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Abstract: The paper discusses the challenge of organizing the execution of separate 

tasks on machines that are otherwise similar. The goal is a lower number of Makes. We 

create, examine, and evaluate several local search techniques, including the (BAB) , 

(GA) and   (TS) algorithms. Based on past computational experience, we know that 

these local search algorithms can efficiently complete up to 2,000 tasks  in Matlab . 
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1. Introduction 

The scheduling of several machines in parallel is a serious challenge for modern 

industry. The goal of this challenge is to minimize some performance metric, such 

as the maximum time it takes to finish all of the tasks, the number of jobs that finish 

late, the penalty for finishing late, and so on. It is common practice in many indus-

tries to run multiple, identical machines in parallel. This is seen in the baking indus-

try, where multiple ovens are used to ensure that enough baked goods are produced, 

in the printing industry, where a publisher will need multiple identical printing fa-

cilities to ensure that no special titles (or, worst case, bestsellers) are unavailable to 

retailers, in the pharmaceutical industry, where multiple machines are used to ensure 

adequate drug production, and in many other settings as well. Objectives including 

earliness and tardiness penalties are growing in popularity due to the growing pop-

ularity of just-in-time production systems, in which the early and late completion of 

work processing are both undesirable.[1] 

Many search-based and enumerative methods may be used to scheduling issues 
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because of their combinatorial character. These methods include genetic algorithms, 

branch and bound, simulated annealing, tabu search, etc. These procedures often pro-

vide high-quality results. Therefore, scheduling using quick heuristic algorithms is 

not only very effective, but often the only viable approach.[2] 

 

If you have a combinatorial optimization issue, a Genetic Algorithm is a great tool for 

undertaking a global search. Using a Genetic algorithm and a backward-forward heu-

ristic technique (Sule, 2007), this study proposes a hybrid solution for the early-late, 

non-common due-date scheduling issue, in which a group of tasks must be scheduled 

to run on a group of identical parallel computers. The cost of keeping goods on hand 

for each batches is included into the early arrival penalty.[3] 

When solving optimization issues, the Branch and Bound algorithm is an effective 

method for quickly arriving at the best possible answer. Algorithmically, the issue is 

broken down into more manageable chunks, each of which is solved independently 

before the final, optimum solution is combined.[4] 

The objective of making use of identical parallel machines is to reduce the makespan, 

or the time it takes to finish all of the operations, by scheduling them in such a manner 

that they run in parallel as efficiently as possible. The Branch and Bound method may 

be used to find a better schedule by searching through all of the potential schedules 

and eliminating the branches of the search tree that don't go somewhere better. 

The method achieves its goals by repeatedly breaking down the search space into 

smaller issues and then finding lower and upper limits on the optimum makespan for 

each of those problems. For the lower bound, we solve a simplified version of the 

issue, while for the upper limit, we may either use heuristics or solve the problem 

precisely. 

At each stage, the algorithm chooses the subproblem with the lowest lower limit from 

a priority queue and then extends it by branching on a variable. By branching, the 

method generates two new subproblems, each with a restriction on the branched-on 

variable. The method keeps going until every possible subproblem has been investi-

gated, and the best solution is the one with the shortest makespan.[5] 

In conclusion, the Branch and Bound algorithm is an effective method for resolving 

optimization issues, such as the scheduling of tasks on similar parallel computers to 
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reduce the makespan. Using a recursive partitioning into smaller subproblems, com-

puting lower and upper bounds on the optimal makespan for each subproblem, and 

pruning branches of the search tree that cannot lead to a better solution than the best 

solution found so far, the algorithm explores the search space of all possible schedules. 

 

In order to handle difficult combinatorial optimization problems, such scheduling is-

sues for a set of identical parallel machines, the Tabu method is used as a metaheuris-

tic optimization tool. The Tabu technique avoids getting stuck at local optimums and 

effectively searches the whole search space by combining local search with memory-

based search.[6] 

To plan a series of tasks on a set of identical parallel machines in a manner that min-

imizes the makespan (the time needed to finish all the jobs) is the objective in the 

context of identical parallel machines. By producing a series of candidate solutions 

and employing a set of memory structures called Tabu lists to avoid revisiting solu-

tions that have previously been studied, the Tabu algorithm may be used to solve this 

issue.[6] 

The technique generates a list of potential solutions by iteratively making modest 

changes to the original answer. Each potential answer is ranked by the algorithm, and 

the one with the shortest makespan is chosen. The algorithm also remembers a number 

of "Tabu lists," which it uses to avoid redoing work it has already done. The algorithm 

cannot revert the changes that have been made to the present solution because of the 

Tabu lists, which store this information. 

