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Abstract— In this research, we introduce an improved analytical approxima-
tion technique for addressing the time-fractional Sharma-Tasso-Olever problem.
To manage nonlinear fractional differential equations that emerge in numerous
physical phenomena, we establish an alternative basis for the Laplace Residual
Power Series approach (LRPSA). The generalized Taylor series equation and re-
sidual functions form the foundation of this strategy. The proposed solution
yields positive outcomes. The dependability, efficiency, and simplicity of the
suggested method are showcased across all categories of fractional nonlinear
problems encountered in technological and scientific domains. Two examples are
given to illustrate the effectiveness of the proposed approach in solving various
kinds of fractional ordinary differential equations. A comparison with other tech-
niques such as RPS, VIM, HPM reveals that our method produces favourable and
efficient results.
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1 Introduction

Fractional calculus (FC) represents a subfield of applied mathematics concerned
with derivatives and integrations of real or complex orders, also known as non-Newto-
nian calculus or extended calculus. The inception of FC can be traced back to 1695

when Leibniz contemplated the possibility of a derivative with an order of % in a famous

letter [1,2]. FC has garnered importance in various domains, including physics, bio-
chemistry, biology, technology, viscoelasticity, operations research, optical fibers,
communication, and finance [3]. While not all methods are ubiquitously utilized, there
exists an array of approaches for defining fractional differential equations.

There exist several approaches to defining fractional derivatives, but not all are com-
monly utilized. The most frequently employed fractional derivatives involve fractional
rank with respect to Conformable operators (CO), Atangana-Baleanu (A-B), Riemann-
Liouville (R-L), and Caputo fractional derivatives (CFD) [6, 7, 8, 9, 10]. In certain
scenarios, fractional derivatives are preferred to integer-order derivatives for modeling
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purposes, as they can model and assess complex systems with superior non-linear pro-
cesses and higher-rank dynamic. This is due to two primary factors. Firstly, instead of
being restricted to an integer order, we have the freedom to select any order for deriv-
ative operators. Non-integer type derivatives, depending on previous and local circum-
stances, are advantageous whenever the systems have such a long-term memory.

A multitude of numerical and analytical methodologies, such as the homotopy
method, Laplace transforms, the Pade-variational iteration method, the Adomian de-
composition method, and others [11-21], have been created to tackle fractional differ-
ential equations. However, these approaches are encumbered by the necessity of exten-
sive and intricate computations. As such, they must be coupled with a transform oper-
ator. The authors of [22] innovatively combined the Laplace transform with the residual
power series method (RPS) to introduce real and series solutions to both linear and
nonlinear FDEs. This new approach, christened as the Laplace-residual power series
method (LRPS), was implemented to formulate series solutions for various FDEs. The
LRPS methodology is not dependent on fractional derivation for determining the coef-
ficients of the series, unlike the RPS, but relies instead on the concept of limit, facili-
tating fewer computations to generate the coefficients, as opposed to the residual power
series method. The current methodology is speedy, requires minimal computer
memory, and is impervious to computational round-off errors. Moreover, this method-
ology calculates the coefficients of the power series via a string of equations with mul-
tiple variables, indicating that the present approach has swift convergence.

In the pursuit of detecting both approximations and exact results for time fractions
from Sharma-Tass-Olver PDEs involving unknown parameters, our study employed a
proprietary hybrid method named LRPS. This new technology combines RPS and La-
place conversion technology, while also showcasing the graphical significance of dif-
ferent values of fractional order derivatives. The accuracy, speed, and imperviousness
to repeating errors make this method a standout, as it does not consume much memory
storage space or processing time.

To explore the realms of the nonlinear fractional Sharma-Tasso-Oliver formula and
its integral role in uncovering nonlinear phenomena, our study employed LRPS in the
guise of nonlinear time fractions. We conducted a comparative analysis of this approach
with other techniques, including Variation Iteration Approach, Adomian Decomposi-
tion, Homotopy Perturbation Method, and Residual Power Series Technique of the
Sharma-Tasso-Oliver formula. The definition of FSTOF stands as follows:

DE&u + 3pul + 3pulu, + 3pUllyy + Pl =01 >00< a <1, (1)

where D is Caputo derivative of order 0 < @ < 1, p is constant and u is analytical
function and t* is time variable.

The given expression involves the Caputo derivative of order 0 < a < 1, denoted
by D where p is a constant and u is an analytic function.

The following section passionately delves into the intricacies of our research. The
introduction of Section 2 acquaints us with the essential principles and theories in frac-
tional calculus and Laplace transforms that are indispensable in obtaining our desired
outcomes. The algorithm that goes by the name of LRPS has been expounded upon in
the third section. In Section 4, numerical examples are presented and the solutions are
compared with the results obtained from other established methods. The findings of this
comparison are discussed. Section 5 concludes the study by summarizing the results
and presenting the conclusions.
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2 Fractional extension via laplace spaces

The operators of fractional derivatives exhibit non-local characteristics, as they are
defined using integrals. Hence, the time-fractional derivative captures information
about the function's earlier stages and therefore, demonstrates a memory effect. Such
derivative operators account for the history and non-local distributed effects, which are
critical for more precise and accurate representations, as well as an understanding of
complex and dynamic system behavior.

