
Wasit Journal for Pure Sciences Vol. (2) No. (2)

166

Some Algorithms Used in Parallel Machine Scheduling

Adel Hashem Nour (adilh.alhajjar@uokufa.edu.iq)
Department of Computer Science, College of Education, University of Kufa, Iraq.

Hussam Abid Ali Mohammed
Department of Mathematics, College of Education for Pure Sciences, University of Karbala,

Karbala, Iraq.

Kareema Abed Al-Kadim (kareema.kadim@yahoo.com)

Department of Mathematics, College of Education for Pure Sciences, University of Babylon,

Hilla, Iraq

Abstract: The paper discusses the challenge of organizing the execution of separate

tasks on machines that are otherwise similar. The goal is a lower number of Makes. We

create, examine, and evaluate several local search techniques, including the (BAB) ,

(GA) and (TS) algorithms. Based on past computational experience, we know that

these local search algorithms can efficiently complete up to 2,000 tasks in Matlab .

Keywords- Parallel machines, Genetic algorithm. , Tabu Search , Branch and Bound

algorithm.

1. Introduction

The scheduling of several machines in parallel is a serious challenge for modern

industry. The goal of this challenge is to minimize some performance metric, such

as the maximum time it takes to finish all of the tasks, the number of jobs that finish

late, the penalty for finishing late, and so on. It is common practice in many indus-

tries to run multiple, identical machines in parallel. This is seen in the baking indus-

try, where multiple ovens are used to ensure that enough baked goods are produced,

in the printing industry, where a publisher will need multiple identical printing fa-

cilities to ensure that no special titles (or, worst case, bestsellers) are unavailable to

retailers, in the pharmaceutical industry, where multiple machines are used to ensure

adequate drug production, and in many other settings as well. Objectives including

earliness and tardiness penalties are growing in popularity due to the growing pop-

ularity of just-in-time production systems, in which the early and late completion of

work processing are both undesirable.[1]

Many search-based and enumerative methods may be used to scheduling issues

mailto:adilh.alhajjar@uokufa.edu.iq

Wasit Journal for Pure Sciences Vol. (2) No. (2)

167

because of their combinatorial character. These methods include genetic algorithms,

branch and bound, simulated annealing, tabu search, etc. These procedures often pro-

vide high-quality results. Therefore, scheduling using quick heuristic algorithms is

not only very effective, but often the only viable approach.[2]

If you have a combinatorial optimization issue, a Genetic Algorithm is a great tool for

undertaking a global search. Using a Genetic algorithm and a backward-forward heu-

ristic technique (Sule, 2007), this study proposes a hybrid solution for the early-late,

non-common due-date scheduling issue, in which a group of tasks must be scheduled

to run on a group of identical parallel computers. The cost of keeping goods on hand

for each batches is included into the early arrival penalty.[3]

When solving optimization issues, the Branch and Bound algorithm is an effective

method for quickly arriving at the best possible answer. Algorithmically, the issue is

broken down into more manageable chunks, each of which is solved independently

before the final, optimum solution is combined.[4]

The objective of making use of identical parallel machines is to reduce the makespan,

or the time it takes to finish all of the operations, by scheduling them in such a manner

that they run in parallel as efficiently as possible. The Branch and Bound method may

be used to find a better schedule by searching through all of the potential schedules

and eliminating the branches of the search tree that don't go somewhere better.

The method achieves its goals by repeatedly breaking down the search space into

smaller issues and then finding lower and upper limits on the optimum makespan for

each of those problems. For the lower bound, we solve a simplified version of the

issue, while for the upper limit, we may either use heuristics or solve the problem

precisely.

At each stage, the algorithm chooses the subproblem with the lowest lower limit from

a priority queue and then extends it by branching on a variable. By branching, the

method generates two new subproblems, each with a restriction on the branched-on

variable. The method keeps going until every possible subproblem has been investi-

gated, and the best solution is the one with the shortest makespan.[5]

In conclusion, the Branch and Bound algorithm is an effective method for resolving

optimization issues, such as the scheduling of tasks on similar parallel computers to

Wasit Journal for Pure Sciences Vol. (2) No. (2)

168

reduce the makespan. Using a recursive partitioning into smaller subproblems, com-

puting lower and upper bounds on the optimal makespan for each subproblem, and

pruning branches of the search tree that cannot lead to a better solution than the best

solution found so far, the algorithm explores the search space of all possible schedules.

