On Third-Order Differential Subordinations and Superordinations Results for Univalent Analytic Functions Defined by a New Operator

Waggas Galib Atshan (□)
University of Al-Qadisiyah, Diwaniyah- Iraq.
waggas.galib@qu.edu.iq
Ali Abdul-Hassan Salamah (□)
University of Al-Qadisiyah, Diwaniyah- Iraq
lyslamh890@gmail.com

Abstract: In the current paper, we obtain sandwich theorems for univalent functions by using some of the finding of Third-order differential subordination and superordination for univalent functions defined by a new operator $\mathbb{R}^n f(z)$.

Keywords: Analytic function, Univalent Function, New Operator, Differential Subordination.

2010 Mathematics Subject Classification: 30C45.

1-Introduction and Definitions

Let $\hat{W} = \hat{W}(U)$ be the class functions which are analytic in the open unit disk $U = \{z \in C : |z| < 1\}$. For $n \in N$ and $a \in C$. Let $\hat{W}[a,n]$ be the subclass of \hat{W} and

$$\hat{W}[a, n] = \{ f \in \hat{W} : f(z) = a + a_k z^k + a_{k+1} z^{k+1} + \cdots \}, (a \in C)$$

Let A denote the subclass of \hat{W} of functions f of the form:

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k, (a_k \ge 0, a \in C), \tag{1.1}$$

Suppose f and g are analytic functions in \hat{W} . We say that f is subordinate to g, or g is superordinate to f in U, and write f < g, or f(z) < g(z), if there exists a Schwarz function \dot{w} in U, which with $\dot{w}(0) = 0$, and $|\dot{w}(z)| < 1$, $(z \in U)$, where $f(z) = g(\dot{w}(z))$. Furthermore, if g is univalent in U, we have(see[8]), f(z) < g(z) if and only if f(0) = g(0) and $f(U) \subset g(U)$ $z \in U$.

<u>Definition(1.1)</u>[1]: Let $\circ : \mathbb{C}^4 \times U \to \mathbb{C}$ and suppose that the function K(z) be univalent in U. If p(z) is analytic in U and satisfies the following:

$$\emptyset(\mathfrak{p}(z), z \mathfrak{p}'(z), z^2 \mathfrak{p}''(z), z^3 \mathfrak{p}'''(z); z) < K(z), \tag{1.2}$$

then $\mathfrak{P}(z)$ is called a solution of the differential subordination (1,2). Furthermore, given univalent function $\mathfrak{P}(z)$ is called a dominant of the solution of the differential subordination (1.2) if , $\mathfrak{P}(z) < q(z)$ for all $\mathfrak{P}(z)$ satisfying (1.2). A dominant $\check{q}(z)$ that satisfies $\tilde{q}(z) < q(z)$ for all dominant q(z) of (1.2) is said to be the bsst dominant.

<u>Definition (1.2)[3,24])</u>: For $f \in A$, we define An operator $\mathbb{R}^n : A \to A$

$$D^{n}f(z) = z + \sum_{k=2}^{\infty} [1 + (k - 1)\delta]^{n} a_{k} z^{k}, (n \in N).$$
 (1.3)

When $\delta = 1$, we get Salagean's differential operator (see[3]), and

$$J_{s,a}f(z) = z + \sum_{k=2}^{\infty} \left(\frac{k+a}{p+a}\right)^s a_k z^k$$
, (1.4)

 $(z \in U, a \in C \setminus \underline{Z}_0, \underline{Z}_0 = \{0, -1, -2, \dots\}, s \in \mathbb{C} \text{ (see}[24]).$

We define the new operator

$$R^n = D^n * I_{s,a}$$

$$R^{n}f(z) = z + \sum_{k=2}^{\infty} \left(\frac{k + a}{1 + a}\right)^{s} [1 + (k - 1)\delta]^{n} a_{k} z^{k}$$
(1.5)

$$z(R^{n}f(z))' = \frac{1}{\delta}R^{n+1}f(z) - \frac{1-\delta}{\delta}R^{n}f(z).$$
 (1.6)

<u>Definition(1.3)</u>[1]: Let Q the set of all functions q that t are analytic and univalent on U|E(q), where $U=U\cup\{z\in\partial U\}$, and

$$E(q) = \{ \xi \in \partial U : q(\xi) = \infty \}$$
 (1.7)

and $min |q'(\xi)| = \mathfrak{p} > 0$ for $\xi \in \partial U \setminus E(q)$. Further, let the subclass of Q for which $q(0) = \mathfrak{q}$, be denoted $yy Q(\mathfrak{q})$, and $Q(0) = Q_0$, $Q(1) = Q_1$.

The subordination methodology is applied to appropriate classes of admissible function.

The following class of admissible functions is given by Antoniuo and Miller (see[1]). **Definition** (1-4) [1]: Let Ω be a set in \mathbb{C} . Also $q \in Q$ and $n \in N/\{1\}$, N being the set of positive integers. The class $H_n[\Omega, q]$ of admissible functions consists of those functions $K: \mathbb{C}^4 \times U \to \mathbb{C}$, which satisfy following admissibility conditions:

$$K(e, s, r, t) \notin \Omega$$

whenever
$$e = q(\epsilon)$$
, $s = k\epsilon q'(\epsilon)$, $R\left(\frac{r}{s} + 1\right) \ge kR\left(\frac{\epsilon q''(\epsilon)}{q'(\epsilon)} + 1\right)$

and
$$R(\frac{t}{\varsigma}) \ge k^2 R(\frac{\varepsilon^2 q'''(\varepsilon)}{q'(\varepsilon)})$$
 (where $z \in U, \varepsilon \in \partial U | E(q), k \ge 2$).

Lemma (1.5) ,below is the foundation result in the theory of third order differential subordination.

<u>Lemma(1.5)[1]</u>:Let $\hat{W}[a, n]$ with $n \ge 2$ and $q \in Q_a$ satisfy the following conditions

$$R\left(\frac{\varepsilon q''(\varepsilon)}{q'(\varepsilon)}\right) \ge 0, \quad \left|\frac{z\mathfrak{p}''(z)}{q'(\varepsilon)}\right| \le k$$

(where $z \in U$, $\varepsilon \in \partial U | E(q)$, $\varepsilon \geq 2$). If Ω is a set in \mathbb{C} , $\emptyset \in H_n[\Omega, q]$

and
$$\left\{ \acute{\mathfrak{D}}(\mathfrak{p}(z),z\mathfrak{p}'(z),z^2\mathfrak{p}''(z),z^3\mathfrak{p}^3(z);z) \right\} \subset \Omega.$$

Then
$$p(z) < q(z)$$
.

The notion of the third-order differential subordination can be found in the work of Ponnurasy and Juneja [10]. The recent w ork by s everal author s (see example [4,5,6,7,8,15,22,23,26,27]) on the differential s ubordination attracted man y researchers in this field. For example (see [2,3,9,10,11,12,14,16,17,18,20,21,25,26,27]).

In the present paper, we investigate suitable classes of admissible functions associated with new an operator $R^n f(z)$

2-Results Related to the Third-Order Subordination:

In this section , we start with a given set Ω ,and given function q , and we determine a set of admissible new operator ,so that (1.2) holds true .For this purpose , we introduce the following new class of admissible functions which will be required to prove the main third-order differential subordination theorems for new the operator $\mathbb{R}^n f(\mathbf{z})$ defined by (1.5).

<u>Definition (2.1):</u> Let Ω be a set in \mathbb{C} , $q \in Q_0 \cap \hat{\mathbb{W}}_0$. The class $\mathcal{H}_i[\Omega, q]$ of admissible functions consist of those functions:

That satisfy the following admissibility condition: $\emptyset(a, b, c, d; z) \notin \Omega$,

whenever

$$\begin{aligned}
& \mathbf{a} = q(\mathbf{\epsilon}), \quad \mathbf{b} = \delta \mathbf{\epsilon} q'(\mathbf{\epsilon}), \\
Re\left(\frac{\varsigma - (1 - \delta)[2\mathbf{b} - (1 - \delta)\mathbf{a}]}{\delta^2 \mathbf{b} - \delta^2 (1 - \delta)\mathbf{a}}\right) \ge \mathbf{k} Re\left(\frac{\mathbf{\epsilon} q''(\mathbf{\epsilon})}{q'(\mathbf{\epsilon})} + 1\right),
\end{aligned}$$

And

$$Re\left(\frac{\mathrm{d}-3\varsigma-(1-\delta)[(1-\delta)\mathfrak{b}+(1+\delta)\mathfrak{a}]+2(2-\delta)\mathfrak{b}}{\delta^2\mathfrak{b}-\delta^2(1-\delta)\mathfrak{a}}\right)\geq \dot{k}^2Re\left(\frac{\varepsilon^2q'''(\varepsilon)}{q'(\varepsilon)}\right),$$

(where $z \in U, \varepsilon \in \partial U | E(q), \dot{\varepsilon} \ge 2$).