In this section, we introduce the fractional calculus in Caputo's sense and the Laplace
transform, which are indispensable in creating the LRPS solution for the fractional neu-
tron diffusion equations with one delayed neutron group. We present some fundamental
concepts and ideas to aid in this endeavor.

Definition 2.1 [23]. The definition of the Caputo derivative of order a of (%, 1) sense
involves the utilization of a time-fractional component:

D (x,t) =] Y0P (x,t), m—1<a<mx€lt>0, (2)

whereas D{, represents the operator for time-fractional Caputo derivative of order a;
whereby m € N; I signifies an interval; and ]ﬁ denotes the operator for time-fractional
Riemann—Liouville integral of order 3, which is explicitly defined as:

B =

]]’]Llj(xl t) - F(ﬁ)

Y(x0)=0,=0, 3)

Jy (t =)~ "Y(x,0)da,f > 0,t > o >0, and

In the ensuing lemma, we shall divulge specific characteristics of the operator Dg,
that are crucial for the continued progress of our research. Peruse [23] for further facets
that may pique your interest.

Lemma2.2.[23]. Fort>0,n > —-1,0 € R,anda € (m — 1, m].
1. Dfo=0.

2. DEJiU(xD =y D.

3. JEDEY(x, 1) = P(x, t) — ynh el pm

m!
r(n+1)

4. D" = n-a

t I(n-a+1)
Definition 2.3. [24] The Laplace transform of a continuous function y(x, t), which is
defined on a specific interval I x [0, o) and possesses an exponential order of p a cer-
tain magnitude, is expressed by a distinct symbol and determined in a prescribed man-

ner as follows:

[ee]

Y(xs) = LU D} = [, e P dt, s >aq 4
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whereas the exquisite and intricate inverse Laplace transform of the function W (x, s)
is elegantly and precisely defined as follows:

Pxt) = L7HY(x,5)} = fccjzo eS"W(x,s)ds, ¢ = Re(s) > c,, (5)

1

Now, as illustrated by the ensuing outcome, we introduce a fresh fractional expan-
sion which will act as the cornerstone for formulating a LRPS resolution to the partial
differential equations (PDES).

Proposition 2.4. [24] Let w(x,1) be a continuous function defined on the interval
I X [0, o0) and possessing exponential order . Assuming that the function is character-
ized by the subsequent fractional expansion W(x,s) = L{P(x, t)}, we will proceed with
our analysis.

‘P(x,s)=2f,°,=oM 0<a<l,x€els>y, (6)

sl+ma’

Hence, A, (x) = D**w(x, 0).
Remark 2.5.[24] Applying the inverse Laplace transform to Eq. (6) yields:

— Vo DEY(0)  mq
Yt = Ym0 r(Hm)t ,0<a<1,t>0, (7
The convergence of the series in the expansion (6) is ensured by the conditions pre-

sented in the subsequent theorem.

Theorem 2.4 (El-Ajou, 2021) Let yi(x, t) be a continuous function defined on the in-
terval I X [0, c0) and possessing exponential order p. Moreover, suppose that ¥(x,s) =
LI{y(x,t) ] it can be expressed as the fractional expansion indicated in Theorem 2.3.
In the event that on [s£[D™ P“W(x,t) ]| < M(x), on 1 x (i, k] where 0 < a < 1, it
follows that the residual term R, (x,s) associated with the fractional expansion pre-
sented in Eq. (6) is bounded by the subsequent inequality:

Rin(%,8)] < —%_ yel,§<s<y. ©)

sm+Da+1’

3. The LRPS technique is utilized to derive creative solutions for
the Time-Fractional Sharma-Tasso-Olever Formula.

we shall employ the fractional Sharma-Tasso-Olever formula, with due considera-
tion to time, to showcase the efficacy of the LRPS methodology in generating a se-
quence of solutions to the FSTOF as defined in Eq. (1) with initial condition:

u(x,0) = {(x), 9)

In the initial stages, it is recommended to employ the LT for (1), thereby yielding the
desired outcome.

LIDFu(x, t) + 32uz(x, t) + 32u?(x, Du, (x, £) + 3Au(x, Dty (X, £) + Ay (x, £)]
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= £[0], t € I x [0, 00].
(10)

We can derive Eq. (10) by following the steps outlined in Proposition 2.4:

s%U(x,s) —s* T u(x,0) + 31L {(L‘l(Ux(x, s))z)} +
3AL{(£7 (U 9))") £ (UG )} + AL {(£7 (U, 9))) £7 (Ua (2, 9)) } +
AUyx(x,5), s> 0. (11)
where U(x,s) = L[u(x,n)] and U, (X, ) = Ltyrr (x, M)].

