝑋)  ⊗ 𝐻𝑞(𝑋)  →  𝐻𝑝+𝑞(𝑋) described 

as   u ⌣ v = d∗(u × v). 

(Coefficients belong to any commutative ring with unity). One direct effect of the cross 

product rules is  that   𝑢 ⌣ 𝑣 = (-1)pq 𝑢 ⌣ 𝑣 , in which p and q are the degrees of 𝑢 and 

𝑣, respectively. The general case of cup product is the cup − i product such that they 

are equal if i = 0, [i.e : = u ⌣0 v = u ⌣𝑖 v]. 

For every (𝑖 ≥  0; 𝑖 ∈ ℤ)  a ℤ − linear cup − i product 
𝐶𝑝(𝑅∗

𝐺   ) ⊗ℤ   𝐶
𝑞(𝑅∗

𝐺)→ 𝐶𝑝+𝑞−1 (𝑅∗
𝐺), 𝑢̅ ⊗ 𝑣̅ ⟼ 𝑢̅ ⌣𝑖  𝑣̅ …… . (1) 

is explained by the formula     (𝑢̅  ⌣𝑖  𝑣̅)(𝑐) =  (𝑢̅ ⊗ 𝑣̅)𝜙𝑝+𝑞 (𝑘
𝑖  ⊗  𝑐)         … (2) 

 𝑓𝑜𝑟 𝑐 ∈  𝑅𝑝+𝑞−𝑖
𝐺  

1.6 Theorem  [ 5,4 ] The operation  𝐶𝑛 (𝑅∗
𝐺)→ 𝐶2𝑛−𝑖  (𝑅∗

𝐺), 𝑢̅ ⟼ 𝑢̅ ⌣𝑖 𝑢 ̅ …  (3) 

Induces a homomorphism             𝑆𝑞𝑖: 𝐻𝑛(G, ℤ2) →  𝐻
2𝑛−𝑖(G, ℤ2)           …   (4) 

The homomorphism                𝑆𝑞𝑖 = 𝑠𝑞𝑛−𝑖: 𝐻𝑛(G, ℤ2)→ 𝐻
𝑛+𝑖(G, ℤ2)      …  (5) 

2    Construct Stiefel- Whitney classes 
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In this section, we discuss the method of computation or construction SW-classes. We 

have some steps to find them. 

1) Let 𝜌: 𝐺 →  𝑂𝑛 (ℝ)  or 𝐺𝐿𝑛(ℝ
 )  be an any (orthogonal)  matrix 

representation of a finite group G.  

2) Take  v  ℝn   be any vector. 

3)  Let Ω(𝑔, 𝑣) = {𝑔. 𝑣: 𝑔  𝐺}  represents convex hull  of Ω(𝑔, 𝑣) in ℝ𝑛   

4) The vertices of the orbit polytope 𝑃 = 𝑃(𝜌, 𝑣) =  𝜌(𝑔)𝑣 = 𝑔. 𝑣 = Ω(𝑔, 𝑣),  

convex hull  of Ω(𝑔, 𝑣) in ℝ𝑛,  

We have the convex polytope by choosing a vector v  ℝ𝑛, 

𝑃 =  𝑃(𝜌, 𝑣)  =  𝑐𝑜𝑛𝑣{𝜌(𝑔). 𝑣 ∶  𝑔  𝐺} 

is a CW-space homotopy equivalent to a ball  Bn and 𝑃𝑛−1 is equivalence to a  sphere 

𝑆𝑛−1. C∗(𝑃) is cellular chain complex of the polytope 𝑃  which is a complex of ℤG-

modules (may be not free). "A contractible m− dimensional and 𝐺 acts on it by 

permuting cells" is the polytope P,  and "the action endows P∗
G  with structure of 

a ℤG − resolution of ℤ." 