A stopping condition, such as a maximum number of iterations or a minimum im-

provement threshold, is used to determine when the Tabu algorithm stops generating 

and evaluating potential solutions. There are ways to improve the algorithm, such as 

diversification mechanisms that push it to look in uncharted areas of the search space 

and intensification processes that narrow in on the most promising ones.[7] 

In conclusion, the Tabu technique is a metaheuristic optimization approach useful for 

solving complicated combinatorial optimization problems, such as scheduling issues 

for a set of identical parallel machines. In order to prevent re-exploring solutions that 

have previously been studied, the method builds a series of potential solutions and 
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employs Tabu lists.If conventional algorithms fail to converge to a reasonable solu-

tion, the Tabu technique is a potent tool for discovering excellent solutions to optimi-

zation problems. 

2. Problem Formulation 

Suppose we have two identical parallel machines, the goal is to minimize of the 

completion time cost as well as the earliness time cost with the lateness time cost . We 

will have the following  objective function: 

Min (∑ 𝑪𝒋 ,
𝒑
𝒊  ∑ (𝜶𝑬𝒋 + 𝜷𝑻𝒋) 

𝒑
𝒊 ……………..(1) 

The constraints for the objective function of two identical parallel machines are: 

1.Capacity constraint: The total processing time of all jobs assigned to each ma-

chine cannot exceed its capacity. Mathematically, it can be expressed as: 

∑_(pij ≤ Cj ), where p_ij is the processing time of job i on machine j and Cj is 

the capacity of machine j. 

2.Job assignment constraint: Each job must be assigned to exactly one machine.   Math-

ematically, it can be expressed as: 

∑_(xij = 1), where x_ij is a binary decision variable that equals 1 if job i is as-

signed to machine j and 0 otherwise. 

3.Non-preemptive constraint: Once a job is assigned to a machine, it cannot be in-

terrupted or moved to another machine. Mathematically, it can be expressed as: 

∑_xij pij = ∑_(xkj  pkj), for all j∈{1,2}, where x_ij and xkj are binary decision 

variables that equal 1 if job i and k are assigned to machine j, respectively, and 0 

otherwise. 

4. Objective function constraint: The objective function is the sum of the completion 

times on each machine and the weighted sum of earliness and tardiness penalties. 

Mathematically, it can be expressed as: 

Minimize: ∑_(Cj )+∑_((αEj+βTj) )……………(2) 
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where Ej is the earliness of job i on machine j (i.e., the difference between its 

completion time and its due date if it is completed before the due date, and 0 oth-

erwise), Tj is the tardiness of job i on machine j (i.e., the difference between its 

completion time and its due date if it is completed after the due date, and 0 other-

wise), α and β are weighting factors for earliness and tardiness, respectively. 

These constraints ensure that the jobs are assigned to the machines in a way that 

minimizes the objective function while respecting the capacity and assignment con-

straints. 

3.1. BAB Algorithm 

The Branch and Bound (BAB) algorithm is a widely used optimization technique in 

computer science and operations research. It is particularly useful for solving combi-

natorial optimization problems such as the matching of parallel machines.[8] 

In the context of matching parallel machines, the goal is to assign a set of tasks to a 

set of machines in such a way that the total time, early time, and delay time are mini-

mized. The BAB algorithm is well-suited for this problem because it systematically 

explores the solution space by dividing it into smaller and smaller sub-problems until 

the optimal solution is found.[8] 

At a high level, the BAB algorithm works by creating a search tree that represents 

all possible assignments of tasks to machines. The root node of the tree represents the 

initial state of the problem, and each child node represents a possible assignment of a 

single task to a machine. The algorithm then evaluates each child node to determine 

its quality and selects the most promising node to explore further. This process con-

tinues until the optimal solution is found or all nodes have been evaluated.[9] 

The BAB algorithm is particularly effective for solving matching parallel machines 

problems because it can quickly eliminate large portions of the solution space that are 

unlikely to contain optimal solutions. By using various heuristics to guide the search 

process, the BAB algorithm can efficiently find near-optimal solutions even for large 

problem sizes. 
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Overall, the BAB algorithm is a powerful tool for optimizing the assignment of 

tasks to parallel machines. By reducing the total time, early time, and delay time, it 

can help organizations save time and resources while improving their productivity and 

efficiency. 