We obtain the next expression of Eq. (11) by dividing it by s® and utilizing the initial
conditions specified in Eq. (11):

UG s) =52 -2 (£ (U 9))}) -
(e 0@ )) v )) -
3;_}“( {( 1(U(x S))) 1(Uxx(x S))}) xxx(x S) s> 0. (12)

Expanding on the implications of Eq. (12), we obtain the following result:

R SIE))
Ux,s) = Z g s> 0. (13)
Jj=
Eq. (13) provides the expression for the kth-truncated series, which is given by:
k .
Uy (x,5) =%+Z' 15;5’2. /s> 0. (14)
Jj=

We are able to delineate the primary LRPS methodologies, such as the LRF of Eqg.
(12), for the purpose of ascertaining the elusive value of the parameter {;(x) that is

exhibited as follows:

LRes(x,s) = U(x, )_@"’s ( {( (U (x,9)) )})

w (e ) e ) +
—i( {( ‘1(U(x s))) 1(U,m(x s))}) —Uyxx(x,5), s > 0. (15)

his context, the term kth-LRF refers to:

LRes; (x,5) = &2 + 22 (L{(L_ (Vi S))Z)D "

2 ({0 ) 2 (s

i’l ( {( (U (x, s))) (U(k)xx(x, S))}) + %U(k)xxx(x, s), s > 0. (16)
Itisevidentthatfors > Oandk = 0,1,2,3,..., Lim_LRes;(x,s) = LRes(x, s),
LRes(x, s) = 0. Consequently, Lim,_,.,(s*LRes(x, s)) = 0. Furthermore, it was
demonstrated in reference [22.24] that...

Limg_ o (s**'LRes(x,s)) = Lim,_ o (s**'LRes,(x,5)) = 0,k = 1,2,3,. a7
0 ) 4

slta’

The expression for U, (x, s) given by U, (x, s) =
represents...

as shown in Eq (16),
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a0 (@) | 4 3 1 (L@
LRes; (x, 5) = 2% </: {(1: ( sm)) }) +2 <L {(L (%2 +
2 "
L@ c(x) G (x) n (), Q@Y o1 (T, G
sll+u)) L Siﬁ'l }) ( + s11+a) L ! ( S + Stﬁ'l)}) +
% (F2+ —Z;(j‘f),s > 0. (18)

The application of the operator in Eq. (18) results in the following simplified expres-
sion:
G0 | 328%@) | 64T @G®) | 3ASEMN(2at1)

LReSl(X S) T gl+ta sa+1 s2a+1 [(a+1)253a+1
344 (X){Z(X)+ 31 Zl(JC)(Z(X) 643" () (x)¢4(x) + 61 {1 ()7 ()3 ()T (2a+1) +
sa+1 s2a+1 s2a+1 [(a+1)253a+1
30 (0 @ra+1) | 314 @IErGa+1) | 34{m@¢" ) | 31{x){' @)
r(a+1)253a+1 [‘(a+1)354(1+1 S(l+1 + SZa+1 +
318103 (OT(a+1) | 31803 (OTRa+1) | A" | A ()
;(a+1)52a+1 + 11—*(a+1)253a+1 sa+i + 52}1+1 S > 0 (19)

By multiplying both sides of Eq. (19) by the term s+, we arrive at the following ex-

pression:
' 615 ()¢ () 3AJF()r(2a+1)
SUFOLRes; (x,5) = 3 (x) + 34 2 (x) + DA ILEAT

300 (02 (x) + 3151(76)(2(76) 618" ()¢ (01 () + 62 1 ()¢ ()43 ()T 2a+1) +

sa I(a+1)2s2@
317’ (x)(1 ra+1) ., 31 (1(x)§f(x)l"(3a+1) " 31 {(x){l (x)
I(a+1)2s2¢ + [(a+1)3s3@ +31¢()¢" () + sa +
318103 (@r(a+1) | 3110 (M (2a+1) FAL () + 2 /151 (X) s>0. (20)

M(a+1)S% F(a+1)2s2a

Using the Eq. (17) assumption and the limit as s approaches infinity from both parts
of Eq. (20), we can quickly determine the value of the function ¢, (x) by solving the
given formula for it.

0 = s'**LRes;(x,5) = {; (%) + 34 (x){" (x) + A{"""(x),s > 0. (21)

We can obtain the value of {; (x) easily by applying the algebraic formula (21) to cal-
culate it.

4G () = =3 ()" (x) + A" (x)), s> 0. (22)

To calculate the value of the next undetermined parameter, (x), the second-truncated

; _4) | G Gl .. : :
series of Eq. (14), U (x, ) = == + 257 + Zi355 Is inserted into the second Linear
Recurrence Formula (LRF).
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2
e 9 = 82+ 2 (e (£ (20 52 22) )+ 2 (e (e (24

2 , . .
aw | cz(x))) = (@Jr 600, zz(x>)})+ 3_1<£{L—1 (2.4 400,

sl+u slt+2a S sa+1 slt2a g sl+a
GO o1 (T®, GE |, G AT, ® W)
S0 (T §am, 22)}) T (T T Sfm) s> 0. 23)