               𝐶∗(𝑃): 0 → 𝐶𝐾(𝑃) → 𝐶𝐾−1(𝑃) → ⋯ → 𝐶0(𝑃)  

And       𝐶∗(𝑃
𝐾−1): 0 → 𝐶𝐾−1(𝑃) → 𝐶𝐾−2(𝑃) → ⋯ → 𝐶0(𝑃) 

𝑅∗
𝐺  𝑖𝑠 ℤG − resolution of ℤ 

Then the tensor product 𝑅∗
𝐺 ⊗𝐶∗(𝑃) if (non- free) ℤG –resolution with 

 𝑔(𝑎 ∗ 𝑏) = 𝑔𝑎 ∗ 𝑔𝑏, where  𝑃 = 𝑃(𝜌, 𝑣) = 𝑏𝑎𝑙𝑙 ,  𝑃𝑛−1 = 𝑠𝑝ℎ𝑒𝑟𝑒. 

And we have the equivalence         𝑅∗
𝐺  ⊗ 𝐶∗(𝑃) ≅ 𝐸𝐺 × 𝐵

𝑛  

𝑅∗
𝐺  ⊗ 𝐶∗(𝑃

𝑛−1) ≅ 𝐸𝐺 × 𝑆𝑛−1 

In general the module 𝐶𝐾(𝑃) is not always free for 1 ≤ 𝑚 ≤ 𝐾,  such that 𝐾  repre-

sents the dimension of P.  The free abelian group on one generator is 

the module 𝐶𝐾(𝑃) given a possibly non-trivial G action, we denote 𝐶𝐾(𝑃) by ℤ∈. For 

the 𝑖𝑡ℎ  orbit of 𝑝-cells, let  𝐺∗
𝑘 ⊆  𝐺  represent "the stabilizer group of some cell in 

the orbit", and let 𝑅∗
𝐺𝑖
𝑘 
 designate some "free  ℤGi

k  − resolution of ℤ ".    

𝑅∗
𝐺𝑖
𝑘 
: …→ 𝑅2

𝐺𝑖
𝑘 
   → 𝑅1

𝐺𝑖
𝑘 
  → 𝑅0

𝐺𝑖
𝑘 
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The polytope 𝑃 has dimension 𝐾 = 𝑑𝑖𝑚(𝑃). In addition,  𝑅 
𝐺𝑖
𝐾  = 𝑅∗

𝐺  denotes a 

free ℤ𝐺 –resolution, when the unique 𝐾-dimensional cell has stabilizer group  𝐺1
𝐾 =

𝐺. The direct sum of ℤ𝐺-modules is a module 𝐶𝑝(𝑃). 

                                𝐶𝑝(𝑃) = 1≤𝑖≤𝑑𝑘ℤ𝐺ℤ𝐺𝑖
𝑘ℤ 

By defining            𝐷𝑝,𝑞
 ≔ 1≤i≤dkℤGℤGi

k𝑅𝑞
Gi
k

  to obtain a free ZG-resolution 

𝐷𝑝,∗ ∶ …  → 𝐷𝑝,𝑞 →  · · ·   → 𝐷𝑝,1 →  𝐷𝑝,0 

of the module Cp(P). The boundary maps in 𝐶∗(𝑃)  induce chain maps 𝜕ℎ ∶

 𝐷𝑝,𝑞 → 𝐷𝑝−1,𝑞 to yield a diagram 𝐷∗,∗ of free ℤG-module 

                                              

The vertical maps 𝜕𝑣 ∶  𝐷𝑝,𝑞  → 𝐷𝑝,𝑞−1 in 𝐷∗,∗ Satisfy 𝜕v𝜕v = 0.  

… → 𝑅2
𝐺 ⊗ℤ

𝛼
→ 𝑅1

𝐺 ⊗ℤ
𝛼
→ 𝑅0

𝐺 ⊗ℤ 

… → 𝐶2(𝑃)
𝜕
→ 𝐶1(𝑃)

𝜕
→ 𝐶0(𝑃) 

 

 

 

 

 

 

 

 

                           
𝜕0⊗𝐼⨁𝐼⊗𝛼1⨁𝜕1⊗𝐼⨁𝐼⊗𝛼0
→                                                              

𝜕0⊗𝐼⨁𝐼⊗𝛼0
→                                                                                         

… → 𝐶2(𝑃) ⊗ 𝑅2
𝐺 ⊗ℤ

𝜕1⊗𝐼
→   𝐶1(𝑃) ⊗ 𝑅2

𝐺 ⊗ℤ
𝜕0⊗𝐼
→   𝐶0(𝑃) ⊗ 𝑅2

𝐺 ⊗ℤ 

 