Theorem (2.1): Let $\emptyset \in H_i[\Omega, q]$. If the function $f \in A$, and $q \in Q_0$, satisfy the following conditions:

$$R\left(\frac{\varepsilon q''(\varepsilon)}{q'(\varepsilon)}\right) \ge 0, \quad \left|\frac{\ddot{R}^n f(z)}{q'(z)}\right| \le \dot{R},$$
 (2.1)

And

$$\left\{ \acute{g}(\Breve{R}^{n}f(\Breve{z}),\Breve{R}^{n+1}f(\Breve{z}),\Breve{R}^{n+2}f(\Breve{z}),\Breve{R}^{n+3}f(\Breve{z});\Breve{z}) \colon \Breve{z} \in U \right\} \subset \Omega, \ \ (2.2)$$

Then

$$R^n f(z) \prec q(z) \quad (z \in U).$$

Proof: Define the analytic function $\mathfrak{p}(z)$ in U by

$$\mathfrak{p}(z) = \mathfrak{R}^n f(z). \tag{2.3}$$

From equation (1.6) and (2.3), we have

$$R^{n+1}f(z) = \delta z p'(z) + (1 - \delta)p(z). \tag{2.4}$$

By a similar argument, we get

$$R^{n+2}f(z) = \delta^2 z^2 P''(z) + \delta(2-\delta)z P'(z) + (1-\delta)^2 P(z), \tag{2.5}$$

and

Defin**e** the transformati**o**n from \mathbb{C}^4 **to** \mathbb{C} b y

$$a(e, s, r, t) = e$$
, $b(e, s, r, t) = \delta s + (1 - \delta)e$

$$\varsigma(\mathsf{e},\mathsf{s},\mathsf{r},\mathsf{t}) = \delta^2 \mathsf{r} + \delta(2-\delta) \mathsf{s} + (1-\delta)^2 \mathsf{e} \,, \tag{2.7}$$

$$\begin{split} \text{d.}(\textbf{q},\textbf{s},\textbf{r},\textbf{t}) &= \pmb{\delta}^{3}\textbf{t} + 3\pmb{\delta}^{2}\textbf{r} + \pmb{\delta}[(2-\pmb{\delta}) + (1-\pmb{\delta})^{2}]\textbf{s} \\ &+ (1-\pmb{\delta})^{3}\textbf{q}. \end{split} \tag{2.8}$$

Let $\mathring{K}(e, s, r, t) = \mathring{\emptyset}(a, b, c, d)$

$$\begin{split} = & \ \, \tilde{\emptyset}(\varrho,\delta \varsigma + (1-\delta)\varrho,\delta^2 \varsigma + \delta(2-\delta)\varsigma + (1-\delta)^2 \varrho,\delta^3 \varsigma + 3\delta^2 \varsigma + \delta[(2-\delta) \\ & + (1-\delta)^2 \bigr] \varsigma + (1-\delta)^3 \varrho \,) \, . \end{split}$$

The pr**oo**f will make us**e** of lemma (1.5) using the **e**quations (2.3), and (2.6), and from the **e**quation (2.9), **w**e have

Hence, clearly (2.2), becomes

$$\label{eq:continuity} \begin{picture}(x), (x) = (x) & (x)$$

we note that

$$\frac{\mathbf{r}}{\mathbf{s}} + \mathbf{1} = \frac{\mathbf{c} - (\mathbf{1} - \boldsymbol{\delta})[2\mathbf{b} - (\mathbf{1} - \boldsymbol{\delta})\mathbf{a}]}{\boldsymbol{\delta}[\mathbf{b} - (\mathbf{1} - \boldsymbol{\delta})\mathbf{a}]},$$

$$\frac{\mathfrak{t}}{\$} = \frac{\mathrm{d} - 3 \mathfrak{c} - (1-\delta)[(1-\delta) \mathfrak{b} + (1+\delta) \mathfrak{q}] + 2(2-\delta) \mathfrak{b}}{\delta^2 [\mathfrak{b} - (1-\delta) \mathfrak{q}]}.$$

Thus clearly ,the admissibility condition for $\emptyset \in H_i[\Omega, q]$,in definition (2-1) is equivalent to admissibility codition $K \in H_2[\Omega, q]$ as given in definition (1.4), with n=2.

Therefore, by using (2.1), and lemma (1-5), we have

$$R^n f(z) \prec q(z)$$
.

This proof is complete of the orem (2.1).

Our next result is consequence of the *o*rem (2.1), when the behavior of q(z) on ∂U is not known.

Corollary (2.1): Let $\Omega \in \mathbb{C}$,and let the function q be univalent in U with q(0) = 1. Let $\emptyset \in H_1[\Omega, q_p]$, for some $\mathfrak{p} \in (0,1)$, where $q_{\mathfrak{p}}(z) = q(\mathfrak{p}z)$. If the function $f \in A_p$, satisfies the following conditions:

$$\textit{Re}\left(\frac{\epsilon q_{\mathfrak{p}''(\xi)}}{q_{\mathfrak{p}'(\xi)}}\right) \geq 0, \qquad \left| \begin{array}{c} \frac{\aleph^{n+1}f(z)}{q_{\mathfrak{p}'(\xi)}} \end{array} \right| \leq k, \quad \left(\ z \in \textit{U}, \xi \in \textit{\partial}\textit{U} | \textit{E}(\textit{q}_{\mathfrak{p}}) \ , k \geq 2 \right),$$

$$and \ \not O \bigg(\ \c R^n f(z), \c R^{n+1} f(z), \ \c R^{n+2} f(z), \c R^{n+3} f(z) \bigg) \in \Omega.$$

Then

$$R^n f(z) < q(z), (z \in U).$$

Proof: By applying theoeem (2.1), we get

$$R^n f(z) < q(z) \quad (z \in U)$$

The result asserted by Corollary (2-1), is now deduced from following subordination property

$$q_{\mathfrak{p}}(z) \prec q(z), \ (z \in U).$$

This proof is complete of corollary (2.1).

If $\Omega \neq \mathbb{C}$, is simply –connected domain ,the $\Omega = M(U)$, for some conformal mapping M(z) of U on to Ω . In this case the class $H_i[M(U), q]$ is written as $H_i[M, q]$.

This leads to the following immediate consequence of theorem (2.1).

<u>Theorem(2.2):</u> Let $\emptyset \in H_i[M,q]$. If the function $f \in A$, and $q \in Q_0$, satisfy the following conditions:

$$Re\left(\frac{\varepsilon q_{\mathfrak{p}}''(\varepsilon)}{q_{\mathfrak{p}}'(\varepsilon)}\right) \geq 0, \quad \left|\frac{\mathfrak{R}^{n+1}f(z)}{q_{\mathfrak{p}}'(z)}\right| \leq k, \quad (2.11)$$

and

$$\emptyset(\mathbb{R}^n f(z), \mathbb{R}^{n+1} f(z), \mathbb{R}^{n+2} f(z), \mathbb{R}^{n+3} f(z); z) < M(z), \quad (2.12)$$

then

$$\mathbb{R}^n f(\mathbf{z}) \prec q(\mathbf{z}), \ (\mathbf{z} \in \mathbf{U}).$$

The next result is an immediate consequence of corollary (2.1).

Corollary (2.2): Let $\Omega \in \mathbb{C}$, and let the function q be univalent in U with q(0) = 1. Let $O \in \mathbb{H}_1[\Omega, q_{\mathfrak{p}}]$, for some $\mathfrak{p} \in (0,1)$, where $q_{\mathfrak{p}}(\mathfrak{z}) = q(\mathfrak{p}\mathfrak{z})$. If the function $f \in A$, and $q_{\mathfrak{p}}$, satisfies the following conditions:

$$\textit{Re}\left(\frac{\epsilon q_{\mathfrak{p}}^{\prime\prime}(\epsilon)}{q_{\mathfrak{p}}'(\epsilon)}\right) \geq 0, \qquad \left| \begin{array}{c} \frac{\mathbb{R}^{n+1}f(z)}{q_{\mathfrak{p}}'(\epsilon)} \end{array} \right| \, \leq \, \dot{\mathbf{k}} \quad \, (\, z \in \textit{\textbf{U}}, \epsilon \in \textit{\textbf{\partial}}\textit{\textbf{U}}|\textit{\textbf{E}}(\textit{\textbf{q}}_{\mathfrak{p}}) \, , \dot{\mathbf{k}} \geq 2 \,),$$

$$and \ \, \acute{\mathcal{D}}(\ \, \mathring{\boldsymbol{R}}^n\boldsymbol{f}(\boldsymbol{z}),\ \, \mathring{\boldsymbol{R}}^{n+1}\boldsymbol{f}(\boldsymbol{z}),\ \, \mathring{\boldsymbol{R}}^{n+2}\boldsymbol{f}(\boldsymbol{z}),\ \, \mathring{\boldsymbol{R}}^{n+3}\boldsymbol{f}(\boldsymbol{z});\boldsymbol{z}) < \check{\boldsymbol{M}}(\boldsymbol{z}),$$

then

$$\mathbb{R}^n f(\mathbf{z}) \prec q(\mathbf{z}) \quad (\mathbf{z} \in \mathbf{U}).$$

The following result yield the best dominant of differential subordination (2.12).

<u>Theorem(2.3):</u> Let th**e** functi**o**n M be unival**e**nt in U .Also \emptyset : $\mathbb{C}^4 \times U \to \mathbb{C}$,and K given by (2.9) .Suppos**e** that following differential **e**quation

$$K(p(z), z p'(z), z^2 p''(z), z^3 p'''(z); z) = M(z), (2.13)$$

has a **s**olution q(z) **w**ith q(0)=1, **w**hich **s**atisfies the condition (2.1) If $f \in A$, **s**atisfies the condition (2.12), and if

$$\emptyset(\ \mathbb{R}^n f(\mathbf{z}), \mathbb{R}^{n+1} f(\mathbf{z}), \mathbb{R}^{n+2} f(\mathbf{z}), \mathbb{R}^{n+3} f(\mathbf{z}); \mathbb{Z})$$
 is analytic in U ,

then

$$R^n f(z) < q(z), (z \in U)$$

and q(z) is the best dominant.

Proof: From the orem (2.1), we see that q is a dominant of (2.12). Since q s at is fies a s olution of (2.13).

Therefore, q will be dominant by all dominants. Hence q, is the best dominant. This completes the proof of theorem (2.3).

In view of definition (2.1) ,and in special case when q(z) = Gz(G > 0), the class $H_i[\Omega, q]$,of admissible functions ,denoted by $H_i[\Omega, G]$ is expressed follows.