The operator in Eq. (18) can be applied to yield the following simplified expression.
X 31 72(0)T(2a+1 312 ()T (4a+1 617 ()7, (x 610" (x) 5 (x
LRes, 09 = 423 SELONELD | sfenonsy  ucge , e,
6101 (0)GOT@Ba+1) | 34 MF@r@a+1) | 31 E@IMa+1) | 647 ()I(x)3; (x) +
MNa+1)F(2a+1)s4a+1 I'(a+1)2s3a+1 rea+1)2s5a+1 sza+1
617" ()¢ () (T Ba+1) | 64" (0 (0)()ITBa+1) | 34 (072 (x) | 34 (x){Z ()T (Ba+1)
r2a+1)s4a+1 INa+1)r2a+1)s4a+1 s2a+1 I'(a+1)3s4a+1
321 ()2 ()T (5a+1) n 611(x) () (T Ra+1) | 6441 (x)(x){,(x)T(Ba+1) n
I'(a+1)(2a+1)256@+1 [(a+1)253a+1 T(a+1)T(2a+1)s4e+1
6181 ()81 () ()T (4a+1) | 3A72(x)75(x) 3082(x)3 (0T (4a+1) | 31 {5(x){3(x)(6a+1)
M'(a+1)2r(2a+1)s5a+1 s3a+1 ra+1)r(a+1)2s5a+1 r2a+1)3s7a+1
61 {(0)1(0)5(ITBa+1) | 6470, (x)5()T (4a+1) " 6181 ()45 (x){5(x) T(5a+1) "
r2a+1)(a+1)s%a+1 r(2a+1)2s5a+1 I'(a+1)T(2a+1)2s6a+1

318(x) ¢ (x) " 3A0(x) 33 () | 31410 (x) | 31310 (OTa+1) | 3141 (x){3 ()T (Ba+1)
s2a+1 s3a+1 s2a+1 [(a+1)2s3a+1 [(a+1)(2a+1)s4a+1
328,007 () | 32,0 (0rBa+1) | 317" ,()T(4a+1) + 145 (x) + 13, (%)
s3a+1 r2a+1)(a+1)s4a+1 r(2a+1)2s5a+1 s2a+1 s3a+1

,s> 0. (24)

+

+

Multiplying Eq. (24) by s1*2¢ results in the following products.

ra 3 31 (0T 2a+1) | 3AJZ ()T (4a+1)
S LRes,(x,5) = {3(x) + T(a+1)25% r(2a+1)2s3«
Lo WG | AL GIBatD) | 33¢ @O Qat)
6A¢ ()61 (x) + sa [(a+1)(2a+1)s24 r(a+1)2s%
648" () (X)S, ()T (Ba+1) +
r2a+1)s2«

313" ()Z(0r(4a+1) ’
rGasnzsse T 6AT()COE () +
614" (%), (X)) (3a+1) , 2 311 ()2 (x)rBa+1) 3141 ()2 ()T (5a+1)
MNa+1)r(2a+1)s2« + 3&(1(x)( (x) + I'(a+1)3s2® M(a+1)r(2a+1)2s4«
6101(x) () (ITRa+1) | 6481 (X)) ()T Ba+1) | 61 (x)¢; (), (x)[(4a+1) i
I(a+1)2s® (a+1)T2a+1)s2% I(a+1)2T(2a+1)s3%
3182 (x) {5 (x) 3102 (X5 ()T (4a+1) 31 2(x) {5 (xX)T(6a+1) 61 {(x){1 ()5 (x)FBa+1)
s ra+1)r(a+1)2s3« r2a+1)3s5« r2a+1)r(a+1)s2«
61 {(x){5(x){5 ()T (4a+1) 681 (%), (x)5(x) T(5a+1) " 318 ()¢5 (x)
F(2a+1)2s3¢ [(a+1)T(2a+1)25%a + 328(x) 41" (%) +T +

. 313103 OTRa+1) | 31{1(x){3 )TBa+1) | 313" (x)
36,077 (x) + [(a+1)25% I'(a+1)(2a+1)s2® sa

+

31508 (OTBa+1) | 328" ()T (4a+1)
ra+1)r(a+1)s2« r(za+1)2s3a«

+28 00 +222 5> 0. (25)

To obtain the following formula, take the limit as s approaches infinity for both parts
of Eq. (25), and then apply Eq. (17).

0=G(x) +324(x)7"(x) +32{(x)¢'(x) +24"(x),s > 0.
(26)
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Solving the resulting algebraic Equation for ¢, (x) yields the following expression.

G () = =324 ()" (x) +340(x)¢1"(x) + 441" (%)), s > 0. @7)

Similar to previous stages, we insert the third-truncated series of Eq. (17), Us(x,s) =
§00 4 6 4 L@ | &0 g the third Linear Recurrence Formula (LRF) to obtain

S si+a T g1+2a T g143a’

the value of the next undetermined parameter, {5 (x).

_ " 3)'F(1 + Za){l(x)glu(x) "
5500 = =B M) + = oy 320004 ()
+14,"" (%)), s > 0. (28)
Consequently, we can express the solution of Eq. (14) as an infinite series, as follows.

UG s) =52 - (38@8" 043" (0)) (318108 (43286 ) +A% " )

sl+a sl+2a
"
(3AG(0)¢" (T EEDADA D 33000, (0428, (1)
sl+3a T (29)

The solution of Egs. (1) and (9) using the LRPS method can be obtained by applying
the inverse Laplace transform of Eq. (29) in the specified simple form.