 

 

… → 𝐶2(𝑃) ⊗ 𝑅1
𝐺 ⊗ℤ

𝜕1⊗𝐼
→   𝐶1(𝑃) ⊗ 𝑅1

𝐺 ⊗ℤ
𝜕0⊗𝐼
→   𝐶0(𝑃) ⊗ 𝑅1

𝐺 ⊗ℤ 

 

 

 

… → 𝐶2(𝑃) ⊗ 𝑅0
𝐺 ⊗ℤ

𝜕1⊗𝐼
→   𝐶1(𝑃) ⊗ 𝑅0

𝐺 ⊗ℤ
𝜕0⊗𝐼
→   𝐶0(𝑃) ⊗ 𝑅0

𝐺 ⊗ℤ 

 

𝐼 ⊗ 𝛼1 𝐼 ⊗ 𝛼1 𝐼 ⊗ 𝛼1 

𝐼 ⊗ 𝛼0 𝐼 ⊗ 𝛼0 𝐼 ⊗ 𝛼0 

𝐶0(𝑃) ⊗ 𝑅1
𝐺 ⊗ℤ 
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Now, Hom(𝑅∗
𝐺 ⊗𝐶∗(𝑃))=𝐸∗

𝐺, and it is denoted by 𝐸∗
𝐺 , that  can construct a second ℤG-

resolution. This second resolution has 

𝐸𝑛
𝐺 =⊕𝑝+𝑞=𝑛

0≤𝑝≤𝐷
 𝐷𝑝,𝑞
 =⊕𝑝+𝑞=𝑛

0≤𝑝≤𝐷
⊕1≤𝑖≤𝑑𝑝 𝑅𝑞

𝐺𝑖
𝑘

⊕
𝑍𝐺𝑖
𝑘 ℤ𝐺   

We can define 𝐹∗
𝐺  < 𝐸∗

𝐺 as a "ZG − subchain complex "by setting 

𝐹𝑛
𝐺 =⊕ 𝑝+𝑞=𝑛

0≤𝑝≤𝐷−1
 𝐷𝑝,𝑞
 =⊕ 𝑝+𝑞=𝑛

0≤𝑝≤𝐷−1
⊕1≤𝑖≤𝑑𝑝 𝑅𝑞

𝐺𝑖
𝑘

⊕
𝑍𝐺𝑖
𝑘 ℤ𝐺   

We let 𝑅̅∗ = 𝐸∗
𝐺/𝐹∗

𝐺 Then 

𝑅𝑛̅̅̅̅ = {
0                            𝑛 𝐾
𝑅𝑛−𝐾
𝐺 ℤℤ

∈           𝑛 ≥ 𝐾
             …(3)                                                       An Ad-

dition,  there is a short exact sequene .  

𝐹∗
𝐺 ↣ 𝐸∗

𝐺 ↠ 𝑅∗̅̅ ̅               … (4) 

Taking  ℤ2 as a field  and applying the contravariant functor  Homℤ2G(- , ℤ2)  we ac-

quire "the short  exact sequence of cochain complexes" 

𝐻𝑜𝑚ℤ2𝐺(𝑅∗
̅̅ ̅, ℤ2) ↣ 𝐻𝑜𝑚ℤ2𝐺(𝐸∗

𝐺 , ℤ2) ↠ 𝐻𝑜𝑚ℤ2𝐺(𝐹∗
𝐺 , ℤ2)         … (5)   

The explanation behind working over ℤ2 is that we can ignore the action of 𝐺 on ℤ∈. 