<u>Definition(2.2)</u>: Let \mathcal{Q} be set in \mathbb{C} ,and $\mathcal{G} > \mathbf{0}$. The class $\mathcal{H}_i[\Omega, \mathcal{G}]$,of admissible functions consists of those functions $\mathcal{O}: \mathbb{C}^4 \times U \to \mathbb{C}$ such that

$$\begin{split} & \not [(\mathbf{G} e^{i\theta}, [\boldsymbol{\delta} \mathbf{D} + (\mathbf{1} - \boldsymbol{\delta})] \mathbf{G} e^{i\theta}, \boldsymbol{\delta}^2 \mathbf{E} + [\boldsymbol{\delta} (\mathbf{2} - \boldsymbol{\delta}) \mathbf{D} + (\mathbf{1} - \boldsymbol{\delta})^2] \mathbf{G} e^{i\theta}, \boldsymbol{\delta}^3 \mathbf{L} + 3 \boldsymbol{\delta}^2 \mathbf{E} \\ & \quad + (\boldsymbol{\delta} [(\mathbf{2} - \boldsymbol{\delta}) + (\mathbf{1} - \boldsymbol{\delta})^2] \mathbf{D} + (\mathbf{1} - \boldsymbol{\delta})^3) \mathbf{G} e^{i\theta}) \\ & \quad \notin \Omega, \end{split}$$

where $(z \in U)$,

$$Re(E^{-i\theta}) \ge (k-1)kG$$

and $Re(Le^{-i\theta}) \ge 0$, $\forall \theta \in R$, $k \ge 2$.

<u>Corollary(2.3)</u>; Let $\emptyset \in H_i[\Omega, G]$.If the function $f \in A$, satisfies the following conditions

$$|R^n f(z)| \le kG$$
, $(z \in U; k \ge 2; G > 0)$,

and

$$(R^n f(z), R^{n+1} f(z), R^{n+2} f(z), R^{n+3} f(z); z) \in \Omega,$$

then $|R^n f(z)| < G$,

In special case, when $\Omega = q(U) = \{ \omega : |\omega| < G \}$, the class $H_i[\Omega, G]$ is simple denoted by $H_i[G]$. Corollary (2.3) can be rewritten in the following from .

<u>Corollary(2.4)</u>; Let $\emptyset \in H_i[G]$. If the function $f \in A$, satisfies the following conditions:

$$|\mathbf{R}^n f(\mathbf{z})| \le \mathbf{k}\mathbf{G}, \quad (\mathbf{z} \in \mathbf{U}; \mathbf{k} \ge \mathbf{2}; \mathbf{G} > \mathbf{0}),$$

and

$$|\mbox{\bar{R}}^n f(\mbox{\bar{z}}), \mbox{\bar{R}}^{n+1} f(\mbox{\bar{z}}), \mbox{\bar{R}}^{n+2} f(\mbox{\bar{z}}), \mbox{\bar{R}}^{n+3} f(\mbox{\bar{z}}); \mbox{\bar{z}}| < \mbox{\bar{G}},$$

then $|\dot{\mathbf{R}}^n \mathbf{f}(\mathbf{z})| < \dot{\mathbf{G}}$.

<u>Corollary (2.5)</u>; Let $\mbox{$\not = $} \mbox{$\geq $} \mbox{$\geq $} \mbox{$0$}$, Let $\mbox{$\not = $} \mbox{$\neq $$} \mbox{$\neq $$$

$$|\mathbf{R}^{n+1}f(\mathbf{z})| \leq \mathbf{k}\mathbf{G}$$

and

$$|R^{n+1}f(z) - R^nf(z)| < Gz,$$

then

$$|\mathbf{R}^n f(\mathbf{z})| < \mathbf{G}$$
.

Proof; Let $\emptyset(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}) = \mathbf{b} - \mathbf{a}, \mathbf{and} \Omega = M(\mathbf{U}), \mathbf{where}$

$$M(z) = Gz (G > 0).$$

Us**e** corollar**y** (2.3), **w**e need to sho**w** that $\emptyset \in H_i[\Omega, G]$, that is the admissibilit**y** condition (2.14) is **s**atisfied .This follows readil**y**, **s**ince it is **s**een that

$$|\phi(\mathbf{q}, \mathbf{b}, \mathbf{c}, \mathbf{d}; \mathbf{z})| = |\mathbf{k} - \mathbf{1}| \ge \mathbf{G},$$

where $z \in U$, $\forall \theta \in R$, $and \ k \ge 0$. The required result now follows from corollary (2.3). This completes the proof.

<u>Definition(2.3):</u> Let Ω be a set in \mathbb{C} , $q \in Q_1 \cap A_1$. The class $H_{i,1}[\Omega, q]$ of admissible functions consists of those function $\emptyset : \mathbb{C}^4 \times U \to \mathbb{C}$, which satisfy the following admissibility conditions:

$$\emptyset(a, b, \boldsymbol{\varsigma}, d; \boldsymbol{z}) \notin \Omega$$
,

whenever

$$\mathbf{q} = \mathbf{q}(\mathbf{\epsilon}), \ \mathbf{b} = \mathbf{\delta}\mathbf{\epsilon}\mathbf{q}'(\mathbf{\epsilon}) + \mathbf{q}(\mathbf{\epsilon}),$$

$$Re\left(\frac{\varsigma-2b-(1-2\delta)a}{\delta(b-a)}\right) \ge kR\left(\frac{\epsilon q''(\epsilon)}{q'(\epsilon)}+1\right)$$

$$\begin{split} Re\left(\frac{\mathrm{d}\cdot-(3+3\delta)\varsigma-\left([\delta(3+\delta)+3]+(3+3\delta)(2-\delta)\right)6}{\delta^2(6-\mathfrak{q})} \\ -\frac{[(3+3\delta)(1-\delta)-\delta(3+\delta)-2]\mathfrak{q}}{\delta^2(6-\mathfrak{q})}\right) \geq \mathfrak{k}^2Re\left(\frac{\mathfrak{k}^2q'''(\mathfrak{k})}{q'(\mathfrak{k})}\right), \end{split}$$

(where $z \in U$, $\varepsilon \in \partial U | E(q)$, $k \ge 2$).

Theorem(2.4): Let $\emptyset \in H_{i,1}[\Omega, q]$. If the function $f \in A$, and $q \in Q_1$, satisfy the following conditions:

$$Re\left(\frac{\varepsilon q''(\varepsilon)}{q'(\varepsilon)}\right) \ge 0, \quad \left|\frac{R^n f(z)}{z q'(z)}\right| \le Re\left(\frac{\varepsilon q''(\varepsilon)}{z q'(z)}\right| \le Re\left(\frac{\varepsilon q''(\varepsilon)}{z q'(z)}\right)$$

and

$$\left\{ \emptyset\left(\frac{\ddot{\mathsf{R}}^n f(\mathbf{z})}{\mathbf{z}}, \frac{\ddot{\mathsf{R}}^{n+1} f(\mathbf{z})}{\mathbf{z}}, \frac{\ddot{\mathsf{R}}^{n+2} f(\mathbf{z})}{\mathbf{z}}, \frac{\ddot{\mathsf{R}}^{n+3} f(\mathbf{z})}{\mathbf{z}}; \mathbf{z} \right) : \mathbf{z} \in \Omega \right\} \subset \Omega, \tag{2.16}$$

then

$$\frac{\mathbf{R}^n f(\mathbf{z})}{\mathbf{z}} < q(\mathbf{z}), \ (\mathbf{z} \in \mathbf{U}).$$

Proof: Define the analytic function $\mathfrak{p}(z)$ in U by

$$\mathfrak{p}(z) = \frac{R^n f(z)}{z}. \tag{2.17}$$

From equation (1.6) and (2.3), we have

$$\frac{\mathbf{R}^{n+1}f(\mathbf{z})}{\mathbf{z}} = \delta \mathbf{z} \mathbf{p}'(\mathbf{z}) + \mathbf{p}(\mathbf{z}). \tag{2.18}$$

By a similar argument, we get

$$\frac{\mathbf{R}^{n+2}f(\mathbf{z})}{\mathbf{z}} = \delta^2 \mathbf{z}^2 \mathbf{p}''(\mathbf{z}) + \delta(2+\delta)\mathbf{z}\mathbf{p}'(\mathbf{z}) + \mathbf{p}(\mathbf{z}), \qquad (2.19)$$

$$\frac{\mathbf{R}^{n+3} f(\mathbf{z})}{\mathbf{z}} = \delta^3 \mathbf{z}^3 \mathbf{p}^{""}(\mathbf{z}) + \delta^2 (3+3\delta) \mathbf{z}^2 \mathbf{p}^{"}(\mathbf{z}) + \delta [(3+\delta)+3] \mathbf{z} \mathbf{p}^{"}(\mathbf{z}) + \mathbf{p}(\mathbf{z}). \tag{2.20}$$

Define the transformation from \mathbb{C}^4 to \mathbb{C} by

$$q(e, s, r, t) = e$$
, $b(e, s, r, t) = \delta s + e$

$$\varsigma(e, \varsigma, r, t) = \delta^2 r + \delta(2 + \delta) \varsigma + e, \qquad (2.21)$$

and

$$d(e, s, r, t) = \delta^3 t + \delta^2 (3 + 3\delta) r + \delta [\delta(3 + \delta) + 3] s + e. (2.22)$$

Let $K(e, s, r, t) = \emptyset(a, b, \varsigma, d_s)$

$$= \emptyset(e, \delta s + e, \delta^2 r + \delta(2 + \delta)s + e, \delta^3 t + \delta^2(3 + 3\delta)r + \delta[\delta(3 + \delta) + 3]s + e).$$

$$(2.23)$$

The pr**oo**f will make us**e** of lemma (1.5) using the **e**quations (2.17), and (2.19), and from the **e**quation (2.23), **w**e have

Hence ,clearly (2.16) ,becomes

$$K(\mathfrak{p}(z), z \mathfrak{p}'(z), z^2 \mathfrak{p}''(z), z^3 \mathfrak{p}'''(z); z) \in \Omega$$

we note that

$$\frac{r}{s} + 1 = \frac{s - 2b + (1 - 2\delta)a}{\delta(b - a)},$$

$$\begin{split} \frac{\mathfrak{t}}{\$} &= \frac{\mathrm{d} \cdot - (3+3\delta)\varsigma - \left(\left[\delta(3+\delta)+3\right] + (3+3\delta)(2-\delta)\right)\beta}{\delta^2(\beta-\mathfrak{q})} \\ &- \frac{\left[(3+3\delta)(1-\delta) - \delta(3+\delta) - 2\right]\mathfrak{q}}{\delta^2(\beta-\mathfrak{q})}. \end{split}$$

Thus clearl y, the admissibilit y condition for $\emptyset \in \mathcal{H}_{i,1}[\Omega, q]$, in definition (2-3) is equivalen t to admissibilit y codition $\mathcal{K} \in \mathcal{H}_2[\Omega, q]$ as given in definition (1.4), w ith n = 2. Therefore, by using (2.15), and lemma (1.5), w have

$$\frac{R^n f(z)}{z} < q(z).$$

If $\Omega \neq \mathbb{C}$, is simply connected domain ,the $\Omega = M(U)$, for some conformal mapping M(z) of U on $to \Omega$. In this case the class $H_{i,1}[M(U), q]$ is written as $H_{i,1}[M, q]$.