(31805 )+ ()

u(x, t) = {(x) - rro e -
(3202 (0¢" (0 +322(0)8, " @)+28, " (1)) £2a _
r(i+2a)
11y 3AT(+2a)81 (081 (0 " "
B (x0)+ 1"(1+1a)2 L==24320(082 " (0+48, " () p3a_ (30)
r(1+3a)

4 Numerical Issues

In this section, we examine the significance of the LRPSM in finding the solution to
the FSTOF formula.
Problem 4.1. Consider the fractional equation presented below.
DEu(x,t) + 3u(x, t) + 3u?(x, ), (x, t) + 3u(x, )y (X, £) + Uy (x,£) = 0
t>00<a<l, (31)
And initial condition as:
2k (tanh (k )+w)

ux0) = wtanh(k x)+1 ’ k.wed (32)

Applying the Laplace transform to Eq. (32) and then using it in Eq. (31) yields the fol-
lowing expression.

U(x,s) = Zelamheim) | 3 (L {(L‘l(Ux(x, s))z)}) +

s (wtanh(k x)+1) s«

%(L {(L—l(U(X, S))Z) L‘l(Ux(x, S))}) +

- (L {(L‘l(U(x, s))) L7 (U (x, s))D + % Usprre(x,8), s> 0. (33)

It is asserted that the kth-truncated series can be expressed as follows.
koo
2 k (tanh (k x)+w) Z () s> 0. (34)

s (wtanh(k x)+1) :151+“f ’

Ue(x,s) =
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Thus, the kth Linear Recurrence Formulas (LRFs) are given by the following ex-
pressions.
LRes,(s)

a3y 5 (2 (o) )

2 (£ W 9)) £ (Uone )]) o (£{(£7 0 9)) £ (Virma )
—%U(k)xxx(x, s), s> 0. (35)
The kth-truncated series of Eq. (34) is inserted into the kth Linear Recurrence For-
mula (LRF) of Eq. (35) to obtain {;(x). Multiplying the resulting formula by st
allows us to determine the relationship.
Lim,_ o (s**1LRes,(s)) = 0,k = 1,2,3,..
So, several values include:

¢1(x)
' B 4ak*(w? — 1)sech*(kx)(2(w? + 1) cosh(2kx) + 4w sinh(2kx) + w? — 1)

h (wtanh(kx) + 1)* ’
21,7 (vr2 _ 7 5
(wianh (k) + 1)7 16a°k’(w?* — 1)sech’ (kx)(w>cosh (5kx)

— w*sinh (kx) + 27w*sinh (3kx) + 5w*sinh (5kx)
+ 10w3cosh (5kx) + 2w?sinh (kx) — 18w?2sinh (3kx)
+ 10w?sinh (5kx) — (w? — 1)?wcosh (kx) + 9(w* + 2w?
— 3)wcosh (3kx) + S5wcosh (5kx) — sinh (kx) — 9sinh (3kx)
+ sinh (5kx)),
1

G (x) =

$3(x) = —

31,10 2 2
T (@ + 1)2(wsinh (lox) + cosh (kx))to 524 K- (w> = DB

— DI 2a + 1)(w®cosh (6kx) + 90w°sinh (2kx)
+ 60w>sinh (4kx) + 6w’sinh (6kx) + 15w*cosh (6kx)
— 180w3sinh (2kx) + 20w3sinh (6kx) + 15w?cosh (6kx)
+45(w? — 1)?(w? + 1)cosh (2kx) + 15(w® + 5w* — 5w?
— 1)cosh (4kx) + 90wsinh (2kx) — 60wsinh (4kx)
+ 6wsinh (6kx) + cosh (6kx) + 29w® — 87w* + 87w? — 29)
+I' (a + 1)2(28w8cosh (6kx) + wBcosh (8kx)
— 940w’sinh (2kx) — 320w7’sinh (4kx) + 168w’sinh (6kx)
+ 8w7sinh (8kx) + 392w®cosh (6kx) + 28w°cosh (8kx)
+ 2820w°sinh (2kx) + 320w°sinh (4kx) + 392w5sinh (6kx)
+ 56w’sinh (8kx) + 70w*cosh (8kx) — 2820w3sinh (2kx)
+ 320w3sinh (4kx) — 392w3sinh (6kx) + 56w3sinh (8kx)
— 392w?2cosh (6kx) + 28w?cosh (8kx) — 470(w? — 1)3(w?
+ 1)cosh (2kx) — 80(w? — 1)?(w* + 6w? + 1)cosh (4kx)
+ 940wsinh (2kx) — 320wsinh (4kx) — 168wsinh (6kx)
+ 8wsinh (8kx) — 28cosh (6kx) + cosh (8kx) — 181w?
+ 724w — 1086w* + 724w? — 181)),

Therefore, we can express the solution of Eq. (34) as an infinite series, as follows.
U(x,s) =
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2k(tanh (kx)+w)
s(wtanh (kx)+1)
1 4ak*(w?-1)sech*(kx)(2(w?+1) cosh(2kx)+4w sinh(2kx)+w?-1)
sita (_ (wtanh(kx)+1)* ) +