3.2.Genetic Algorithm (GA) 

The Genetic Algorithm (GA) is a popular optimization technique inspired by natu-

ral selection and genetics. GA is a population-based algorithm that mimics the process 

of natural selection, where individuals with better fitness values are more likely to 

survive and pass their genetic traits to the next generation. GA has been widely used 

in various optimization problems, including the matching of parallel machines. 

Matching parallel machines involve assigning a set of tasks to a set of machines to 

minimize the total time, early time, and delay time. This is a complex combinatorial 

optimization problem that can be challenging to solve using traditional optimization 

methods. However, GA can be an effective tool for solving this problem by generat-

ing a set of potential solutions and iteratively improving them over multiple genera-

tions.[10] 

In GA, a population of potential solutions, known as chromosomes, is randomly 

generated. Each chromosome represents a possible solution, which consists of a set of 

task assignments to the machines. The fitness of each chromosome is then evaluated 

based on the objective function, which is the sum of the total time, early time, and de-

lay time. The chromosomes with higher fitness values are more likely to be selected 

for the next generation, and they will pass their genetic traits to the offspring through 

crossover and mutation operators.Through successive generations, the population 

evolves to generate better solutions that can minimize the objective function. The GA 

algorithm continues this iterative process until a stopping criterion is met, such as 

reaching a predetermined number of generations or achieving a satisfactory fitness 

value.[10] 
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In the context of matching parallel machines, GA can be used to optimize the task 

assignment and scheduling to minimize the total time, early time, and delay time. By 

generating a diverse set of potential solutions and iteratively improving them over 

multiple generations, GA can help reduce the time required to match parallel ma-

chines and improve the overall efficiency of the system.[11] 

Overall, GA is a powerful optimization tool that can be applied to many complex op-

timization problems, including the matching of parallel machines. By using GA to op-

timize the task assignment and scheduling, organizations can improve their productiv-

ity and reduce the total time, early time, and delay time of their machines 

3.3.Tabu search 

From 1985 forward, Glover [11] wrote a plethora of publications detailing the dif-

ferent uses of the tabu search. Sequencing, scheduling, oil drilling, and routing are 

just some of the other applications that have seen rapid uptake since the discovery of 

this method. 

The tabu search has useful qualities that may be used to improve other procedures 

by keeping them from becoming trapped in the areas of local minima. The tabu search 

makes use of memory to stop it from fast cycling back to previously searched areas of 

the solution space. For this purpose, a database is maintained with examples of poten-

tial answers. The term "taboo" refers to the social stigma associated with these types 

of fixes. One of the factors in the tabu search is the length of the tabu list.[6] 

The tabu search also includes mechanisms for regulating the search. The tabu list 

guarantees that at least one solution will be undesirable, but it's possible that the tabu 

list's restrictions might be too severe in certain situations, leading to the algorithm be-

ing stuck on a local maximum. The tabu search provides the idea of aspiration criteria 

to get around this issue. The ambition criteria supersede the taboo constraints, allow-

ing for a more inclusive search for the global optimum. 
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4. Lowe Bound of BAB 

Min f(σ)= Min
σ⋲S

{ ∑ (𝑛
𝑗=1 E

σj
+ T

σj
+ C

σj
)}……….(3) 

       =Min
σ⋲S

∑ { Max {𝑛
𝑗=1 d

σj
− C

σj
, 0} + 𝑀𝑎𝑥{C

σj
− d

σj
, 0} + C

σj
} 

        

     = Min
σ⋲S

∑ { Max {𝑛
𝑗=1 d

σj
− C

σj
, C

σj
− d

σj
, 0} + C

σj
} 

  

    = Min
σ⋲S

∑ { Max {𝑛
𝑗=1 d

σj
 , 2C

σj
− d

σj
, C

σj
}………………..(4) 

Since the third term  C
σj

 is between d
σj

 and 2C
σj

− d
σj

 always, then we can write the  

Objective function f(σ) by the form: 

Min f(σ)=  Min
σ⋲S

∑ { Max {𝑛
𝑗=1 d

σj
 , 2C

σj
− d

σj
}………………..(5) 

It is clear from  equation (3) a lower bound (LB) is obtained by sequencing  

The job by SPT rule. 