This lead \boldsymbol{s} to the following immediat \boldsymbol{e} consequence of theorem (2.4), is \boldsymbol{s} tated below

Theorem(2.5): Let $\emptyset \in H_{i,1}[M,q]$. If the function $f \in A$, and $q \in Q_1$, satisfy the following conditions:

$$R\left(\frac{\varepsilon q''(\varepsilon)}{q'(\varepsilon)}\right) \ge 0, \qquad \left|\frac{\mathbb{R}^{n+1}f(\mathbb{R})}{\mathbb{R}^{q'}(\varepsilon)}\right| \le \mathbb{R}, \tag{2.25}$$

and

$$\hat{\emptyset}\left(\frac{\dot{R}^{n}f(z)}{z}, \frac{\dot{R}^{n+1}f(z)}{z}, \frac{\dot{R}^{n+2}f(z)}{z}, \frac{\dot{R}^{n+2}f(z)}{z}, \frac{\dot{R}^{n+3}f(z)}{z}; z\right) < \dot{M}(z), \quad (2.26)$$

then

$$\frac{\mathbf{R}^n f(\mathbf{z})}{\mathbf{z}} \prec q(\mathbf{z}) \ (\mathbf{z} \in \mathbf{U}).$$

In view of definition (2.3) ,and in special case when q(z) = Gz (G > 0), the class $H_i[\Omega, q]$, of admissible functions ,denoted by $H_{i,1}[\Omega, G]$ is expressed follows.

<u>Definition(2.4)</u>; Let Ω be **s**et in \mathbb{C} ,and $G > \mathbf{0}$.The class $H_{i,1}[\Omega, G]$,of admissible functions **co**nsists of those functions O: $\mathbb{C}^4 \times U \to \mathbb{C}$ such that:

where $(z \in U)$, $Re(Ee^{-i\theta}) \ge (k-1)kG$

and
$$Re(\c Le^{-i heta}) \geq 0$$
 , $\forall heta \in R$, $\c k \geq 2$.

<u>Corollary(2.6)</u>; Let $\emptyset \in H_{i,1}[\Omega, G]$.If the function $f \in A$, satisfies the following conditions:

$$\left|\frac{\mathbf{R}^{n+1}f(\mathbf{z})}{\mathbf{z}}\right| \leq \mathbf{k}\mathbf{G}, \quad (\mathbf{z} \in \mathbf{U}; \mathbf{k} \geq \mathbf{2}; \mathbf{G} > \mathbf{0}),$$

and

$$\emptyset\left(\frac{\bar{\mathsf{R}}^nf(z)}{z},\frac{\bar{\mathsf{R}}^{n+1}f(z)}{z},\frac{\bar{\mathsf{R}}^{n+2}f(z)}{z},\frac{\bar{\mathsf{R}}^{n+2}f(z)}{z};z\right)\in\Omega,$$

then

$$\left|\frac{\mathbf{R}^n f(\mathbf{z})}{\mathbf{z}}\right| < \mathbf{G}.$$

In special case, when $\Omega = q(U) = \{ \psi : |\psi| < G \}$, the class $\mu_{i,1}[\Omega,G]$ is simply denoted by $\mu_{i,1}[G]$. Corollary (2.6) can be rewritten in the following form .

<u>Corollary (2.7)</u>; Let $\emptyset \in \mathcal{H}_{i,1}[\Omega, \mathcal{G}]$.If the function $f \in A$,satisfies the following conditions:

$$\left|\frac{\ddot{\mathsf{R}}^n f(\mathbf{z})}{\mathbf{z}}\right| \leq \dot{\mathsf{k}} \mathsf{G}, \qquad (\mathbf{z} \in \mathbf{U}; \dot{\mathsf{k}} \geq \mathbf{2}; \mathsf{G} > \mathbf{0}),$$

$$\left| \left| \left(\frac{\underline{R}^n f(\underline{z})}{\underline{z}}, \frac{\underline{R}^{n+1} f(\underline{z})}{\underline{z}}, \frac{\underline{R}^{n+2} f(\underline{z})}{\underline{z}}, \frac{\underline{R}^{n+3} f(\underline{z})}{\underline{z}}; \underline{z} \right) \right| < \underline{G},$$

then

$$\left|\frac{\mathbb{R}^n f(\mathbf{z})}{\mathbf{z}}\right| < \mathbf{G}.$$

<u>Definition(2.5):</u> Let Ω be a **s**et in \mathbb{C} , $\mathbf{q} \in \mathbf{Q_1} \cap A_1$. The class $H_{i,2}[\Omega, \mathbf{q}]$ of admissible functions consists of those functions $\emptyset : \mathbb{C}^4 \times \mathbf{U} \to \mathbb{C}$, which satisfy the following admissibiliy conditions: $\emptyset(\mathbf{q}, \mathbf{b}, \mathbf{c}, \mathbf{d}; \mathbf{z}) \notin \Omega$,

whenever

$$a = q(\epsilon)$$
, $b = \frac{\delta \epsilon q'(\epsilon) + (q(\epsilon))^2}{q(\epsilon)}$

$$Re\left(\frac{\varsigma b + 2a^2 - 3ab}{\delta(b - a)}\right) \ge kR\left(\frac{\epsilon q''(\epsilon)}{q'(\epsilon)} + 1\right),$$

and

$$\begin{split} & Re([(\mathbf{6}\varsigma - \mathbf{a}\mathbf{b} + \mathbf{a}^2 + \delta\mathbf{a})[\mathbf{6}\mathbf{d} - \mathbf{b}\varsigma + \mathbf{a}\mathbf{b} - \mathbf{a}^2 - \delta\mathbf{a}] - \mathbf{b}^3(\varsigma - \mathbf{b}) - [\mathbf{b}(\varsigma - \delta - 3\mathbf{a}) + \mathbf{a}(\delta + 2\mathbf{a})][\mathbf{b}(5\mathbf{b} - 5\mathbf{a} - \varsigma + 2\delta) + \mathbf{a}(\delta + 2\mathbf{a}) + \frac{\mathbf{a}^2}{\delta^3}[(\mathbf{b}(\varsigma - 3\mathbf{a} - \delta) + \mathbf{a}(\delta + 2\mathbf{a}))]^2 - (\mathbf{b} - \mathbf{a})[\mathbf{a}\mathbf{b}(\delta^2 - \mathbf{a} + 4\mathbf{b}) + \mathbf{b}(\delta^2 + \delta\mathbf{b} - 2\mathbf{b}^2) - \mathbf{a}(\delta + \delta\mathbf{a} + \delta^2\mathbf{a} - \mathbf{a}^2)]] * \\ & [\delta^2(\mathbf{b} - \mathbf{a})]^{-1}) \ge k^2 Re(\frac{\epsilon^2q'''(\epsilon)}{q'(\epsilon)}), \end{split}$$

(where $z \in U$, $\varepsilon \in \partial U \setminus E(q)$, $\varepsilon \geq 2$).

<u>Theorem(2.6):</u> Let $\emptyset \in H_{i,2}[\Omega,q]$. If the function $f \in A$, and $q \in Q_1 \cap A_1$, satisfy the following conditions:

$$Re\left(\frac{\varepsilon q''(\varepsilon)}{q'(\varepsilon)}\right) \ge 0, \quad \left|\frac{\dot{\mathbb{R}}^{n+2}f(z)}{\dot{\mathbb{R}}^{n+1}f(z)}\right| \le \dot{\mathbb{R}},$$
 (2.28)

and

$$\left\{ \emptyset \left(\frac{\dot{R}^{n+1} f(z)}{\dot{R}^{n} f(z)}, \frac{\dot{R}^{n+2} f(z)}{\dot{R}^{n+1} f(z)}, \frac{\dot{R}^{n+3} f(z)}{\dot{R}^{n+2} f(z)}, \frac{\dot{R}^{n+4} f(z)}{\dot{R}^{n+3} f(z)}; z \right) : z \in U \right\} \subset \Omega, \quad (2.29)$$

then

$$\frac{\ddot{\mathbf{R}}^{n+1}f(\ddot{\mathbf{z}})}{\ddot{\mathbf{R}}^nf(\ddot{\mathbf{z}})} \prec q(\ddot{\mathbf{z}}), \ \ (\ddot{\mathbf{z}} \in \mathbf{U}).$$

Proof: Define the analytic function p(z) in U by

$$p(z) = \frac{R^{n+1}f(z)}{R^n f(z)}.$$
 (2.30)

From equation (1.6) and (2.30), we have

$$\frac{\ddot{\mathbf{R}}^{n+2}f(\mathbf{z})}{\ddot{\mathbf{R}}^{n+1}f(\mathbf{z})} = \frac{\delta \mathbf{z}\mathbf{p}'(\mathbf{z}) + (\mathbf{p}(\mathbf{z}))^2}{\mathbf{p}(\mathbf{z})} = V. \tag{2.31}$$