! L 16a2k”(w? — 1)sech’ (kx) (w5 cosh (5kx) — w*sinh (kx) +

s2a+1 ((wtanh(kx)+1)7
27w*sinh (3kx) + 5w*sinh (5kx) + 10w3cosh (5kx) + 2w?sinh (kx) —
18w?sinh (3kx) + 10w?sinh (5kx) — (w? — 1)?wcosh (kx) + 9(w* + 2w? —
3)wcosh (3kx) + Swcosh (5kx) — sinh (kx) — 9sinh (3kx) + sinh (5kx))) +
33;*’1 (_ I (a+1)%(wsinh (lkx)+cosh (kx))10 32a3k1°(w2 - 1) (3(W2 - 1)F (Za +
1)(w®cosh (6kx) + 90w°sinh (2kx) + 60w®sinh (4kx) + 6w°sinh (6kx) +
15w*cosh (6kx) — 180w3sinh (2kx) + 20w3sinh (6kx) + 15w?cosh (6kx) +
45(w? — 1)?(w? + 1)cosh (2kx) + 15(w® + 5w* — 5w? — 1)cosh (4kx) +
90wsinh (2kx) — 60wsinh (4kx) + 6wsinh (6kx) + cosh (6kx) + 29w® —
87w* + 87w? — 29) + I' (a + 1)2(28w8cosh (6kx) + wcosh (8kx) —
940w7’sinh (2kx) — 320w’sinh (4kx) + 168w7’sinh (6kx) + 8w’sinh (8kx) +
392wbcosh (6kx) + 28w°cosh (8kx) + 2820w°sinh (2kx) + 320w°sinh (4kx) +
392w°®sinh (6kx) + 56w°sinh (8kx) + 70w*cosh (8kx) — 2820w3sinh (2kx) +
320w3sinh (4kx) — 392w3sinh (6kx) + 56w3sinh (8kx) — 392w?cosh (6kx) +
28w?cosh (8kx) — 470(w? — 1)3(w? + 1)cosh (2kx) — 80(w? — 1)?(w* +
6w? + 1)cosh (4kx) + 940wsinh (2kx) — 320wsinh (4kx) — 168wsinh (6kx) +
8wsinh (8kx) — 28cosh (6kx) + cosh (8kx) — 181w?® + 724w® — 1086w* +
724w? — 181)))+. (36)

If we perform the inverse Laplace transform, the resulting expression is as follows.

u(x, t) =

Zk((tanl? (kx)+w) _ 4ak4(w2—1)t“sech4(kx)(2(w2+1)cosh (2kx)+4wsinh (2kx)+w?-1) +

wtanh (kx)+1 I' (a+1)(wtanh (kx)+1)*

- (Za“)(wtlnh oy 16a%k” (w? — 1)t?*sech’ (kx)(w®cosh (5kx) —
w?sinh (kx) + 27w*sinh (3kx) + 5w*sinh (5kx) + 10w3cosh (5kx) +
2w?sinh (kx) — 18w?sinh (3kx) + 10w?sinh (5kx) — (w? — 1)?wcosh (kx) +
9(w* + 2w? — 3)wcosh (3kx) + 5wcosh (5kx) — sinh (kx) — 9sinh (3kx) +
sinh (5kx)) - ¢ (a+1)2r (3a+1)(ws§nh (kx)+cosh (kx))10 32a°k™0(w? — DB ~
DI (2a + 1)(wecosh (6kx) + 90w5sinh (2kx) + 60w°sinh (4kx) +
6w5sinh (6kx) + 15w*cosh (6kx) — 180w3sinh (2kx) + 20w3sinh (6kx) +
15w2cosh (6kx) + 45(w? — 1)?(w? + 1)cosh (2kx) + 15(w® + 5w* — 5w? —
1)cosh (4kx) + 90wsinh (2kx) — 60wsinh (4kx) 4+ 6wsinh (6kx) +
cosh (6kx) + 29w® — 87w* + 87w? — 29) + I' (a + 1)?(28w8cosh (6kx) +
w8cosh (8kx) — 940w’sinh (2kx) — 320w’sinh (4kx) + 168w7sinh (6kx) +
8w7sinh (8kx) + 392w®cosh (6kx) + 28w°cosh (8kx) + 2820w°>sinh (2kx) +
320w°sinh (4kx) + 392w°sinh (6kx) + 56w°sinh (8kx) + 70w*cosh (8kx) —
2820w3sinh (2kx) + 320w3sinh (4kx) — 392w3sinh (6kx) + 56w3sinh (8kx) —
392w?cosh (6kx) + 28w?cosh (8kx) — 470(w? — 1)3(w? + 1)cosh (2kx) —
80(w? — 1)2(w* + 6w? + 1)cosh (4kx) + 940wsinh (2kx) — 320wsinh (4kx) —
168wsinh (6kx) + 8wsinh (8kx) — 28cosh (6kx) + cosh (8kx) — 181w8 +
724w — 1086w* + 724w? — 181)) +.. (37)
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Due to the unpredictable nature of the coefficients in the series solution of Eqg. (37), it
is not possible to obtain an exact solution. Hence, we evaluate the results using the
residual and relative errors, which are defined as follows, respectively:

Res. Err (x,t) = |L7 [LRess(x, s)]| = [Dfu(x, t) + 3ui(x,t) +
3u?(x, ), (x, £) + 3u(x, Oy (2, 1) + Usyre (x, )|
(38)
us(x,t)—uz(x;t
Rel. Err (x,t) = U5t ~us (x,t) us)(x;)( ) (39)

Song et al. [25] have previously solved equation (1) using the Variation iteration
approach, Adomian decomposition, and homotopy perturbation method. Additionally,
the Residual Power Series Technique [26] was employed. However, in this study, we
solve equation (1) using the LRPSM.