In equation (5) the inclusion of cochain complexes induces cohomology homomor-

phisms 

𝜌𝑡: 𝐻𝑡(𝐺, ℤ2) → 𝐻
𝑡+𝐾(𝐺, ℤ2)                    … (6) 

The cohomology homomorphism ρk is only dependent on '' ρ '' and to a certain extent 

on the vector u. The cochain complexes in (5) as  

𝐿∗ = 𝐻𝑜𝑚ℤ2𝐺(𝑅̅∗, ℤ2) , 𝑀
∗ = 𝐻𝑜𝑚ℤ2𝐺(𝐸∗

𝐺 , ℤ2) , 𝑀∗/𝐿∗ = 𝐻𝑜𝑚ℤ2𝐺(𝐹∗
𝐺 , ℤ2)   

The relative cohomology can be define by setting  

𝐻𝑛(𝑀∗, 𝐿∗) = 𝐻𝑛 (
𝑀∗

𝐿∗
)                     … (8) 

  in low dimension  n < 𝐾  
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 𝐻𝑛(𝐺, ℤ2) = 𝐻
𝑛(𝑀∗, 𝐿∗)            … (9) 

We obtain the isomorphism from (3)  

𝜏:  𝐻𝑛(G, ℤ2)   H
n+K(𝑀∗, 𝐿∗) , 𝑛 ≥ 0       … (10) 

And 𝐻𝑛(𝑀∗, 𝐿∗) = 0 , where 𝑛 < 𝐾. The isomorphism 𝜏 is called the Thom isomor-

phism (for more information see [9, 6] ) . 

The cohomology cup product is defined as 

◡:𝐻𝑝(𝑀∗) × 𝐻𝑞(𝑀∗) → 𝐻𝑝+𝑞(𝑀∗)   … (11) 

A cup product can extend to 

     𝐻𝑝(𝐾∗, 𝐿∗)ℤ2𝐻
𝑞(𝑀∗, 𝐿∗) → 𝐻𝑝+𝑞(𝑀∗, 𝐿∗)       … (12) 

Taking 𝜓 to signify the non-zero component of  𝐻𝐾(𝑀∗, 𝐿∗), it is possible to demon-

strate that the formula (2) yields the Thom isomorphism in terms of (12).  

𝜏(𝑥) = 𝜓◡ 𝑥   … (13) 

And by using  the properties  of  a cup-i product  

                                            ◡𝑖: 𝑀
𝑝ℤ2𝑀

𝑞 → 𝑀𝑝+𝑞−𝑖. 

We can restrict  L∗ < M∗ be the subcochain  complex producing a cup-i product 

                                                ◡𝑖 : 𝐿
𝑝ℤ2𝐿

𝑞 → 𝐿𝑝+𝑞−𝑖      … (14). 

We can use properties of Steenrod square and formula (5) in order to define Steenrod 

squares on relative cohomology, with the restricted cup-i product.   

𝑆𝑞𝑖: 𝐻𝑛(𝑀∗, 𝐿∗) → 𝐻𝑛+𝑖(𝑀∗, 𝐿∗)  

2.1 Definition [5] the  𝑖𝑡ℎ SW- class 𝜔i  Hi(G, ℤ2)  is described by the formula 

𝜔𝑖 = 𝜏
−1(𝑆𝑞𝑖(𝜓)) 

If we have the representation  𝜌 ∶  𝐺 → 𝑂𝑛(𝑅)  of  a finite group G, and v  Rn as a 

vector,  or similarly          𝜓◡𝜔𝑖 = 𝑆𝑞
𝑖(𝜓), where 01  H0(M∗, L∗)  ℤ2. 

 In particular 𝜔0 =1 and  𝜓= τ(1).  

The total SW- class can be explained as  𝜔(𝜌, 𝑣) = 𝜔0 + 𝜔1 +⋯+ 𝜔𝐾  
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We recommend reading [10, 9] for a theoretical explanation of SW-classes. A direct 

computer implementation of specification (2.1) may not be practical because "the size 

of the resolution E∗
G  underlying the definition". Although, the homomorphism ρ0 : 

H0(M∗, L∗) → HK(G, ℤ2) it is feasible to calculate ρ0(1) = 𝜓 . If it occurs that ρ0(1) is 

non-zero, then ρ0 is an isomorphism. The Naturality formula is 

 

 

 

 

                                                                          𝜌𝑖(𝑆𝑞𝑖(1)) = 𝑆𝑞𝑖(𝜌0(1)) 

Hence, any solution 𝜔𝑖  to  𝜓  𝜔𝑖 =  𝑆𝑞𝑖(𝜓) yields 𝜌0(1) 𝜔𝑖 = 𝑆𝑞
𝑖(𝜌0(1)).    is 

totally within the ring  𝐻∗(𝑀) = 𝐻∗(𝐺, ℤ2). This final formula can be used to calculate 

the multiple 𝜌0(1) 𝜔𝑖 . No doubt, this multiple contains helpful information when 

ρ0(1)  0.  