By a similar argument, we get

$$\frac{R^{n+3}f(z)}{R^{n+2}f(z)} = R,$$
(2.32)

and

$$\frac{\ddot{\mathbf{R}}^{n+4} f(\ddot{\mathbf{z}})}{\ddot{\mathbf{R}}^{n+3} f(\ddot{\mathbf{z}})} = \ddot{\mathbf{B}} + \ddot{\mathbf{B}}^{-1} [\ddot{\mathbf{E}} + V^{-1} \ddot{\mathbf{D}} - V^{-2} \ddot{\mathbf{E}}^{2}], (2.33)$$

where

$$\beta = \frac{\delta z p'(z) + (p(z))^2}{p(z)} + \frac{\frac{\delta^2 z^2 p''(z) + \delta^2 z p'(z)}{p(z)} - \left(\frac{\delta z p'(z)}{p(z)}\right)^2 + \delta z p(z)}{\frac{\delta z p'(z) + (p(z))^2}{p(z)}},$$

$$\label{eq:energy_energy} \dot{\mathbb{E}} = \frac{\boldsymbol{\delta}^2 \mathbf{z}^2 \mathbf{p}''(\mathbf{z}) + \boldsymbol{\delta}^2 \mathbf{z} \mathbf{p}'(\mathbf{z})}{\mathbf{p}(\mathbf{z})} - \left(\frac{\boldsymbol{\delta} \mathbf{z} \mathbf{p}'(\mathbf{z})}{\mathbf{p}(\mathbf{z})}\right)^2 + \boldsymbol{\delta} \mathbf{z} \mathbf{p}'(\mathbf{z}),$$

$$\begin{split} \text{D} &= \frac{\delta^3 \text{z}^3 \text{p}^{\prime\prime\prime}(\text{z}) + 3\delta^2 \text{z}^2 \text{p}^{\prime\prime}(\text{z}) + \delta^3 \text{z} \text{p}^\prime(\text{z})}{\text{p}(\text{z})} - \frac{3\delta^3 \text{z}^3 \text{p}^\prime(\text{z}) \text{p}^{\prime\prime}(\text{z}) + 3 \left(\delta \text{z} \text{p}^\prime(\text{z})\right)^2}{\left(\text{p}(\text{z})\right)^2} \\ &+ 2 \left(\frac{\delta \text{z} \text{p}^\prime(\text{z})}{\text{p}(\text{z})}\right)^2 + \delta^2 \text{z}^2 \text{p}^{\prime\prime}(\text{z}) + \delta^2 \text{z} \text{p}^\prime(\text{z}). \end{split}$$

We now define the transformation from \mathbb{C}^4 to \mathbb{C} b y

$$q(e, s, r, t) = e$$
 , $b(e, s, r, t) = \frac{\delta s + e^2}{e} = s$,

$$\varsigma(\varrho, \varsigma, r, t) = \frac{\delta \varsigma + \varrho^2}{\varrho} + \frac{\frac{\delta^2 r + \delta^2 \varsigma}{\varrho} - \left(\frac{\delta \varsigma}{\varrho}\right)^2 + \delta \varsigma}{\frac{\delta \varsigma + \varrho^2}{\varrho}} = \zeta, \qquad (2.34)$$

and

$$d_{\zeta}(e, s, r, t) = \zeta + \zeta^{-1} [L + \zeta^{-1} S - S^{-2} L^{2}], \qquad (2.35)$$

where
$$L = \frac{\delta^2 r + \delta^2 s}{\epsilon} - \left(\frac{\delta s}{\epsilon}\right)^2 + \delta s$$

and

$$\mathsf{G} = \frac{\delta^3 \mathfrak{x} + 3\delta^3 \mathfrak{x} + \delta^3 \mathfrak{x}}{\varrho} - \frac{3\delta^3 \mathfrak{x} + 3\delta^3 \mathfrak{x}^2}{\varrho} + 2\left(\frac{\delta \mathfrak{x}}{\varrho}\right)^3 + \delta^2 \mathfrak{x} + \delta^2 \mathfrak{x}$$

Let $K(e, s, r, t) = \emptyset(a, b, \varsigma, d$

$$= \hat{\emptyset}(e, \S, \zeta, \zeta + \zeta^{-1}[L + G^{-1}\S - \S^{-2}L^{2}]).$$
 (2.36)

The proof will make use of lemma (1.5) \boldsymbol{u} sing the equations (2.30), and (2.33), and from the equation (2.36), we have

$$\begin{split}
\ddot{\mathbf{K}}(\dot{\mathbf{p}}(\mathbf{z}), \dot{\mathbf{z}} \, \dot{\mathbf{p}}'(\mathbf{z}), \dot{\mathbf{z}}^{2} \dot{\mathbf{p}}''(\mathbf{z}), \dot{\mathbf{z}}^{3} \dot{\mathbf{p}}'''(\mathbf{z}); \dot{\mathbf{z}}) \\
&= \ddot{\emptyset} \left(\frac{\ddot{\mathbf{R}}^{n+1} f(\mathbf{z})}{\ddot{\mathbf{R}}^{n} f(\mathbf{z})}, \frac{\ddot{\mathbf{R}}^{n+2} f(\mathbf{z})}{\ddot{\mathbf{R}}^{n+1} f(\mathbf{z})}, \frac{\ddot{\mathbf{R}}^{n+3} f(\mathbf{z})}{\ddot{\mathbf{R}}^{n+2} f(\mathbf{z})}, \frac{\ddot{\mathbf{R}}^{n+4} f(\mathbf{z})}{\ddot{\mathbf{R}}^{n+3} f(\mathbf{z})}; \dot{\mathbf{z}} \right).
\end{split} (2.37)$$

Hence ,clearly (2.29) ,becomes

$$K(\mathfrak{p}(z), z \mathfrak{p}'(z), z^2 \mathfrak{p}''(z), z^3 \mathfrak{p}'''(z); z) \in \Omega.$$

We note that

$$\frac{\mathbf{r}}{\mathbf{s}} + \mathbf{1} = \frac{\mathbf{s}\mathbf{b} + \mathbf{2}\mathbf{a}^2 - \mathbf{3}\mathbf{b}\mathbf{a}}{\mathbf{\delta}(\mathbf{b} - \mathbf{a})},$$

and

$$\begin{split} \frac{t}{s} &= [(6\varsigma - a \beta + a^2 + \delta a)[6d - 6\varsigma + a \beta - a^2 - \delta a] - 6^3(\varsigma - \delta) - [6(\varsigma - \delta - 3a)] \\ &\quad + a(\delta + 2a)[6(5\delta - 5a - \varsigma + 2\delta) + a(\delta + 2a)] \\ &\quad + \frac{a^2}{\delta^3}[(6(\varsigma - 3a - \delta) + a(\delta + 2a)]^2 - (6 - a)[a\beta(\delta^2 - a + 4\delta)] \\ &\quad + 6(\delta^2 + \delta \beta - 2\beta^2) - a(\delta + \delta a + \delta^2 a - a^2)]] * [\delta^2(\beta - a)]^{-1}. \end{split}$$

Thus clearly ,the admissibility condition for $\emptyset \in \mathcal{H}_{i,2}[\Omega, q]$,in definition (2.5) is equivalent**t**to admissibility condition $\mathcal{K} \in \mathcal{H}_2[\Omega, q]$ as given in definition (1.4), with n = 2. Therefore ,by using (2.30) ,and lemma (1.5), we have

$$\frac{\ddot{\mathsf{R}}^{n+1}f(z)}{\ddot{\mathsf{R}}^nf(z)} < q(z).$$

This completes the proof of theorem (2.6).

If $\Omega \neq \mathbb{C}$,is simply connected domain ,the $\Omega = M(U)$,for some conformal mapping M(z) of U on $to \Omega$. In this case, the class $H_{i,2}[M(U), q]$ is written as $H_{i,2}[M, q]$.

This lead s to the following immediat e consequenc e of theor em (2.6), is stated below

Theorem(2.7): Let $\emptyset \in \mathcal{H}_{i,1}[\Omega, q]$. If the functions $f \in A$, and $q \in Q_1$, satisfy the following conditions (2.29), and

$$\emptyset\left(\frac{\ddot{\mathsf{R}}^{n+1}f(\mathtt{z})}{\ddot{\mathsf{R}}^{n}f(\mathtt{z})},\frac{\ddot{\mathsf{R}}^{n+2}f(\mathtt{z})}{\ddot{\mathsf{R}}^{n+1}f(\mathtt{z})},\frac{\ddot{\mathsf{R}}^{n+3}f(\mathtt{z})}{\ddot{\mathsf{R}}^{n+2}f(\mathtt{z})},\frac{\ddot{\mathsf{R}}^{n+4}f(\mathtt{z})}{\ddot{\mathsf{R}}^{n+3}f(\mathtt{z})};\mathtt{z}\right)\ <\ \mathsf{M}(\mathtt{z}),$$

then

$$\frac{\ddot{\mathsf{R}}^{n+1}f(z)}{\ddot{\mathsf{R}}^nf(z)} \prec q(z), \ (z \in U).$$

<u>Definition(2.6):</u> Let Ω be a set in \mathbb{C} , $q \in Q_0 \cap A_0$ with $q'(z) \neq 0$. The class $H'_i[\Omega, q]$ of admissible functions consists of those functions

$$\acute{\varnothing}:\mathbb{C}^4\times\underline{\textit{U}}\to\mathbb{C}$$

That satisf y the following admissibilit y conditions:

$$\emptyset(a, b, \varsigma, d) \in \Omega$$
,

whenever

$$\mathbf{q} = \mathbf{q}(\mathbf{z})$$
, $\mathbf{b} = \mathbf{\delta}\mathbf{z}\mathbf{q}'(\mathbf{z})$

$$Re\left(\frac{\varsigma-(1-\delta)[2\mathfrak{b}-(1-\delta)\mathfrak{q}]}{\delta^2\mathfrak{b}-\delta^2(1-\delta)\mathfrak{q}}\right)\geq \frac{1}{\mathfrak{h}}Re(\frac{\epsilon q''(\epsilon)}{q'(\epsilon)}+1)$$

and

$$Re\left(\frac{\mathrm{d} - 3\varsigma - (1 - \delta)[(1 - \delta)6 + (1 + \delta)a] + 2(2 - \delta)6}{\delta^2 6 - \delta^2 (1 - \delta)a}\right) \ge \frac{1}{h^2}Re\left(\frac{\epsilon^2 q'''(\epsilon)}{q'(\epsilon)}\right),$$

(where $z \in U$, $\varepsilon \in \partial U | E(q)$, $h \ge 2$).