Table 4.1 displays the numerical solutions to the problem, along with the residual
and relative errors for various values of \alpha within the range (0, o) x [0,1], and the
fifth approximate result. The results indicate that the LRPS approach is a reliable nu-
merical method for solving a nonlinear FSTOF.

Figure 4.1a, b, and c illustrate the graphs of the 5th approximate solutions to equa-
tions (31) and (32) over the range (0, ) x [0,1]. The graphs indicate that the solutions
to the IVPs (31) and (32) are strictly decreasing throughout the region.

Table 1. Assessment among the Exact solution, VIM, ADM, and HPM and LRPS
solution with parametersw = 0.5 ,k =a=a =1andt = 0.001

X Exact Solution VIM ADM HPM LRPS

0 0.938808808 0.938798380 0.938800000 | 0.938800000 | 0.938808808
1 1.813631681 1.813642383 1.813642415 | 1.813642415 | 1.813631681
2 1.973719022 1.973721044 1.973721044 | 1.973721044 | 1.973719022
3 1.996422935 1.996423221 1.996423221 | 1.996423221 | 1.996422935
4 1.999515521 1.999515561 1.999515561 | 1.999515561 | 1.999515522
5 1.999934426 1.999934431 1.999934431 | 1.999934431 | 1.999934428
6 1.999991125 1.999991127 1.999991127 | 1.999991127 | 1.999991129
7 1.999998799 1.999998799 1.999998799 | 1.999998799 | 1.999998799

Above table shows that numerical values of the obtained solution are also very nearer
to the exact solution.

@ () ©

Fig. 1. The graphs of Egs. (31) at various values Of a: (a) « =1, (b) a = 0.9, (c)a =
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0.8.
Problem 4.2: Consider the fractional equation presented below.
DEu(x, t) + 3u?(x, u, (x, £) + 3ulx, Du,, (x,t) =0,t >0,0< a < 1, (40)

And initial condition as:
u(x,0) = m cosh (5x) (41)
Applying the Laplace transform to equation (41) and then using it in equation (40)

yields the following expression.

U(x,s) = —"COS? o %(L {(L‘l(U(x, s))Z)L‘l(Ux(x, s))}) +

3

({0 9) £ U@ 9)}), s> 0. (42)

It is claimed that the kth-truncated series can be expressed using the following for-
mula.

sitaj ’

k .
U, s) = 20D Z 1 G0 s o. (43)
]:

Thus, the kth Linear Recurrence Formulas (LRFs) are given by the following expres-
sions.

LRes (s) = =2 COS? 6 _ % (L {(L‘l(Uk (x, s))z) L1 (U(k)x(x, s))}) -

;(L{(L‘l(Uk(x, s))) L1 (U(k)xx(x, s))}), s> 0. (44)
The kth-truncated series of equation (43) is inserted into the kth Linear Recurrence
Formula (LRF) of equation (44) to obtain {5(x). Multiplying the resulting formula by
s+ allows us to determine the relationship.
Lim,_ o (s¥*'LRes,(s)) = 0,k = 1,2,3,..

So, several values include:

¢, (x) = —75n? cosh?(5x),

5625

G(x) = Tn3(7cosh (5x) + 5cosh (15x))
{3(x)
421875m*cosh?(5x)(I" (a + 1)2(25cosh (10x) — 9) + 2I" (2a + 1)cosh (10x))

I (a+1)?

Therefore, we can express the solution of equation (43) as an infinite series, as fol-
lows.

_ 2 2
Ur,s) =G | LTS O 6D) 1 <—564257r3(7cosh(5x)+

sl+a s2a+1

5 cosh(le))) +

1 (_ 4218751% cosh?(5x) (I'(@+1)?(25 cosh(10x)—9)+2 I'(2a+1) cosh(le))) g (45)
s3atl r(a+1)?

If we perform the inverse Laplace transform, the resulting expression is as follows.
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75m2t%cosh?(5x) = 5625 m3t2%cosh (5x
u(x,t) = wcosh(5x) — (52)
r(a+1) 2I (2a+1)
28125 m3t2%cosh (5x)cosh (10x)  2953125m%t3%cosh?(5x)  10546875m*t3%cosh (5x)cosh (15x)

2r (2a+1) 2I (3a+1) 2r (3a+1)
42187514 (2a+1)t3%sinh (20x)coth (5x) v (46)

2r (a+1)2r (3a+1)

Due to the unpredictable nature of the coefficients in the series solution of equation

(46), it is not possible to obtain an exact solution. Hence, we evaluate the results using
the residual and relative errors, which are defined as follows, respectively:

Tables 4.2, 4.3, and 4.4 display the numerical solutions to the problem, along with the
residual and relative errors for various values of @ within the range (0, ) x [0,1], and
the 5th approximate result. The results indicate that the LRPS approach is a reliable
numerical method for solving a nonlinear FSTOF.