Hence, we can prove that: 

Min f(σ)   ≥  Min
σ⋲S

{ 𝑀𝑎𝑥{∑ d
σj

 ,𝑛
𝑗=1 ∑ 𝑀𝑎𝑥  { 𝑛

𝑗=1 2C
σj

− d
σj

, C
σj

}}} 

It is a LB of our problem, since 

Min
σ⋲S

∑ { Max {𝑛
𝑗=1 d

σj
 , 2C

σj
− d

σj
, C

σj
}  ≥  Min

σ⋲S
{ 𝑀𝑎𝑥{∑ d

σj
 ,𝑛

𝑗=1 ∑ 𝑀𝑎𝑥  { 𝑛
𝑗=1 2C

σj
− d

σj
, C

σj
}}} 

Put  x
σj

 =  𝑀𝑎𝑥 { 2C
σj

− d
σj

, C
σj

}  

To show  Min
σ⋲S

∑  Max {𝑛
𝑗=1 d

σj
 , x

σj
}  ≥ Min

σ⋲S
∑  Max {𝑛

𝑗=1 ∑ d
σj

 ,𝑛
𝑗=1  ∑ x

σj
   𝑛

𝑗=1 } 

Since  d
σj

 and x
σj

  are positive integers . 

Hence , it is clear that 

Min
σ⋲S

∑ { Max {𝑛
𝑗=1 d

σj
 , 2C

σj
− d

σj
, C

σj
}  ≥  Min

σ⋲S
{ 𝑀𝑎𝑥{∑ d

σj
 ,𝑛

𝑗=1 ∑ 𝑀𝑎𝑥  { 𝑛
𝑗=1 2C

σj
− d

σj
, C

σj
}}} 
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Hence , LB =  𝐌𝐢𝐧
𝛔⋲𝐒

{ 𝑴𝒂𝒙{∑ 𝐝
𝛔𝐣

 ,𝒏
𝒋=𝟏 ∑ 𝑴𝒂𝒙  { 𝒏

𝒋=𝟏 𝟐𝐂
𝛔𝐣

− 𝐝
𝛔𝐣

, 𝐂
𝛔𝐣

}}} … … … … . (𝟔) 

5. Comparison Results 

 

 

n 

Table-1- 

Comparison between Genetic Algorithm and Tabu Search 

GA TS 

No. of Sol. Time(s) No. of Sol. Time(s) 

5 
17 

0.5155333 

 

12 0.0562403 

 

10 
253 0.6339888 56 0.0988966 

15 
236 

 

0.7376676 

 

54 0.1483479 

 

20 251 

1.0125075 

 

89 0.2070926 

 

25 297 

1.0125075 

 

132 0.2699514 

 

30 

294 

 

1.1297793 

 

253 0.6339888 

 

40 292 
1.3990928 

 

235 0.4980252 

 

50 324 
1.6517448 

 

238 0.6873296 

 

100 339 
2.9507885 

 

350 2.3416946 

 

200 293 5.7969116 382 8.2839836 
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500 376 
15.874865 

 

1177 

 

51.3586491 

 

1000 373 
36.229470 

 

1577 243.1260402 

 

2000 
307 

97.018255 

 

1424 600.1819503 

 

Table -2- 

Comparison between Complete Solution and BAB Al-

gorithm 

n 

CEM BAB 

No. 

of 

Sol 

Time(s) 

No. 

of 

Sol 

Time(s) NODS 

3 
15 

0.3143539 

 
10 

0.0356346 

 

29 

4 25 
0.0021941 

 

21 

 

0.0091321 

 

132.91 

 

5 38 
0.0048883 

 
31 

0.0103229 

 

1189.4 

 

6 79 
0.0923632 

 
59 

0.0460734 

 

6671.6 

 

7 142 
9.98810817 

 
106 

2.85608785 

 

76648 
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Conclusion 

The main problem in this study is to find a set of "good solutions" to a problem 

Reducing the total total time, early time and late time we suggest to develop three 

Algorithms are BAB, GA, and Tabu Search. 

By comparing the proposed algorithms relative to the results, we found that the devel-

oped BAB algorithm gives efficient results and better performance than the original 

algorith 
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