In order to handle difficult combinatorial optimization problems, such scheduling is-

sues for a set of identical parallel machines, the Tabu method is used as a metaheuris-

tic optimization tool. The Tabu technique avoids getting stuck at local optimums and

effectively searches the whole search space by combining local search with memory-

based search.[6]

To plan a series of tasks on a set of identical parallel machines in a manner that min-

imizes the makespan (the time needed to finish all the jobs) is the objective in the

context of identical parallel machines. By producing a series of candidate solutions

and employing a set of memory structures called Tabu lists to avoid revisiting solu-

tions that have previously been studied, the Tabu algorithm may be used to solve this

issue.[6]

The technique generates a list of potential solutions by iteratively making modest

changes to the original answer. Each potential answer is ranked by the algorithm, and

the one with the shortest makespan is chosen. The algorithm also remembers a number

of "Tabu lists," which it uses to avoid redoing work it has already done. The algorithm

cannot revert the changes that have been made to the present solution because of the

Tabu lists, which store this information.

A stopping condition, such as a maximum number of iterations or a minimum im-

provement threshold, is used to determine when the Tabu algorithm stops generating

and evaluating potential solutions. There are ways to improve the algorithm, such as

diversification mechanisms that push it to look in uncharted areas of the search space

and intensification processes that narrow in on the most promising ones.[7]

In conclusion, the Tabu technique is a metaheuristic optimization approach useful for

solving complicated combinatorial optimization problems, such as scheduling issues

for a set of identical parallel machines. In order to prevent re-exploring solutions that

have previously been studied, the method builds a series of potential solutions and

Wasit Journal for Pure Sciences Vol. (2) No. (2)

169

employs Tabu lists.If conventional algorithms fail to converge to a reasonable solu-

tion, the Tabu technique is a potent tool for discovering excellent solutions to optimi-

zation problems.

2. Problem Formulation

Suppose we have two identical parallel machines, the goal is to minimize of the

completion time cost as well as the earliness time cost with the lateness time cost . We

will have the following objective function:

Min (∑ 𝑪𝒋 ,
𝒑
𝒊 ∑ (𝜶𝑬𝒋 + 𝜷𝑻𝒋)

𝒑
𝒊 ……………..(1)

The constraints for the objective function of two identical parallel machines are:

1.Capacity constraint: The total processing time of all jobs assigned to each ma-

chine cannot exceed its capacity. Mathematically, it can be expressed as:

∑_(pij ≤ Cj), where p_ij is the processing time of job i on machine j and Cj is

the capacity of machine j.

2.Job assignment constraint: Each job must be assigned to exactly one machine. Math-

ematically, it can be expressed as:

∑_(xij = 1), where x_ij is a binary decision variable that equals 1 if job i is as-

signed to machine j and 0 otherwise.

3.Non-preemptive constraint: Once a job is assigned to a machine, it cannot be in-

terrupted or moved to another machine. Mathematically, it can be expressed as:

∑_xij pij = ∑_(xkj pkj), for all j∈{1,2}, where x_ij and xkj are binary decision

variables that equal 1 if job i and k are assigned to machine j, respectively, and 0

otherwise.

4. Objective function constraint: The objective function is the sum of the completion

times on each machine and the weighted sum of earliness and tardiness penalties.

Mathematically, it can be expressed as:

Minimize: ∑_(Cj)+∑_((αEj+βTj))……………(2)

Wasit Journal for Pure Sciences Vol. (2) No. (2)

170

where Ej is the earliness of job i on machine j (i.e., the difference between its

completion time and its due date if it is completed before the due date, and 0 oth-

erwise), Tj is the tardiness of job i on machine j (i.e., the difference between its

completion time and its due date if it is completed after the due date, and 0 other-

wise), α and β are weighting factors for earliness and tardiness, respectively.