3    Computing method SW- classes of 𝐫𝐞𝐚𝐥 𝐫𝐞𝐩𝐫𝐞𝐬𝐞𝐧𝐭𝐚𝐭𝐢𝐨𝐧𝐬 of non-

prime power groups 

We previously learned the method of computing method SW-classes.  As for the non-

prime power groups the method revolves around how to compute Steenrod square for 

this type of groups. To compute Steenrod square on cohomology  rings of  non −

prime power groups are less than or equal to 128 group. However, if the cohomology 

 ring  of the sylow subgroup  of the given group known, we could calculate 

the steenrod square  on cohomology rings  of several non-prime groups 

whose sylow subgroup is order≤ 128.   For example, the group G8,5 of order 8 and 

number 5 belong to syl2(G). Structure Description is ℤ2 × ℤ2 × ℤ2, where G isomor-

phic to J1 (janko group) is a realizable group of type J1.  Also, G16,8 the group of order 

16 and number 8 in GAP library belong to syl2(G) where Structure  Description is QD16 

,where 𝐺 ≅ 𝑀11 . Is means that G16,8 is a realizable group of type 𝑀11.We applied the 

above for all groups, and it is realizable . 

3.1 Example Consider the group G= Syl2(M11) of order 16 and number 5,  emerging 

as the sylow 2 − subgroup of the  M11 . let 𝜌 signify the representation that transfers 

each permutation  g ∈ 𝐺  to 11 × 11  permutation  matrix 𝜌(𝑔)  and let 𝑣 =

(1,2,3,4,5,6,7,8,9,10,11) ∈ 𝑅11. The total SW-class will be calculated at the next GAP 

session. 

𝐻0(𝑀∗, 𝐿∗)
𝝆𝟎

→ 𝐻𝐾(𝐺, ℤ2) 
 

 

𝐻𝑖(𝑀∗, 𝐿∗)
𝝆𝒊

→𝐻𝐾+𝑖(𝐺, ℤ2) 
 

Sqi Sqi 
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GAP session 

𝒈𝒂𝒑 >  𝑮:= 𝑺𝒚𝒍𝒐𝒘𝑺𝒖𝒃𝒈𝒓𝒐𝒖𝒑(𝑴𝒂𝒕𝒉𝒊𝒆𝒖𝑮𝒓𝒐𝒖𝒑(𝟏𝟏), 𝟐); 
𝑮𝒓𝒐𝒖𝒑([ (𝟐, 𝟒)(𝟓, 𝟗)(𝟔, 𝟏𝟏)(𝟕, 𝟖), (𝟑, 𝟏𝟎)(𝟓, 𝟗)(𝟔, 𝟖)(𝟕, 𝟏𝟏), (𝟐, 𝟓)(𝟑, 𝟏𝟎)(𝟒, 𝟗) 
(𝟕, 𝟖), (𝟐, 𝟔, 𝟗, 𝟖, 𝟒, 𝟏𝟏, 𝟓, 𝟕)(𝟑, 𝟏𝟎) ]) 
𝒈𝒂𝒑 >  𝑨:= 𝑴𝒐𝒅𝟐𝑺𝒕𝒆𝒆𝒏𝒓𝒐𝒅𝑨𝒍𝒈𝒆𝒃𝒓𝒂(𝑮, 𝟏𝟐); ; 
𝒈𝒂𝒑 >  𝒈𝒆𝒏𝒔:= 𝑴𝒐𝒅𝑷𝑹𝒊𝒏𝒈𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒐𝒓𝒔(𝑨);     
[ 𝒗. 𝟏, 𝒗. 𝟐, 𝒗. 𝟑, 𝒗. 𝟔, 𝒗. 𝟖 ] 
𝒈𝒂𝒑 >  𝑳𝒊𝒔𝒕(𝒈𝒆𝒏𝒔, 𝑨!. 𝒅𝒆𝒈𝒓𝒆𝒆); 
[ 𝟎, 𝟏, 𝟏, 𝟑, 𝟒 ] 
𝒈𝒂𝒑 >  𝒓𝒉𝒐:= 𝑷𝒆𝒓𝒎𝑻𝒐𝑴𝒂𝒕𝒓𝒊𝒙𝑮𝒓𝒐𝒖𝒑(𝑮); 
[ (2,4)(5,9)(6,11)(7,8), (3,10)(5,9)(6,8)(7,11), (2,5)(3,10)(4,9)(7,8), 