<u>Theorem(2.8):</u> Let $\emptyset \in H'_i[\Omega, q]$. If the function $f \in A$, and $R^n f(z) \in Q_0$, and $q \in \hat{W}_0$, with $q'(z) \neq 0$, satisfy the following conditions:

Wasit Journal for Pure Science

$$Re\left(\frac{\mathbf{z}q''(\mathbf{z})}{q'(\mathbf{z})}\right) \ge 0, \quad \left|\frac{\mathbf{R}^n f(\mathbf{z})}{q'(\mathbf{z})}\right| \le \mathbf{h},$$
 (2.38)

and

$$\acute{\emptyset}(\Breve{\mathbb{R}}^nf(\Breve{z}),\Breve{\mathbb{R}}^{n+1}f(\Breve{z}),\Breve{\mathbb{R}}^{n+2}f(\Breve{z}),\Breve{\mathbb{R}}^{n+3}f(\Breve{z}),\Breve{z}),$$

is univalent in U, then

$$\Omega \subset \big\{ \emptyset(\Breve{R}^n f(\Breve{z}), \Breve{R}^{n+1} f(\Breve{z}), \Breve{R}^{n+2} f(\Breve{z}), \Breve{R}^{n+3} f(\Breve{z}); \Breve{z}) \colon \Breve{z} \in U \big\}, (2.39)$$

implies that $q(z) < R^n f(z), (z \in U).$

<u>Proof</u>: Let the function $\mathfrak{P}(z)$ be defined by (2.3) and $\not 0$ by (2.9) .Since $\not H'_i[\Omega, q]$.From (2.10) and (2.39) ,we have

$$\Omega \subset \{K(\mathfrak{p}(z), z \mathfrak{p}'(z), z^2 \mathfrak{p}''(z), z^3 \mathfrak{p}'''(z); z) \colon z \in \mathbf{U}\}.$$

From (2.9) ,we see that the admissibility condition for $\c K \in \c H'_i[\c Q, \c q]$ in definition (2.6) is equivalent to the admissibility for $\c \emptyset \in \c H'_n[\c Q, \c q]$ as given in definition (1.4) with $\c n=2$.

Hence $\not 0 \in \not H'_2[\Omega, q]$ and by using (2.39) and lemma (1.5), we find that

$$q(z) < R^n f(z) \quad (z \in U).$$

This $c\boldsymbol{o}$ mpletes the $pr\boldsymbol{o}\boldsymbol{o}$ f of the the \boldsymbol{o} rem (2.8) .

If $\Omega \neq \mathbb{C}$, is simply –connected domain ,then $\Omega = \Breve{M}(U)$,for some conformal mapping $\Breve{M}(z)$ of U on to Ω . In this case the class $\Breve{H}'_i[\Breve{M}(U),q]$ is written as $\Breve{H}'_i[\Breve{M},q]$.

This leads to the following immediate consequence of theorem (2.8) is stated below.

<u>Theorem(2.9):</u> Let $\emptyset \in H'_i[M,q]$ and If the function $f \in A$, and $R^n f(z) \in Q_0$, and $q \in W_0$, with $q'(z) \neq 0$, satisfy the following conditions (2.38) and the function

$$\acute{\emptyset}(\Breve{R}^nf(\Breve{z}),\Breve{R}^{n+1}f(\Breve{z}),\Breve{R}^{n+2}f(\Breve{z}),\Breve{R}^{n+3}f(\Breve{z});\Breve{z})$$

is univalent in U, then

$$M(z) < \emptyset(R^n f(z), R^{n+1} f(z), R^{n+2} f(z), R^{n+3} f(z); z),$$
(2.40)

implies that $q(z) < R^n f(z) \quad (z \in U)$.

Theorem (2.8) and (2.9) ,can only be used to **o**btain sub**o**rdination for the third-order differential superordination of the form (2.39) or (2.40). The following theorem given the existence of the best subordinant of (2.40) for suitable \emptyset .

<u>Theorem(2.10)</u>: Let the function M be univalent in U .Also K: $\mathbb{C}^4 \times U \to \mathbb{C}$, and \emptyset given by (2.9) .Suppose that following differential equation:

$$K(p(z), z p'(z), z^2 p''(z), z^3 p'''(z); z) = M(z),$$
 (2.41)

has a solution $q(z) \in \emptyset_0$. If $f \in A$, and $\mathbb{R}^n f(z) \in Q_0$, and if $q \in \widehat{W}_0$, with $q'(z) \neq 0$, satisfying the condition (2.38), and if the function

$$\emptyset(\mathbb{R}^n f(z), \mathbb{R}^{n+1} f(z), \mathbb{R}^{n+2} f(z), \mathbb{R}^{n+3} f(z); z)$$
 is analytic in U ,

then

$$\label{eq:problem} \begin{subarray}{l} \begi$$

implies that $q(z) < R^n f(z), (z \in U)$

and q(z) is the best subordinant.

Proof: By applying theorem (2.8) and (2.9), we deduce that q is a subordinant of (2.40). Since q satisfies (2.41), it is also a solution of (2.40) and therefore, q will be subordinant by all subordinants. Hence q is the best subordinant. This completes the proof of the theorem (2.10).

<u>Definition(2.7):</u> Let Ω be a **s**et in \mathbb{C} , $\mathbf{q} \in \hat{\mathbb{W}}_1$ with $\mathbf{q}'(\mathbf{z}) \neq \mathbf{0}$. The class $\mathbf{H}'_{i,1}[\Omega, \mathbf{q}]$ of admissible function consists of those functions $\hat{\emptyset} : \mathbb{C}^4 \times \underline{U} \to \mathbb{C}$, which satisfy the following admissibility conditions:

$$\emptyset(a, b, \varsigma, d; z) \in \Omega,$$

whenever

$$\mathbf{q} = q(\mathbf{z}), \ \mathbf{b} = \delta \mathbf{z} q'(\mathbf{z}) + (\mathbf{1} - \delta) q(\mathbf{z}),$$

$$Rr\left(\frac{\varsigma-2\mathfrak{b}-(1-2\delta)\mathfrak{q}}{\delta(\mathfrak{b}-\mathfrak{q})}\right) \geq \frac{1}{\mathfrak{h}}Re\left(\frac{\varepsilon q''(\varepsilon)}{q'(\varepsilon)}+1\right),$$

and

$$\begin{split} Re\left(\frac{\mathrm{d} - (3+3\delta)\varsigma - \left([\delta(3+\delta)+3] + (3+3\delta)(2-\delta)\right)\beta}{\delta^2(\beta-\mathfrak{q})} \\ - \frac{[(3+3\delta)(1-\delta) - \delta(3+\delta) - 2]\mathfrak{q}}{\delta^2(\beta-\mathfrak{q})}\right) \geq \frac{1}{\mathfrak{h}^2}Re\left(\frac{\xi^2q'''(\xi)}{q'(\xi)}\right), \end{split}$$

(where $z \in U$, $\varepsilon \in \partial U \setminus E(q)$, $h \ge 2$).

<u>Theorem(2.11):</u> Let $\emptyset \in H_{i,1}[\Omega, q]$. If the function $f \in A$, and $\frac{\mathbb{R}^{n+1}f(z)}{z} \in Q_1$, and $q \in \hat{W}_1$, with $q'(z) \neq 0$, satisfy the following conditions:

$$Re\left(\frac{\varepsilon q''(\varepsilon)}{q'(\varepsilon)}\right) \ge 0, \quad \left|\frac{R^{n+1}f(z)}{zq'(z)}\right| \le h, \quad (2.42)$$

the function
$$\emptyset\left(\frac{\mathbb{R}^n f(z)}{z}, \frac{\mathbb{R}^{n+1} f(z)}{z}, \frac{\mathbb{R}^{n+2} f(z)}{z}, \frac{\mathbb{R}^{n+3} f(z)}{z}; z\right)$$

is univalent in \boldsymbol{U} , then

$$\Omega \subset \left\{ \emptyset \left(\frac{\dot{R}^{n} f(z)}{z}, \frac{\dot{R}^{n+1} f(z)}{z}, \frac{\dot{R}^{n+2} f(z)}{z}, \frac{\dot{R}^{n+3} f(z)}{z}; z \right) : z \in U \right\}, \quad (2.43)$$

implies that

$$\frac{\mathbb{R}^n f(\mathbf{z})}{\mathbf{z}} \prec q(\mathbf{z}), \ (\mathbf{z} \in \mathbf{U}).$$

<u>Proof</u>: Let the function $\mathfrak{p}(\mathfrak{z})$ be defined by (2.17) and \mathfrak{K} by (2.23) .Since $\emptyset \in \mathfrak{H}'_{i,1}[\Omega, q]$.We find from (2.24) and (2.43) ,we have

$$\Omega \subset \{ K(\mathfrak{p}(z), \mathfrak{z} \, \mathfrak{p}'(z), \mathfrak{z}^2 \mathfrak{p}''(z), \mathfrak{z}^3 \mathfrak{p}'''(z); \mathfrak{z}) \colon \mathfrak{z} \in U \}.$$

From the equations (2.21) and (2.22), we see that the admissibility condition for $\mathring{\emptyset} \in H'_{i,1}[\Omega, q]$ in definition (2.7) is equivalen t to the admissibility for $\mathring{\emptyset} \in H'_n[\Omega, q]$ as given in definition (1.4) with n=2.

Hence $\emptyset \in H'_2[\Omega, q]$ and by using (2.43) and lemma (1.5), we find that

$$q(z) < \frac{\dot{\mathbb{R}}^{n+1} f(z)}{z} \quad (z \in U).$$

This completes the proof of the theorem (2.11).

If $\Omega \neq \mathbb{C}$, is simply –connected domain, then $\Omega = M(U)$, for some conformal mapping M(z) of U on to Ω . In this case the class $H'_{i,1}[M(U),q]$ is written as $H'_{i,1}[M,q]$.