These constraints ensure that the jobs are assigned to the machines in a way that

minimizes the objective function while respecting the capacity and assignment con-

straints.

3.1. BAB Algorithm

The Branch and Bound (BAB) algorithm is a widely used optimization technique in

computer science and operations research. It is particularly useful for solving combi-

natorial optimization problems such as the matching of parallel machines.[8]

In the context of matching parallel machines, the goal is to assign a set of tasks to a

set of machines in such a way that the total time, early time, and delay time are mini-

mized. The BAB algorithm is well-suited for this problem because it systematically

explores the solution space by dividing it into smaller and smaller sub-problems until

the optimal solution is found.[8]

At a high level, the BAB algorithm works by creating a search tree that represents

all possible assignments of tasks to machines. The root node of the tree represents the

initial state of the problem, and each child node represents a possible assignment of a

single task to a machine. The algorithm then evaluates each child node to determine

its quality and selects the most promising node to explore further. This process con-

tinues until the optimal solution is found or all nodes have been evaluated.[9]

The BAB algorithm is particularly effective for solving matching parallel machines

problems because it can quickly eliminate large portions of the solution space that are

unlikely to contain optimal solutions. By using various heuristics to guide the search

process, the BAB algorithm can efficiently find near-optimal solutions even for large

problem sizes.

Wasit Journal for Pure Sciences Vol. (2) No. (2)

171

Overall, the BAB algorithm is a powerful tool for optimizing the assignment of

tasks to parallel machines. By reducing the total time, early time, and delay time, it

can help organizations save time and resources while improving their productivity and

efficiency.

3.2.Genetic Algorithm (GA)

The Genetic Algorithm (GA) is a popular optimization technique inspired by natu-

ral selection and genetics. GA is a population-based algorithm that mimics the process

of natural selection, where individuals with better fitness values are more likely to

survive and pass their genetic traits to the next generation. GA has been widely used

in various optimization problems, including the matching of parallel machines.

Matching parallel machines involve assigning a set of tasks to a set of machines to

minimize the total time, early time, and delay time. This is a complex combinatorial

optimization problem that can be challenging to solve using traditional optimization

methods. However, GA can be an effective tool for solving this problem by generat-

ing a set of potential solutions and iteratively improving them over multiple genera-

tions.[10]

In GA, a population of potential solutions, known as chromosomes, is randomly

generated. Each chromosome represents a possible solution, which consists of a set of

task assignments to the machines. The fitness of each chromosome is then evaluated

based on the objective function, which is the sum of the total time, early time, and de-

lay time. The chromosomes with higher fitness values are more likely to be selected

for the next generation, and they will pass their genetic traits to the offspring through

crossover and mutation operators.Through successive generations, the population

evolves to generate better solutions that can minimize the objective function. The GA

algorithm continues this iterative process until a stopping criterion is met, such as

reaching a predetermined number of generations or achieving a satisfactory fitness

value.[10]

Wasit Journal for Pure Sciences Vol. (2) No. (2)

172

In the context of matching parallel machines, GA can be used to optimize the task

assignment and scheduling to minimize the total time, early time, and delay time. By

generating a diverse set of potential solutions and iteratively improving them over

multiple generations, GA can help reduce the time required to match parallel ma-

chines and improve the overall efficiency of the system.[11]

Overall, GA is a powerful optimization tool that can be applied to many complex op-

timization problems, including the matching of parallel machines. By using GA to op-

timize the task assignment and scheduling, organizations can improve their productiv-

ity and reduce the total time, early time, and delay time of their machines

3.3.Tabu search

From 1985 forward, Glover [11] wrote a plethora of publications detailing the dif-

ferent uses of the tabu search. Sequencing, scheduling, oil drilling, and routing are

just some of the other applications that have seen rapid uptake since the discovery of

this method.