Figure 4.2a, b, c, d, and e display the graphs of the 5th approximate solutions to
equations (40) and (41) over the range (0, o) x [0,1]. The graphs demonstrate that the
solutions to the IVPs (40) and (41) are strictly decreasing throughout the region.

Table 2. Numerical comparisons between the 5th-approximation of ug(x, t) and the
residual error of u(x,t) ata = 1.

X t us(x, t) — Res.Err.(x,t) Rel.
approximation Err (x,t)
3.1447786530710635 | 7.51263
001 | 0000001 | 3144786530713 et
0.000002 | 3.1440373687876986 | 31440373087839247 | 120033
0.000003 | 3.1432966089257905 | 31432906089067045 1 6.07199
0.000004 | 3.142556372669747 | -1425563726094805 i91107_Zf
0.000001 | 3.176245162469971 | S:1762451624692853 1115081?

0.03 | 5000002 | 3.1754889845390843 | 3-1754889845290157 i“‘l%ﬂ?
3.1747333530170786 | 1.74723
x 10711
3.1739782697376997 | 5.51818
x 10711
0.000001 | 3.2304926507611433 | 3239492699759883 | 38905,

0051 1 000002 | 3.2387060981603567 | 3:2387060981492004 | 6.22357

0.000003 | 3.1747333539725484

0.000004 | 3.1739782699128454

x 10712
0.000003 | 3.237920131631696 3.2379201315297563 ilﬁ)g—?ll
0000004 | 3.237134759187277 3.2371347588654102 ‘)3(914;2_?16
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Table 3. Numerical comparisons between the 5th-approximation of uz(x, t) and the

residual error of u(x,t) at a« = 0.75

X t us(x, t) — Res.Err.(x,t) Rel.

approximation Err (x,t)
.12037337881634 2.70536

0.000001 | 3.1203742229907303 | >120373378816346 a

0.01 x 1077
. 2.09452

0.000002 | 3.103658233056388 | > 020°17323911657 < 10-6
.089257448130434 6.85989

0.000003 | 3.0892786400996304 | > 0892°74481304345 « 10-6
3.0762451919325455 | 1.58001

0.000004 | 3.0762937969403112 < 10-5
151357711 7.91916

0.000001 | 3.1513602072951548 | > ->13°7711683688 <107

0.03 1272
0.000002 | 3.1343338076067475 | > 1031460302258 i 10-6
.119648762020612 2.00554

0.000003 | 3.1197113278975652 | >+ 196487620206126 < 10-5
3.1063946544227803 4.61652

0.000004 | 3.1065380616574227 < 10-5
3.213622122424383 1.42957

0.000001 | 3.2136267165073926 < 10-5

0.05 3.195924178997689 1.1043
0.000002 | 3.195959471545515 o

x 10
0.000003 | 3.180820240678176 | >-1807054485145523 1“510093;2
3.1669590880932823 8.29488

0.000004 | 3.167221783571589 105

Table 4. Numerical comparisons between the 5th-approximation of uz(x, t) and the

residual error of u(x,t) at @ = 0.90.

X t us(x,t) — Res.Err.(x,t) Rel.
approximation Err (x,t)
0.000001 | 3.142453736729295 3.142453736626076 3'28{6117
0.01 X 10
0.000002 | 3.1398057312452234 3.139805729998697 i91700_908
0.000003 | 3.1372998473021236 3.137299841957196 171%3_27
0.000004 | 3.13488402680838 3.1348840118086647 4.78478

x 107°
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0.000001 | 3.173873587258227 3.1738735869558683 251206_%?
0.03 0.000002 | 3.1711726029754224 3.1711725993242035 111501_5;8
0.000003 | 3.168616747998005 3.168616732342718 191%0_?33
0.000004 | 3.1661529081632724 3.166152864230786 131%7_37
0.000001 | 3.237025902207323 3.2370259016507537 171109_5;09
0.05 0.000002 3.234216853471912 3.234216846751956 iO1707—‘797
0.000003 3.2315590761982347 | 3.2315590473896783 i91104;(7)5
0.000004 3.228997296750303 3.228997215918956 151%3_5;
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FIG. 2. The graphs of Egs. (40) at various values of a: (&) « =1, (b) a = 0.75,
(¢) a =0.90, (d) « = 0.50, () « = 0.25.

5 Conclusion

In this study, LRPSM was successfully used to obtain the solution of the fractional
Sharma-Tasso-Oliver equation. Based on the results obtained, it was found that LRPSM
is very effective and accurate in solving differential equations of fractional order, such
as the Sharma-Tasso-Oliver problem, and it was compared with several methods such
as VIM, HPM, RPS, where it was concluded that the LRPS approach is a powerful and
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advanced method for finding Both approximate and analytical solutions to various par-
tial mathematical models that arise in different scientific fields.
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