This leads to the following immediate consequence of theorem (2.11) is:

<u>Theorem(2.12):</u> Let $\emptyset \in \mathcal{H}'_{i,1}[M,q]$ and .If the function $f \in A$, and $\frac{\mathbb{R}^n f(z)}{z} \in Q_1$, and $q \in \hat{\mathbb{W}}_1$, with $q'(z) \neq 0$, satisfying the following conditions (2.42) and the function

$$\tilde{\mathcal{Q}}\left(\frac{\bar{\mathsf{R}}^nf(\mathbf{z})}{\mathbf{z}},\frac{\bar{\mathsf{R}}^{n+1}f(\mathbf{z})}{\mathbf{z}},\frac{\bar{\mathsf{R}}^{n+2}f(\mathbf{z})}{\mathbf{z}},\frac{\bar{\mathsf{R}}^{n+3}f(\mathbf{z})}{\mathbf{z}};\mathbf{z}\right)$$

is univalent in \boldsymbol{U} , then

$$M(z) < \emptyset\left(\frac{R^n f(z)}{z}, \frac{R^{n+1} f(z)}{z}, \frac{R^{n+2} f(z)}{z}, \frac{R^{n+3} f(z)}{z}; z\right),$$

implies that

$$q(z) < \frac{R^n f(z)}{z}, \quad (z \in U).$$

<u>Definition(2.8):</u> Let Ω be a set in $\mathbb C$ and $q \in \hat{\mathbb W}_1$ with $q'(z) \neq 0$. The class $H'_{i,1}[\Omega,q]$ of admissible functions consists of those functions $\emptyset : \mathbb C^4 \times \underline{U} \to \mathbb C$, which satisfy the following admissibility conditions:

$$\emptyset(a, b, \varsigma, d; z) \in \Omega,$$

whenever

$$a = q(z)$$
, $b = \frac{\delta z q'(z) + (q(z))^2}{q(z)}$

$$R\left(\frac{\varsigma 6 + 2a^2 - 3a6}{\delta(6 - a)}\right) \ge \frac{1}{h}R\left(\frac{\varepsilon q''(\varepsilon)}{q'(\varepsilon)} + 1\right),$$

and

$$\begin{split} \textit{Re}([(\mathbf{6}\varsigma - \mathbf{a}\mathbf{b} + \mathbf{a}^2 + \pmb{\delta}\mathbf{a}][\mathbf{6}\mathbf{d} - \mathbf{6}\varsigma + \mathbf{a}\mathbf{b} - \mathbf{a}^2 - \pmb{\delta}\mathbf{a}] - \mathbf{b}^3(\varsigma - \mathbf{b}) \\ & - [\mathbf{b}(\varsigma - \pmb{\delta} - \mathbf{3}\mathbf{a}) + \mathbf{a}(\pmb{\delta} + \mathbf{2}\mathbf{a})] \left[\mathbf{b}(\mathbf{5}\mathbf{b} - \mathbf{5}\mathbf{a} - \varsigma + \mathbf{2}\pmb{\delta}) \right. \\ & + \mathbf{a}(\pmb{\delta} + \mathbf{2}\mathbf{a}) + \frac{\mathbf{a}^2}{\pmb{\delta}^3} [(\mathbf{b}(\varsigma - \mathbf{3}\mathbf{a} - \pmb{\delta}) + \mathbf{a}(\pmb{\delta} + \mathbf{2}\mathbf{a})]^2 \\ & - (\mathbf{b} - \mathbf{a})[\mathbf{a}\mathbf{b}(\pmb{\delta}^2 - \mathbf{a} + \mathbf{4}\mathbf{b}) + \mathbf{b}(\pmb{\delta}^2 + \pmb{\delta}\mathbf{b} - \mathbf{2}\mathbf{b}^2) \\ & - \mathbf{a}(\pmb{\delta} + \pmb{\delta}\mathbf{a} + \pmb{\delta}^2\mathbf{a} - \mathbf{a}^2)] \right] * [\pmb{\delta}^2(\mathbf{b} - \mathbf{a})]^{-1}) \geq \frac{1}{\mathbf{h}^2} \textit{Re}\left(\frac{\epsilon^2 \textit{q'''}(\epsilon)}{\textit{q'}(\epsilon)}\right), \end{split}$$

(where $z \in U$, $z \in \partial U | E(q)$, $h \ge 2$).

 $\underline{\text{Theorem}(2.13):} \text{ Let } \emptyset \in \text{H}_{i,2}[\Omega,q]. \text{ If the function } f \in A, \text{ and } \frac{\mathbb{R}^{n+1}f(z)}{\mathbb{R}^nf(z)} \in$

 Q_1 , and $q \in \hat{W}_1$, with $q'(z) \neq 0$, satisfy the following conditions:

$$Re\left(\frac{\epsilon q''(\epsilon)}{q'(\epsilon)}\right) \ge 0, \qquad \left| \begin{array}{c} R^{n+1}f(z) \\ R^nf(z) \end{array} \right| \le h, \qquad (2.44)$$

and

$$\emptyset\left(\frac{\ddot{R}^{n+1}f(z)}{\ddot{R}^{n}f(z)}, \frac{\ddot{R}^{n+2}f(z)}{\ddot{R}^{n+1}f(z)}, \frac{\ddot{R}^{n+3}f(z)}{\ddot{R}^{n+2}f(z)}, \frac{\ddot{R}^{n+4}f(z)}{\ddot{R}^{n+3}f(z)}; z\right)$$

is univalent in U, then

$$\Omega \subset \left\{ \emptyset \left(\frac{\ddot{R}^{n+1} f(z)}{\ddot{R}^n f(z)}, \frac{\ddot{R}^{n+2} f(z)}{\ddot{R}^{n+1} f(z)}, \frac{\ddot{R}^{n+3} f(z)}{\ddot{R}^{n+2} f(z)}, \frac{\ddot{R}^{n+4} f(z)}{\ddot{R}^{n+3} f(z)}; z \right) : z \in U \right\}, (2.45)$$

implies that

$$q(z) < \frac{R^{n+1}f(z)}{R^nf(z)}, \quad (z \in U).$$

<u>Proof</u>: Let the function $\mathfrak{p}(z)$ be defined by (2.30) and \mathfrak{K} by (2.36) .Since $\emptyset \in \mathfrak{H}'_{i,2}[\Omega,q]$.We find from (2.37) and (2.45) ,we have

$$\Omega \subset \{K(\mathfrak{p}(z), \mathfrak{z}, \mathfrak{p}'(z), \mathfrak{z}^2\mathfrak{p}''(z), \mathfrak{z}^3\mathfrak{p}'''(z); \mathfrak{z}) \colon \mathfrak{z} \in U\}.$$

From the equations (2.34) and (2.35), we see that the admissibility condition for $\emptyset \in H'_{i,2}[\Omega, q]$ in definition (2.8) is equivalent to the admissibility for $K \in H'_n[\Omega, q]$ as given in definition (1.4) with n = 2.

Hence $K \in H'_2[\Omega, q]$ and by using (2.44) and lemma (1.5), we find that

$$q(z) < \frac{R^{n+1}f(z)}{R^nf(z)} \quad (z \in U).$$

This completes the proof of the theorem (2.13).

If $\Omega \neq \mathbb{C}$, is simply—connected domain ,then $\Omega = M(U)$,for some conformal mapping M(z) of U on to Ω . In this case the class $H'_{i,2}[M(U),q]$ is written as $H'_{i,2}[M,q]$.

This lead s to the following immediat e consequenc e of theor e m (2.13) is:

<u>Theorem(2.14):</u> Let $\hat{\emptyset} \in \mathcal{H}'_{i,2}[\mathcal{M},q]$ and .If the function $f \in A$, and $\frac{\mathbb{R}^{n+1}f(z)}{\mathbb{R}^n f(z)} \in Q_1$, and $q \in \hat{\mathbb{W}}_1$, with $q'(z) \neq 0$,, satisfying the following conditions (2.44) and the function

$$\emptyset\left(\frac{\ddot{\mathbf{R}}^{n+1}f(\mathbf{z})}{\ddot{\mathbf{R}}^{n}f(\mathbf{z})},\frac{\ddot{\mathbf{R}}^{n+2}f(\mathbf{z})}{\ddot{\mathbf{R}}^{n+1}f(\mathbf{z})},\frac{\ddot{\mathbf{R}}^{n+3}f(\mathbf{z})}{\ddot{\mathbf{R}}^{n+2}f(\mathbf{z})},\frac{\ddot{\mathbf{R}}^{n+4}f(\mathbf{z})}{\ddot{\mathbf{R}}^{n+3}f(\mathbf{z})};\mathbf{z}\right)$$

is univalent in \boldsymbol{U} , then

$$M(z) < \emptyset \left(\frac{R^{n+1}f(z)}{R^nf(z)}, \frac{R^{n+2}f(z)}{R^{n+1}f(z)}, \frac{R^{n+3}f(z)}{R^{n+2}f(z)}, \frac{R^{n+4}f(z)}{R^{n+3}f(z)}; z \right),$$

implies that $q(z) < \frac{\mathbb{R}^{n+1}f(z)}{\mathbb{R}^nf(z)}, \quad (z \in U).$

By combining theorem (2.2) and (2.9), we obtain following sandwich-type theorem.