The tabu search has useful qualities that may be used to improve other procedures

by keeping them from becoming trapped in the areas of local minima. The tabu search

makes use of memory to stop it from fast cycling back to previously searched areas of

the solution space. For this purpose, a database is maintained with examples of poten-

tial answers. The term "taboo" refers to the social stigma associated with these types

of fixes. One of the factors in the tabu search is the length of the tabu list.[6]

The tabu search also includes mechanisms for regulating the search. The tabu list

guarantees that at least one solution will be undesirable, but it's possible that the tabu

list's restrictions might be too severe in certain situations, leading to the algorithm be-

ing stuck on a local maximum. The tabu search provides the idea of aspiration criteria

to get around this issue. The ambition criteria supersede the taboo constraints, allow-

ing for a more inclusive search for the global optimum.

Wasit Journal for Pure Sciences Vol. (2) No. (2)

173

4. Lowe Bound of BAB

Min f(σ)= Min
σ⋲S

{ ∑ (𝑛
𝑗=1 E

σj
+ T

σj
+ C

σj
)}……….(3)

 =Min
σ⋲S

∑ { Max {𝑛
𝑗=1 d

σj
− C

σj
, 0} + 𝑀𝑎𝑥{C

σj
− d

σj
, 0} + C

σj
}

 = Min
σ⋲S

∑ { Max {𝑛
𝑗=1 d

σj
− C

σj
, C

σj
− d

σj
, 0} + C

σj
}

 = Min
σ⋲S

∑ { Max {𝑛
𝑗=1 d

σj
 , 2C

σj
− d

σj
, C

σj
}………………..(4)

Since the third term C
σj

 is between d
σj

 and 2C
σj

− d
σj

 always, then we can write the

Objective function f(σ) by the form:

Min f(σ)= Min
σ⋲S

∑ { Max {𝑛
𝑗=1 d

σj
 , 2C

σj
− d

σj
}………………..(5)

It is clear from equation (3) a lower bound (LB) is obtained by sequencing

The job by SPT rule.

Hence, we can prove that:

Min f(σ) ≥ Min
σ⋲S

{ 𝑀𝑎𝑥{∑ d
σj

 ,𝑛
𝑗=1 ∑ 𝑀𝑎𝑥 { 𝑛

𝑗=1 2C
σj

− d
σj

, C
σj

}}}

It is a LB of our problem, since

Min
σ⋲S

∑ { Max {𝑛
𝑗=1 d

σj
 , 2C

σj
− d

σj
, C

σj
} ≥ Min

σ⋲S
{ 𝑀𝑎𝑥{∑ d

σj
 ,𝑛

𝑗=1 ∑ 𝑀𝑎𝑥 { 𝑛
𝑗=1 2C

σj
− d

σj
, C

σj
}}}

Put x
σj

 = 𝑀𝑎𝑥 { 2C
σj

− d
σj

, C
σj

}

To show Min
σ⋲S

∑ Max {𝑛
𝑗=1 d

σj
 , x

σj
} ≥ Min

σ⋲S
∑ Max {𝑛

𝑗=1 ∑ d
σj

 ,𝑛
𝑗=1 ∑ x

σj
 𝑛

𝑗=1 }

Since d
σj

 and x
σj

 are positive integers .

Hence , it is clear that

Min
σ⋲S

∑ { Max {𝑛
𝑗=1 d

σj
 , 2C

σj
− d

σj
, C

σj
} ≥ Min

σ⋲S
{ 𝑀𝑎𝑥{∑ d

σj
 ,𝑛

𝑗=1 ∑ 𝑀𝑎𝑥 { 𝑛
𝑗=1 2C

σj
− d

σj
, C

σj
}}}

Wasit Journal for Pure Sciences Vol. (2) No. (2)

174

Hence , LB = 𝐌𝐢𝐧
𝛔⋲𝐒

{ 𝑴𝒂𝒙{∑ 𝐝
𝛔𝐣

 ,𝒏
𝒋=𝟏 ∑ 𝑴𝒂𝒙 { 𝒏

𝒋=𝟏 𝟐𝐂
𝛔𝐣

− 𝐝
𝛔𝐣

, 𝐂
𝛔𝐣

}}} … … … … . (𝟔)