  (2,6,9,8,4,11,5,7)(3,10) ] -> 

[ [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ], 

      [ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]…… 

gap> v:=[1,2,3,4,5,6,7,8,9,10,11];; 

𝐠𝐚𝐩 >  𝐬𝐰:
= 𝐅𝐮𝐧𝐝𝐚𝐦𝐞𝐧𝐭𝐚𝐥𝐌𝐮𝐥𝐭𝐢𝐩𝐥𝐞𝐬𝐎𝐟𝐒𝐭𝐢𝐞𝐟𝐞𝐥𝐖𝐡𝐢𝐭𝐧𝐞𝐲𝐂𝐥𝐚𝐬𝐬𝐞𝐬(𝐫𝐡𝐨, 𝐯, 𝐀, 𝐭𝐫𝐮𝐞); 

[ [ 0*v.1, v.1 ], [ 0*v.1, v.3, v.2, v.2+v.3 ], [ 0*v.1, v.5, v.4, v.4+v.5 ], [ 0*𝐯.1, 

𝐯. 𝟕, 𝐯. 𝟔, 𝐯.6+𝐯.7 ],[ 0*𝐯.1, 𝐯.10, 𝐯.9, 𝐯.9+𝐯.10, 𝐯.8, 𝐯.8+𝐯.10, 𝐯.8+𝐯.9, 

𝐯.8+𝐯.9+𝐯.10 ],….. 

𝐠𝐚𝐩 >  𝐓𝐨𝐭𝐚𝐥𝐒𝐭𝐢𝐞𝐟𝐞𝐥𝐖𝐡𝐢𝐭𝐧𝐞𝐲𝐂𝐥𝐚𝐬𝐬: = 

𝐬𝐰[𝟏][𝟐]+sw[2][2]+sw[3][2]+sw[4][2]+sw[5][2]+sw[6][2]+sw[7][2]+sw[8][2]+s

w[9][2];                                   

𝐯. 𝟏+v.3+𝐯.5+v.7+v.10+v.14+v.18+v.22+v.27 

𝐠𝐚𝐩 >  𝐏𝐫𝐢𝐧𝐭𝐀𝐥𝐠𝐞𝐛𝐫𝐚𝐖𝐨𝐫𝐝𝐀𝐬𝐏𝐨𝐥𝐲𝐧𝐨𝐦𝐢𝐚𝐥(𝐀, 𝐓𝐨𝐭𝐚𝐥𝐒𝐭𝐢𝐞𝐟𝐞𝐥𝐖𝐡𝐢𝐭𝐧𝐞𝐲𝐂𝐥𝐚𝐬𝐬); 
𝐯. 𝟏 + v.3 + 𝐯.2*v.2 + 𝐯.2*v.3 + 𝐯.2*v.2*v.2 + 𝐯. 𝟐 ∗ 𝐯. 𝟐 ∗ 𝐯. 𝟐 ∗ 𝐯. 𝟐 + 

v.2*v.2*v.2*v.2*𝐯.2 + v.6*v.2*v.2 +  v.2*v.2*v.2*v.2*v.2*v.2 + v.6*v.2*v.2*v.2 + 

v.2*v.2*v.2*\ v.2*v.2*v.2*v.2 + v.2*v.2*v.2*v.2*v.2*v.2*v.2*v.2 
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