<u>Theorem (2.15):</u> Let M_1 and q_1 be analytic functions in U .Als o let M_2 b e univalent function in U ,and $q_2 \in Q_1$ with $q_1(0) = q_2(0) = 1$ and $\emptyset \in H'_i[M_1,q_1] \cap H'_i[M_2,q_2]$. If the function $f \in A$, with $R^n f(z) \in Q_0 \cap A_0$, and the function

$$\emptyset(\mathring{\mathbf{R}}^n f(\mathbf{z}), \mathring{\mathbf{R}}^{n+1} f(\mathbf{z}), \mathring{\mathbf{R}}^{n+2} f(\mathbf{z}), \mathring{\mathbf{R}}^{n+3} f(\mathbf{z}); \mathbf{z}),$$

is univalent in U, and if the condition (2.1) and (2.38) are satisfied,

then

$$\dot{\mathbb{M}}_{1}(z) < \dot{\emptyset}(\dot{\mathbb{R}}^{n}f(z), \dot{\mathbb{R}}^{n+1}f(z), \dot{\mathbb{R}}^{n+2}f(z), \dot{\mathbb{R}}^{n+3}f(z); z) < \dot{\mathbb{M}}_{2}(z),$$

implies that $q_1(z) < R^n f(z) < q_2(z), (z \in U).$ (2.46)

On the other hand, we combine theorem (2.5) and (2.12), we obtain the following Sandwich-type theorem

<u>Theorem (2.16):</u> Let M_1 and q_1 be analytic functions in U. Also let M_2 be univalent function in U and $q_2 \in Q_1$ with $q_1(0) = q_2(0) = 1$ and $\emptyset \in H'_{i,1}[M_1,q_1] \cap H'_{i,1}[M_2,q_2]$. If the function $f \in A$, with $\frac{\mathbb{R}^n f(z)}{z} \in Q_1 \cap A_1$, and the function

$$\emptyset\left(\frac{\mathfrak{K}^nf(z)}{z},\frac{\mathfrak{K}^{n+1}f(z)}{z},\frac{\mathfrak{K}^{n+2}f(z)}{z},\frac{\mathfrak{K}^{n+2}f(z)}{z},\frac{\mathfrak{K}^{n+3}f(z)}{z};z\right),$$

is univalent in U, and if the condition s (2.15) and (2.42) are s at is fied,

then

$$\label{eq:main_sum} \dot{\mathbb{M}}_{1}(z) < \acute{g}\left(\frac{\dot{\mathbb{R}}^{n}f(z)}{z}, \frac{\dot{\mathbb{R}}^{n+1}f(z)}{z}, \frac{\dot{\mathbb{R}}^{n+2}f(z)}{z}, \frac{\dot{\mathbb{R}}^{n+3}f(z)}{z}; z\right) < \dot{\mathbb{M}}_{2}(z),$$

implies that

$$q_1(z) < \frac{R^n f(z)}{z} < q_2(z), \ (z \in U).$$
 (2.47)

<u>Theorem (2.17):</u> Let M_1 and q_1 be analytic functions in U .Also let M_2 b e univalent function in U ,and $q_2 \in Q_1$ with $q_1(0) = q_2(0) = 1$ and $\emptyset \in H'_{i,2}[M_1,q_1] \cap H'_{i,2}[M_2,q_2]$. If the function $f \in A$, with $\frac{\mathbb{R}^{n+1}f(\mathbb{Q})}{\mathbb{R}^n f(\mathbb{Q})} \in Q_1 \cap \mathbb{A}_{\mathbb{P}^1}$, and the function

$$\emptyset\left(\frac{\ddot{R}^{n+1}f(z)}{\ddot{R}^{n}f(z)},\frac{\ddot{R}^{n+2}f(z)}{\ddot{R}^{n+1}f(z)},\frac{\ddot{R}^{n+3}f(z)}{\ddot{R}^{n+2}f(z)},\frac{\ddot{R}^{n+4}f(z)}{\ddot{R}^{n+3}f(z)};z\right)$$

is univalent in U, and if the condition (2.28) and (2.44) are satisfied,

then

$$\label{eq:M1} \mathsf{M}_1(\mathbf{z}) < \emptyset\left(\frac{\mathbf{x}^{n+1}f(\mathbf{z})}{\mathbf{x}^nf(\mathbf{z})}, \frac{\mathbf{x}^{n+2}f(\mathbf{z})}{\mathbf{x}^{n+1}f(\mathbf{z})}, \frac{\mathbf{x}^{n+3}f(\mathbf{z})}{\mathbf{x}^{n+2}f(\mathbf{z})}, \frac{\mathbf{x}^{n+4}f(\mathbf{z})}{\mathbf{x}^{n+3}f(\mathbf{z})}; \mathbf{z}\right) < \mathsf{M}_2(\mathbf{z}),$$

implies that
$$q_1(z) < \frac{\mathbb{R}^{n+1}f(z)}{\mathbb{R}^nf(z)} < q_2(z), \ (z \in \textbf{\textit{U}}).$$
 (2.48)

References;

- [1] J. A. Antonion and S. S. Miller, Third- order differential inequalities and subordination in complex plane, Complex Var. Elliptic Equ., 56(2011), 439-454
- [2] W. G. Atshan and S. A. A. Jawad, On differential sandwich results for analytic functions, Journal of Al-Oadisiyah for Computer Science and Mathematics, 11(1)(2019),96–101.
- [3] W. G. Atshan and E. I. Badawi, On sandwich theorems for certain univalent functions defined by a new operator, Journal of Al-Qadisiyah for Computer Science and Mathematics, 11(2)(2019) ,72–80.
- [4] W. G. Atshan and A. A. R. Ali, On some sandwich theorems of analytic functions involving Noor-Sălăgean operator, Advances in Mathematics: Scientific Journal, 9 (10) (2020), 8455-8467.
- [5] W. G. Atshan and A. A. R. Ali, On sandwich theorems results for certain univalent functions defined by generalized operators, Iraqi Journal of Science, 62(7) (2021), pp. 2376-2383.
- [6] W. G. Atshan and E. I. Badawi, On sandwich theorems for certain univalent functions defined by a new operator, Journal of Al-Qadisiyah for Computer Science and Mathematics, 11(2) (2019) ,72–80.
- [7] W. G. Atshan, A. H. Battor and A. F. Abaas, On third-order differential subordination results for univalent analytic functions involving an operator, Journal of Physics: Conference Series, 1664 (2020) 012044, 1-19.
- [8] W. G. Atshan, A. H. Battor and A. F. Abaas, Some sandwich theorems for meromorphic univalent functions defined by new integral operator, Journal of Interdisciplinary Mathematics, 24(3) (2021), 579-591.
- [9] W. G. Atshan and R. A. Hadi, Some differential subordination and superordination results of p-valent functions defined by differential operator, Journal of Physics: Conference Series, 1664 (2020) 012043, 1-15.
- [10] W. G. Atshan and S. A. Jawad, On differential sandwich results for analytic functions, Journal of Al-Qadisiyah for Computer Science and Mathematics, 11(1) (2019), 96-101.
- [11] W. G. Atshan, R. A. Hiress and S. Altinkaya, On third-order differential subordination and superordination properties of analytic functions defined by a generalized operator, Symmetry, 14 (2) (2022), 418, 1-17.
- [12] W. G. Atshan and S. R. Kulkarni, On application of differential subordination for certain subclass of meromorphically p-valent functions with positive coefficients defined by linear operator, Journal of Inequalities in Pure and Applied Mathematics, 10(2) (2009), Article 53, 11 pp.
- [13] N. E. Cho, T. Bulboac_o and H. M. Srivastava, A general family of integral and associated subordination and superordination properties of some special analytic function classes , Apple. Math . Comput., 219(2012), 2278-2288.
- [14] A. M. Darweesh, W. G. Atshan, A. H. Battor and A. A. Lupas, Third-order differential subordination results for analytic functions associated with a certain differential operator, Symmetry, 14(1) (2022), 99, 1-15.
- [15] I. A. Kadum, W. G. Atshan and A. T. Hameed, Sandwich theorems for a new class of complete Homogeneous symmetric functions by using cyclic operator, Symmetry, 14(10) (2022),2223, 1-16.
- [16] H. A. Farzana, B. A. Stephen and M. P. Jeyaramam, Third-order differential subordination of analytic function defined by functional derivative operator, An Stiint. Univ. Al. I. Cuza Iasi Mat. (New Ser)., 62(2016), 105-120

- [17] R. W. Ibrahim, M. Z. Ahmad and H. F. Al-Janaby, Third-order differential subordination and superordination involving a fractional operator, Open Math., 13 (2015), 706–728.
- [18] M. P. Jeyaraman and T. K. Suresh, Third-order differential subordination of analytic functions, Acta Univ. Apulensis Math. Inform. No., 35 (2013), 187–202.
- [19] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, No. 225, Marcel Dekker Incorporated, New York and Basel, (2000).
- [20] S. Ponnusamy and O. P. Juneja, Third-order differential inequalities in the complex plane, in Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, (1992).
- [21] D. R´aducanu, Third order differential subordinations for analytic functions associated with generalized Mittag-Leffler functions, Mediterr. J. Math., 14 (4) (2017), Article ID 167, 1–18.
- [22] M. A. Sabri, W. G. Atshan and E. El-Seidy, On sandwich-type results for a subclass of certain univalent functions using a new Hadamard product operator, Symmetry, 14(5) (2022), 931, pp.1-11.
- [23] A. H. Saeed and W. G. Atshan, Third-order sandwich results for analytic functions defined by generalized operator, AIP Conference Proceedings, 2398, (2022), 060055, pp.1-14.
- [24] G. Ş. Şâlâgean, Subclasses of univalent functions, Complex Analysis-Fifth Romanian-Finnish Seminar .Part 1(By charest ,1981), lecture Notes in Math .,vol .1013, Springer, 1983 .PP .362-372.
- [25] H. Tang and E. Deniz, Third-order differential subordination results for analytic functions involving the generalized Bessel functions, Acta Math. Sci. Ser. B Engl. Ed.,34 (2014),1707-1719
- [26] H. Tang, H. M. Srivastava, E. Deniz and S. Li, Third-order differential superordination involving the generalized Bessel functions, Bull. Malays. Math. Sci. Soc., 38 (2015), 1669–1688.
- [27] H. Tang, H. M. Srivastava, S. Li and L. Ma, Third-order differential subordination and superordination results for meromorphically multivalent functions associated with the Liu-Srivastava operator, Abstr. Appl. Anal., 2014 (2014), Article ID 792175, 1–11.
- [28] S. D. Theyab, W. G. Atshan and H. K. Abdullah, On some sandwich results of univalent functions related by differential operator, Iraqi Journal of Science, Vol. 63, no.11, (2022), pp. 4928-4936.

Article submitted 1 Jun 2023. Accepted at 29 Jun

Published at 30 September 2023.