5. Comparison Results

n

Table-1-

Comparison between Genetic Algorithm and Tabu Search

GA TS

No. of Sol. Time(s) No. of Sol. Time(s)

5
17

0.5155333

12 0.0562403

10
253 0.6339888 56 0.0988966

15
236

0.7376676

54 0.1483479

20 251

1.0125075

89 0.2070926

25 297

1.0125075

132 0.2699514

30

294

1.1297793

253 0.6339888

40 292
1.3990928

235 0.4980252

50 324
1.6517448

238 0.6873296

100 339
2.9507885

350 2.3416946

200 293 5.7969116 382 8.2839836

Wasit Journal for Pure Sciences Vol. (2) No. (2)

175

500 376
15.874865

1177

51.3586491

1000 373
36.229470

1577 243.1260402

2000
307

97.018255

1424 600.1819503

Table -2-

Comparison between Complete Solution and BAB Al-

gorithm

n

CEM BAB

No.

of

Sol

Time(s)

No.

of

Sol

Time(s) NODS

3
15

0.3143539

10

0.0356346

29

4 25
0.0021941

21

0.0091321

132.91

5 38
0.0048883

31

0.0103229

1189.4

6 79
0.0923632

59

0.0460734

6671.6

7 142
9.98810817

106

2.85608785

76648

Wasit Journal for Pure Sciences Vol. (2) No. (2)

176

Conclusion

The main problem in this study is to find a set of "good solutions" to a problem

Reducing the total total time, early time and late time we suggest to develop three

Algorithms are BAB, GA, and Tabu Search.

By comparing the proposed algorithms relative to the results, we found that the devel-

oped BAB algorithm gives efficient results and better performance than the original

algorith

Wasit Journal for Pure Sciences Vol. (2) No. (2)

177

1 References

[1] Wayne L. Winston ,” Applications and Algorithms” Cengage Learning,2018.

[2] Ho, W., Ji, P., & Chung, S. H. Scheduling identical parallel machines: a survey.

Journal of the Operational Research Society, 63(12), 1671-1686, 2012.

[3] Salavati, M. R., Razzaghi, M., & Hosseini-Motlagh, S. M. Parallel machine sched-

uling with early and tardy costs. International Journal of Production Research, 49(4),

991-1004, 2011.

[4] Vargas, V. C. Scheduling with early and tardy penalties: a review. Computers & In-

dustrial Engineering, 66(3), 446-454, 2013.

[5]Pinedo, M.L., Scheduling Theory, Algorithms, and Systems, Springer Science + Business

Media, Fourth Edition, LLC., New York, 2012.

[6] Glover F,Tabu Search Part I, ORSA Journal on Computing, 1: 190–206, ., 1989.

[7] Liang, Y–C., Chen, H–L.A., and Tien, C–Y., Variable Neighborhood for Multi–Objective

Parallel Machine Scheduling Problems, In: Proc. of the 8th International Conference on In-

formation and Management Science (IMS 2009), Chine, 519–522, 2009.

[8] Puchinger, J., Raidl, G.R., Combining Metaheuristics and Exact Algorithms on Combina-

torial: A Survey and Classification. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005, LNCS,

3562:41–53, Springer, Heidelberg, 2005.

[9] Tapan, S., Farhad, M.E., and Parthasarati, D,A Branch and Bound Approach to the Bicrite-

ria Scheduling Problem Involving Total Flowtime and Range of Lateness, Management Sci-

ence, 34(2):254–260, 1988.

[10] Holland, J.H., Adaptation in Natural and Artificial Systems, Cambridge, MA: MIT

Press. Second edition (1992), (First edition, University of Michigan Press, 1975), 1975/1992.

[11]Glover F., Tabu Search Part I, ORSA Journal on Computing, 1: 190–206, 1989,

Article submitted 1 April 2023. Accepted at 24 May

Published at 30 Jun 2023.

